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In theoretical papers about the dynamics of liquid dispersions, the integral kernels
appearing in the evolution equation for the droplet size distribution functions are
usually given some generic properties, leaving their analytic structure unspecified.
Moreover breakage is always described as a cumulative effect with no reference to
the influence of the various breakage modes. Here we want to show how the effort
of better understanding these integral kernels, guided by their physical meaning,
helps significantly to identify a set of rather simple hypotheses guaranteeing the
well–posedness of the problem. On the basis of the explicit structure of these
kernels, we show examples of functions that fit perfectly the hypotheses of the
existence–uniqueness theorem appearing in Refs. 1, 2 and present some numerical
simulations.

1. Some forms of the evolution equation for the dynamics

of liquid droplets

1.1. Classical model

Until a few years ago, the evolution equation for the dynamics of droplets

in a liquid dispersion in the simplest case (i.e. homogeneous medium, no

diffusion) used to be written as

∂f

∂t
= Lcf + Lbf, (1)

where f(v, t) denotes the volume distribution function f , so that f(v, t) dv

represents the number of droplets having volume in the interval (v, v + dv)
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at time t, per unit volume of dispersion. The symbols Lc and Lb stay

respectively for the coalescence and breakage operators and in the standard

literature (see, e.g., Ref. 3) write as follows:

Lcf =

∫ v/2

0

τc(w, v − w)f(w, t)f(v − w, t) dw − f(v, t)

∫ +∞

0

τc(w, v)f(w, t) dw,

Lbf =

∫ +∞

v

τb(s, v)f(s, t) ds − f(v, t)

∫ v

0

s

v
τb(v, s) ds.

Here τc is a symmetric non–negative function defined over IR+ × IR+ with

suitable properties. Similarly τb is a non–negative function defined over

{(ξ, η) | 0 < η < ξ} with suitable properties too (see, e.g., Refs. 3, 4, 5 for

further details). The unbounded upper integration limit in both Lc and Lb

was criticized in Ref. 5 on the basis of the experimental evidence and of

the fact that posing a finite upper bound to the size of droplets is not only

in agreement with the physics but may also imply a simpler mathematical

treatment of the whole problem (see Ref. 6 for this point).

1.2. A recent model which includes the “volume scattering

effect”

If, in agreement with the physics, we place a finite upper bound vm to

the droplet size, the model can be consistently modified only if we add at

the r.h.s. of (1) the so–called volume scattering effect (see Refs. 5, 7) and

rewrite (1) as follows

∂f

∂t
= Lcf + Lbf + Lsf, (2)

where

Lsf =

∫ vm+v

vm

∫ s/2

s−vm

τs(s, v, w)f(w, t)f(s − w, t) dw ds

− f(v, t)

∫ vm+v

vm

τs(s, v, s − v)f(s − v, t) ds.

The other two operators need to be modified accordingly. Indeed we write

Lcf =

∫ v/2

0

τc(w, v − w)f(w, t)f(v − w, t) dw − f(v, t)

∫ vm−v

0

τc(w, v)f(w, t) dw,

Lbf =

∫ vm

v

τb(s, v)f(s, t) ds − f(v, t)

∫ v

0

s

v
τb(v, s) ds.

For simplicity we do not consider here further complications like the pres-

ence of an efficiency factor depending nonlocally on f (as it was done in
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Refs. 5, 7) or like the so–called collisional breakage introduced in Refs. 8, 9.

Instead we wish to focus on a more realistic structure of both the breakage

and scattering kernel. Most Authors (of mathematical inspiration) look at

τb(s, w) as the rate at which a particle of size s decays into a particle of

size w regardless of how many particles contribute to the difference volume

s − w. In other words the sintetic form of τb does not allow to distinguish

among the various breakage modes each having possibly its own rate and

probability. The same remark holds true for τs since the decay of droplets

above the threshold limit vm may occur with various rates and probability

too. It is quite natural that this issue has been underestimated because of

the objective difficulty of describing the single breakage modes. On the con-

trary, trying to clarify as much as we can the real structure of τb and τc will

prove fruitful, when approaching the central problem of the well–posedness

of the Cauchy problem, to select hypotheses which fit better the physics.

In the next sections we shortly recall the results presented in Refs. 1, 2 and

work out explicitly an example in which breakage modes up to the fourth

order included are taken into account.

1.3. Expanding the integral kernels

The key point of our approach is that each mode of drops rupture has its own

frequency and probability. With this in mind, we have recently proposed

(see Refs. 1, 2) the following forms for Lb and Lc:

Lbf =

∫ vm

v

O
+
b (s, v)f(s, t) ds − O

−
b (v)f(v, t),

Lsf =

∫ vm+v

vm

∫ s/2

s−vm

O
+
s (s, v, w)f(w, t)f(s − w, t) dw ds

− f(v, t)

∫ vm+v

vm

τc(v, s − v)f(s − v, t) ds,

where O
−
b (v) =

N∑
k=2

αk(v) and

O
+
b (s, v) = α2(s)β2(s, v) +

N∑

k=3

αk(s)

∫

Dk(s,v)

βk (s,uk−2, s − v − Uk−2) dσk−2,

O
+
s (s, v, w) = τc(s − w, w)λ2(s)β2(s, s − v)

+ τc(s − w, w)

N∑

k=3

λk(s)

∫

Dk(s,v)

βk (s,uk−2, s − v − Uk−2) dσk−2



17th January 2005 15:0 Proceedings Trim Size: 9in x 6in FasRosMan-ws-procs9x6

4

The functions appearing in O
±
b , O±

s have the following meaning:

• αk(s) is the breakage rate of droplets with volume s ∈ (v
(1)
crit, vm)

into k droplets, v
(1)
crit being a lower non–negative threshold.

• λk(s) is a suitable weight (to be chosen conveniently) measuring the

probability of the parent droplet s ∈ (vm, 2vm] to break exactly in

k pieces within the scattering process; of course
N∑

k=2

λk(s) = 1.

• Un =
n∑

h=1

uh, un = (u1, . . . , un)

• βk (s,uk−1) is the probability density of drops with volume s ∈
(0, 2vm) to generate by breakage k fragments with prescribed vol-

umes uj (j = 1, . . . , k − 1) in increasing order, v
(2)
crit ≤ u1 ≤ u2 ≤

. . . ≤ uk−1 (the volume of the remaining drop is the complement

to s and may occupy any position in the size order), v
(2)
crit being a

lower non–negative threshold. The inequality v
(2)
crit ≤ u1 is replaced

with v
(2)
crit < u1 in the case v

(2)
crit vanishes.

• τc(v, w) is the coalescence kernel, that is proportional to the prob-

ability that two colliding droplets of respective volumes v and w

coalesce to form a single droplet of volume v + w.

The precise definition of the functions βk (s,uk−1) and of the domains

Dk(s, v) is more complex and needs several preliminaries: we devote the

following Section just to this topic. Before doing this we prefer to specify

some properties of the functions appearing in the kernels of Lc, Lb, Ls:

(H1) τc is non–negative, symmetric and continuously differentiable in

[v
(3)
crit, vm] × [v

(3)
crit, vm], v

(3)
crit being a lower non–negative threshold.

(H2) For k = 2, . . . , N , αk is non–negative, continuously differentiable

and non–decreasing in [v
(1)
crit, vm), unbounded as v tends to vm. We

also assume
N∑

k=2

αk > 0 for all v ∈ (v
(1)
crit, vm) and

a) αk ' (vm − v)−µk

+ with µk ∈ (0, 1) in a left neighbourhood of

v = vm,

b) αk ' (v − v
(1)
crit)

δk

+ with δk > 0 in a right neighbourhood of

v = v
(1)
crit, being (•)+ := max{•, 0}.

(H3) For k = 2, . . . , N , functions λk are continuous in [vm, 2vm].
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The thresholds v
(1)
crit, v

(2)
crit, v

(3)
crit have an important physical meaning and play

also a role in the question of global existence in time (see Refs. 1, 2 for all

relevant details). For the sake of simplicity we assume, unless explicitly

stated, all these lower thresholds equal to zero. However it may be inter-

esting to notice that, if v∗
crit = min{v(1)

crit, v
(2)
crit, v

(3)
crit} > 0, the highest number

of allowable rupture modes N (that in our model is a free parameter) can

be roughly estimated from above through the ratio 2vm/v∗crit. It is also

worth noticing that in the exceptional case of binary ruptures only (that is

αk = λk = 0 for all k ≥ 3) the model we propose coincides with the one

presented in Refs. 5, 7.

2. Probability functions and their domains

The function β2 is such that β2(s, u) = β2(s, s − u), and β2(s, u) = 0, if

s ≤ u. In other words, for each s ∈ (0, vm], we only need to define β2 in

[0, s/2]. If s ∈ (vm, 2vm] being u = s − (s − u) > s − vm, the function is

defined in (s − vm, s/2). We set

T2,1(s) = {u1 | 0 < u1 ≤ s − u1 ≤ vm} =
(
max{0, s− vm}, s

2

)
,

T2,2(s) = {u1 | 0 < s − u1 < u1 ≤ vm} =
(s

2
, min{s, vm}

)
,

Notice that the map C0 : s − u 7→ u, transforms T2,2(s) one–to–one onto

T2,1(s). Therefore, for any value of s ∈ (0, 2vm), we assign β2 on T2,1(s) in

such a way that
∫

T2,1(s)
β2(s, u) du = 1, and think of β2 ◦C0 as its extension

on T2,2(s). Also notice that C0 = C−1
0 ; moreover C0 is measure–preserving,

so that
∫

T2,2(s)

β2(s, s − u) du =

∫

T2,1(s)

β2(s, u) du = 1, (3)

and we first consider the case s ∈ (0, vm]. Now, for a given k ≥ 3, let us

define the set of IRk−1

Tk,1(s) = {uk−1 | 0 < u1 ≤ . . . ≤ uk−1 ≤ s − Uk−1 ≤ vm} . (4)

Clearly ũ = s−Uk−1 identifies one of the k daughters and Tk,1 is character-

ized by the circumstance of ũ being the volume of the largest daughter(s).

Function βk is assigned on Tk,1 in such a way that
∫

Tk,1(s)

βk (s,uk−1) dσk−1 = 1. (5)
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We then define the following subsets in IRk−1

Tk,j(s) = {uk−1 | 0 < u1 ≤ . . . ≤ uk−j ≤ s − Uk−1 ≤ uk−j+1 ≤ . . . ≤ uk−1 ≤ vm} ,

j = 2, . . . , k,
(6)

where, by definition, u0 = 0 (i. e. in Tk,k(s), ũ is the volume of the smallest

drop(s)). If s ≤ vm, as we suppose for the moment, the last inequality in

(4) and (6) is obviously redundant. Then we consider, again for a fixed s,

the maps

Cj : (ξ1, . . . , ξk−1) 7→ (u1, . . . , uk−1) , j = 1, . . . , k − 1,

defined by





u1 = ξ1, . . . , uk−j−1 = ξk−j−1, uk−j = s −

k−1∑
i=1

ξi,

uk−j+1 = ξk−j+1, . . . , uk−1 = ξk−1.

(7)

The purpose of maps (7) is to “re–locate” the residual drop ũ with respect

to the ordered set of the other daughters. Indeed Uk−1 = s − ξk−j with ũ

taking the place of ξk−j . It is easy to see that the Jacobian of each map

Cj is equal to one and that

{
Cj (Tk,j(s)) = Tk,j+1(s), Cj (Tk,j+1(s)) = Tk,j(s)

so that Cj = C−1
j . The main reason for introducing the maps Cj is to

extend the probability density over all domains Tk,j . The procedure is the

following. Indeed it can be proved (see Ref. 1) that, for all k ≥ 3 and i 6= j,
◦

T k,j

⋂ ◦

T k,i= ∅ and that
⋂k

j=1 Tk,j reduces to a single point which can

be identified with the event u1 = u2 = . . . = uk−1 = s
k , that is “all droplets

have the same volume”. Now, by means of the maps Cj we extend βk from

Tk,1 to Tk,2, from Tk,2 to Tk,3 and so on, up to Tk,k. In other words we put

β̃k (s,uk−1) =





βk (s,uk−1) , if uk−1 ∈ Tk,1(s),

βk ◦ C1 (uk−1) , if uk−1 ∈ Tk,2(s),
...

...

βk ◦ C1 ◦ C2 ◦ . . . ◦ Ck−1 (uk−1) , if uk−1 ∈ Tk,k(s).

(8)

Because of the properties of the maps Cj , we have

∫

Tk,1(s)

β̃k dσk−1 =

∫

Tk,2(s)

β̃k dσk−1 = . . . =

∫

Tk,k(s)

β̃k dσk−1 = 1; (9)
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if we define Tk =
k⋃

j=1

Tk,j and recall that
◦

T k,j ∩
◦

T k,i= ∅ for i 6= j, we also

have
∫

Tk(s)

β̃k dσk−1 = k. (10)

We now put

Dk(s, v) = Tk(s) ∩ {Uk−1 = s − v} . (11)

Thus in all the Tk,j contributing to Dk(s, v), the volume v is just that of

the “residual drop”. Notice that Dk(s, v) is the intersection of the (k −
1)−dimensional convex polytope Tk(s) with a hyperplane in IRk−2, so that

∂Dk(s, v) is an orientable hypersurface in IRk−3. From now on we drop

the “tilde” above βk in (8), i.e. we identify βk with its extension over

Tk(s). Since we allow s in the interval (0, 2vm], function βk is defined in

the k−dimensional polytope

Tk =
{
(s,uk−1) ∈ IRk | s ∈ (0, 2vm], 0 < u1 ≤ u2 ≤ . . . ≤ uk−1 ≤ uk, Uk = s

}
.

The domain Tk(s) is the intersection of Tk with the plane s =constant. We

now pass to the case s ∈ (vm, 2vm], in which the last inequality appearing

in the definitions (4) and (6) plays an effective role. We also extend the

assumption (5): we put
∫

Tk,1(s)
βk (s,uk−1) dσk−1 = 1, regardless of the

size of s in (0, 2vm]. The maps Cj then allow to extend βk over the whole

set Tk(s) also for s ∈ (vm, 2vm). Of course also (9) and (10) extend to

this case. We notice explicitly that (9) is the natural extension to the case

k ≥ 3 of (3) and that, being T2,1(s) ∩ T2,2(s) = {s/2},
◦

T 2,1 ∩
◦

T 2,2= ∅ and

measT2,1(s) = meas T2,2(s), relation (10) also holds true for k = 2. The

same conclusion concerns (11): for k = 2 this set reduces the single point

of abscissa s − v in the interval (max{0, s− vm}, min{s, vm}).

2.1. Well-posedness

In Refs. 1, 2 we proved the physical consistency of the model a priori (like

the positivity of the solution and the conservation of volume) and also that

if αk and βk obey some summability hypotheses the Cauchy problem for Eq.

(2) is well posed for a suitable class of initial data. The precise statements

of these hypotheses are as follows.
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(H4) (Regularity): for all k ≥ 2, βk vanishes if the size of the smallest

daughter goes to zero; β2(s, v) is piecewise continuously differen-

tiable in
◦

T2=
⋃

s∈(0,2vm)

{s}×
◦

T2 (s) and, in addition, there exists a

suitable positive constant C such that, for all v ∈ (0, vm),

λ2(vm + v)β2(vm + v, v) ≤ C,

∣∣∣∣
∫ vm+v

vm
λ2(s)

∂β2(s, v)

∂v
ds

∣∣∣∣ ≤ C,

∫ vm

v α2(s)β2(s, v) ds ≤ C,

∣∣∣∣
∫ vm

v α2(s)
∂β2(s, v)

∂v
ds

∣∣∣∣ ≤ C.

Furthermore, for k = 3, . . . , N , βk is piecewise continuously differ-

entiable in
◦

Tk=
⋃

s∈(0,2vm)

{s}×
◦

Tk (s) and, in addition, there exists

a suitable positive constant C such that, for all v ∈ (0, vm),

(a)
(∫

Dk(s,v)
βk (s,uk−2, s − v − Uk−2) dσk−2

)∣∣∣
s=vm+v

≤ C,

(b)
∫ vm

v
αk(s)

∫
Dk(s,v)

βk (s,uk−2, s − v − Uk−2) dσk−2 ds ≤ C,

(c)
∫ vm

v αk(s)
∫

∂Dk(s,v) βk (s,uk−2, s − v − Uk−2) dσk−3 ds ≤ C,

(d)

∣∣∣∣∣
∫ vm

v
αk(s)

∫
Dk(s,v)

[
∂βk

∂uk−1

]

uk−1=s−v−Uk−2

dσk−2 ds

∣∣∣∣∣ ≤ C.

We recall that ∂Dk(s, v) is an orientable hypersurface in IRk−3. We mean

that all integrals of type (iii-c) are positive. Concerning the initial data we

assume that fo(0) = fo(vm) = 0, that fo(v) is non–negative and piecewise

C1[0, vm], and finally that

|α′
k(v)fo(v)| < +∞, ∀k = 2, . . . , N.

The unique solution of the Cauchy problem turns out to be at least Lips-

chitz continuous in [0, vm] × [0, T ) for a suitable T > 0. To achieve global

existence we need, in addition, that αk, βk and τc vanish identically in a

right neighbourhood of the origin: this forbids the blow-up of the number

of droplets of arbitrary small size and is perfectly justifiable on the basis of

experimental observations.

3. Numerical simulations

Guided by the detailed structure of the breakage and scattering kernels

it is not difficult to give examples of functions βk which fit all the as-
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sumptions we made. In this section we present possible forms of βk, αk, λk

for k = 2, 3, 4 which meet all the hypotheses stated in the previous sec-

tions. All simulations are then carried out taking into account effects up

to the fourth mode included. Computing solutions including higher modes

presents no other difficulty but longer computational time. Let us de-

fine β2,a(s, u) = A0(s)u(s − u), and β2,b(s, u) = −A1(s)
2

(
u − s

2

)2
+ A2(s),

β2,c(s, u) = A2(s). Then set

β2 =





β2,a χT2,inf
, if s ∈ (0, 1),

β2,b χT2,sup
, if s ∈ (1, s̄),

β2,c χT2,sup
, if s ∈ (s̄, 2),

(12)

being χA the characteristic function of the set A. For simplicity, we

have set (in (12) and in the sequel) v∗ = 0 and vm = 1. If s̄ =

3/2, the hypotheses made in the previous section are all satisfied, pro-

vided that A0(s) = 12
s3 , A1(s) = 72 − 48s and that A2(s) =

−
(
26 − 52 s + 42 s2 − 15 s3 + 2 s4

)
(−2 + s)

−1
. All hypotheses (H4) con-

cerning β2 can be checked by taking, e.g., α2(s) = sδ2(1 − s)−µ2

+ with

µ2 ∈ (0, 1), δ2 > 0, and λ2(s) = 2−s
2 . Since we consider breakage events up

to the fourth order mode, we define λ4(s) = λ3(s) = (1 − λ2(s))/2. Recall

that C1 : (ξ1, ξ2) 7→ (ξ1, s − ξ1 − ξ2), C2 : (ξ1, ξ2) 7→ (s − ξ1 − ξ2, ξ2) and,

being f(s,u2) = 720s−5u1u2(s − U2), write





β3,1(s,u2) = f(s,u2) ◦ χT3,1(s)(u2), u2 ∈ T3,1(s),

β3,2(s,u2) = f(s, u1, s − U2) ◦ χT3,2(s)(u2), u2 ∈ T3,2(s),

β3,3(s,u2) = f(s, s − U2, u1) ◦ χT3,1(s)(u2), u2 ∈ T3,3(s),

Then assume β3 = β3,1 + β3,2 + β3,3. For v ∈ (0, 1) fixed, the domain

D3(s, v) is defined as D3(s, v) = T3(s) ∩ {U2 = s − v} . It is easy to check

that
∫

T3,1
β3,1(s,u2) du1 du2 = 1 and that, over D3(s, v), the function f

writes 720s−5u1u2v. Concerning hypothesis (a) of the set (H4) notice that,

up to the sign,
∫

D3(s,v) β3(s, u1, s−v−u1) dσ1 =
√

2
∫ s/2

max{0,s−1} β3(s, u1, s−
v − u1) du1. Thus
∣∣∣
∫

D3(1+v,v)
β3(1 + v, u1, 1− u1) dσ1

∣∣∣ ≤
√

2
∫ (1+v)/2

v
β3(1 + v, u1, 1 − u1) du1

≤
√

2
∫ (1+v)/2

v f(1 + v, u1, 1 − u1) =
√

2
∫ (1+v)/2

v

720vu1(1 − u1)

(1 + v)5
du1

= 30
√

2
v(v − 1)2(7v + 2)

(v + 1)5
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which is uniformly bounded in (0, 1). Similarly for hypothesis (b) we need

to consider the integral
∫ 1

v α3(s)
∫

D3(s,v) β3(s, u1, s − v − u1) dσ1 ds which

rewrites
∫ 1

v
sδ3(1 − s)−µ3

∫ s/2

0
β3(s, u1, s − v − u1) du1 ds. For δ3 = 2 and

µ3 = 1/2 it turns out that this integral is bounded by Cv
√

1 − v for a suit-

able positive constant C and thus is uniformly bounded over (0, 1). Simi-

larly, concerning hypothesis (c), the integral
∫ 1

v
α3(s)

∫
∂D3(s,v)

β3(s, u1, s −
v − u1) dσ1 ds reduces, up to a multiplying positive constant, to∫ 1

v v |2v − s|s−2(1 − s)−1/2 ds. It can be easily checked that this integral

is bounded by the function 2

(√
1 − v +

v(1−2v)
√

1−max{1/3,v}

max2{1/3,v}

)
, which is

in turn uniformly bounded over (0, 1). Concerning hypothesis (d) we have

that the integral

∫ 1

v
α3(s)

∫
D3(s,v)

[
∂β3(s, u1, ξ)

∂ξ

]

ξ=s−v−u1

dσ1 ds

= M
∫ 1

v s−3(1 − s)−1/2
∫ s/2

0 u1v − u1(s − v − u1) du1 ds.

being M a suitable positive constant. This integral can be calculated ex-

actly and, up to a multiplying constant, turns out to be equal to

−
√

1 − v + 3 v arctanh(
√

1 − v);

this function is uniformly bounded over (0, 1).

If k = 4 the procedure is the same: the function β4 is first defined over

T4,1(s) and then extended by means of the maps Cj . We first define the

function g(s,u3) = 120960s−7u1u2u3(s − U3) and

C1 : (ξ1, ξ2, ξ3) 7→ (ξ1, ξ2, s − ξ1 − ξ2 − ξ3),

C2 : (ξ1, ξ2, ξ3) 7→ (ξ1, s − ξ1 − ξ2 − ξ3, ξ3),

C3 : (ξ1, ξ2, ξ3) 7→ (s − ξ1 − ξ2 − ξ3, ξ2, ξ3).

Thus




β4,1(s,u3) = g(s,u3) ◦ χT4,1(s)(u3), if u3 ∈ T4,1(s),

β4,2(s,u3) = g(s, u1, u2, s − U3) ◦ χT4,2(s)(u3), if u3 ∈ T4,2(s),

β4,3(s,u3) = g(s, u1, s − U3, u2) ◦ χT4,3(s)(u3), if u3 ∈ T4,3(s),

β4,4(s,u3) = g(s, s − U3, u1, u2) ◦ χT4,4(s)(u3), if u3 ∈ T4,4(s)

and β4 = β4,1 + β4,2 + β4,3 + β4,4. For v ∈ (0, 1) fixed, the domain D4(s, v)

is defined as D4(s, v) = T4(s) ∩ {U3 = s − v} . It can be easily checked that∫
T4,1(s)

β4,1(s,u3) du1 du2 du3 = 1. As before hypotheses (H4) can be

verified via straightforward calculations (too long anyway to be proposed

here).
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The following Figs. show the effects of the various terms in a cumula-

tive way. The last Fig. shows the expected independence of the asymptotic

configuration from the initial data, provided that the initial volume of the

dispersed phase remains the same. Indeed in Ref. 10 it was recently proved

that the stationary version of Eq. (2) possesses a non–trivial solution pro-

vided that the kernels (in usual “closed” form) satisfy some suitable growth

conditions.

 0  0.2  0.4  0.6  0.8  1

evolution 1.8

 1.4

 1

 0.6

 0.2

initial data

Figure 1. Evolution of f(v, t) from a given initial datum: in this case only binary events
are considered.

 0  0.2  0.4  0.6  0.8  1

evolution
 8

 6

 4

 2

initial data

Figure 2. Evolution of f(v, t) from a given initial datum: events up to the fourth order
included are considered. The difference with respect to Fig. 1 should be noted.
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 0  0.2  0.4  0.6  0.8  1

 9

 7

 5

 2

Figure 3. Evolution of f(v, t) from three different initial data with the same total mass:
the asymptotic limits coincide.

Bibliography

1. A. Fasano and F. Rosso. Dynamics of droplets in an agitated dispersion with
multiple breakage. Part I: formulation of the model and physical consistency.
Math. Meth. Appl. Sc., (2005). to appear.

2. A. Fasano and F. Rosso. Dynamics of droplets in an agitated dispersion with
multiple breakage. Part II: uniqueness and global existence. Math. Meth. Appl.
Sc., (2005). to appear.

3. Z. A. Melzak. A scalar transport equation. Trans. Amer. Math. Soc., 85: 547–
560, (1957).

4. H. Amann. Coagulation–fragmentation processes. Arch. Ration. Mech. Anal.,
151 (4): 339–366, (2000).

5. A. Fasano and F. Rosso. A new model for the dynamics of dispersions in a
batch reactor. In H. J. Bungartz, R. H. W. Hoppe, and Ch. Zenger, editors,
Proceedings of the Symposium Organized by the Sonderforschungsbereich 438
on the Occasion of Karl-Heinz Hoffman’s 60th Birthday, Lectures in Applied
Mathematics, pages 123–141, Berlin, (2000). Springer Verlag.

6. A. Fasano. The dynamics of two-phase liquid dispersions: necessity of a new
approach. Milan J. Math., 70: 245–264, (2002).

7. A. Fasano and F. Rosso. Analysis of the dynamics of liquid–liquid dispersions.
In L. Arkeryd, J. Bergh, P. Brenner, and R. Pettersson, editors, Progress in
Industrial Mathematics at ECMI 98, pages 214–221, Stuttgart Leipzig, (1999).
Teubner.

8. Z. Cheng and S. Redner. Kinetics of fragmentation. J. Phys. A, 23 (7): 1233–
1258, (1990).
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