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Abstract. In [?] a new model for the evolution of a system of droplets dispersed in an agitated liquid was

presented, with the inclusion of the so–called volume scattering effect (a combination of coalescence and

breakage). In that paper droplets breakage was considered to be binary, in order to simplify exposition. Here

we remove that substantial limitation, considering multiple breakage and scattering.

1 Introduction

A system of two immiscible liquids agitated in a batch under the action of impellers gives rise to a
set of droplets of one phase dispersed in the other phase. The resulting system is called a dispersion

(finer dispersions are called emulsions) and its evolution is caused by the fact that droplets during
their motion may break up in smaller droplets or they may coalesce (an essentially binary process),
producing larger elements. Dispersions are commonly encountered in industrial products like food,
cosmetics, pharmacology, photography and many others. This justifies the large amount of scientific
papers devoted to this subject during the last century (see, for example, [?,?,?,?] for the main relevant
literature). However, many basic questions are still pending so that research is still very active in this
area.
Dealing with the specific case of the batch reactor, it is commonly assumed that spatial homogeneity
is achieved, so that the droplet system is described by a volume distribution function f(v, t), f dv
representing the number of droplets having volume in the interval (v, v + dv) at time t, per unit
volume of dispersion. When we come to the question of describing the evolution of f , there are
essentially two kinds of difficulties somehow related to each other: the first is that the main processes
influencing the evolution of f , namely coalescence and breakage, are indeed complex phenomena, not
completely understood (particularly at high rotational speeds) and for which various descriptions have
been proposed in the experimental literature. Experiments and observations are also very delicate so
possible insights have to be taken very carefully. However – and this is mainly the second difficulty
– the proposed mathematical models seem to require further refinements. Indeed a typical feature
usually adopted in the construction of the mathematical model is that v is allowed to take any
positive value: this is clearly meaningless from the physical point of view, but writing an evolution
model is generally much simpler if v ranges over (0,+∞). On the other hand it is true that coalescence
tends naturally to produce large droplets. However, it is not a controversial point that (for a given
agitation speed of the mixture) the maximum observable size of droplets is finite (see e.g. [?]). In the
mathematical literature this aspect of the problem is generally underestimated or at most by–passed
in some artificial way like placing a cut–off in the coalescence kernel and allowing v to go to infinity.
Recently we proposed a model (see [?,?]) for the dynamics of droplets including in a consistent
way a constraint on the droplet size and pointing out that this requires the presence of a third
physical mechanism in the evolution of the system, called volume scattering. This effect consists in an
immediate decay by rupture of a droplet resulting from coalescence and exceeding the threshold value
vmax so that all daughters remain in the allowed size range. Scattering is represented by a specific
operator (with gain and loss terms) in the balance equation which adds to classical coalescence and
breakage operators. The main advantage of this approach is that it is based on natural assumptions,



reflecting the real physics. Also the mathematics appears to be simpler since subtle questions regarding
summability in unbounded domains are automatically eliminated. The resulting model consists in an
initial value problem for a Boltzmann–like equation for the function f(v, t).
Our first contribution dealt with the simpler case of binary events: this means that all ruptures of a
parent droplet due to breakage or scattering produce precisely two daughters.
In [?,?] we proved that the problem is well–posed under rather general hypotheses and with a bounded
fragmentation kernel. The extension to the case of an unbounded fragmentation kernel has been
subsequently performed in [?].
Here we show how to remove the main limitation that we put in [?,?], namely the hypothesis of
“binary” rupture. We notice that since the scattering operator involves a breakage event also this
operator needs to be modified accordingly in order to allow the volume scattering with multiple exit.
Of course, multiple breakage has been considered by many Authors (see e.g. [?,?,?]) but with the
philosophy of capturing a global information about breakage, in view of the difficulty of analyzing
the single modes. Here we emphasize the contribution of each breakage class to the rate of change of
the distribution function, confining ourselves to a brief description of the model. A complete analysis
of our equation will be published elsewhere.

2 Mathematical Model

We assume droplets to be uniformly distributed in the reactor so that f does not depend on spatial
coordinates. We also assume that the system is isolated, so that there is no heat or mass exchange.
Thus it is possible to formulate the following evolution equation:

∂f

∂t
= φ(t) (Lcf + Lbf + Lsf) . (1)

Terms appearing at the r.h.s of equation (??) have been clarified in various papers (see [?,?] for
example): essentially φ(t) = Φ [N (t),S(t)] with

N (t) =

∫ vmax

0

f(v, t) dv , S(t) =

∫ vmax

0

v(2/3)f(v, t) dv ,

represents what we called an efficiency factor, N and S having, respectively, the meaning of the
instantaneous total number of droplet and inter–facial area per unit volume of dispersion. The role
of φ has been described in the quoted papers.
The operators at the r.h.s. of (??) have a rather complex structure: Lc is the coalescence operator
and depends on a coalescence kernel τc which is a known function of the sizes of the two colliding
droplets; Lb is the breakage operator summing up the contributions of the rupture various modes
(binary, ternary, etc.), having defined for each breakage mode its frequency αi and the probability

density βi of its outcome. Finally Ls is the scattering operator and the kernel of the i-th mode is just
the product of βi and τc. Natural size limitations among droplets impose particular care when the
integration domains of the various terms on the r.h.s. of (??) are specified. Here, in the next section,
we work out with the necessary details the ternary mode of rupture. Higher orders becomes formally
more complicated but the procedure we present is general and applies in all cases.

3 Breakage and scattering: the ternary mode made explicit

Ternary breakage of a droplet of volume w produces three droplets with preservation of volume. We
select the volumes u1, u2 as ordered independent variables (u1 ≤ u2) and we distinguish three cases
depending on the size of the third droplet ũ = w − u1 − u2 compared to u1, u2. In the following the



subscript “3” refers to the specific mode we are considering. We first discuss the breakage operator

Lb so that w does not exceed vmax.

(b1) Suppose that u1 ≤ u2 ≤ ũ ≤ vmax; these relations imply u1 ∈ (0, w/3) and u2 ∈ (u1, (w − u1) /2),
defining the region

T3,1 (w) =
{
(u1, u2) | 0 < u1 ≤

w

3
, u1 ≤ u2 ≤ ũ ≤ vmax

}
.

(b2) Suppose that u1 ≤ ũ ≤ u2 ≤ vmax; in this case, from these inequalities we still get u1 ∈ (0, w/3)
but now u2 ∈ ((w − u1) /2, w − 2u1). Accordingly

T3,2 (w) =

{
(u1, u2) | 0 < u1 ≤

w

3
,

w − u1

2
≤ u2 ≤ w − 2u1

}
.

(b3) Let us finally assume that 0 < ũ ≤ u1 ≤ u2 ≤ vmax; in this case u1 is allowed to range between
0 and w/2 and these inequalities imply that for u1 ∈ (0, w/3) it must be u2 ∈ (w − 2u1, w − u1)
while, if u1 ∈ (w/3, w/2), the correct bounds are u2 ∈ (u1, w − u1). Then let T3,3(w) be the region

{
(u1, u2) | 0 < u1 ≤

w

3
, w − 2u1 ≤ u2 ≤ w − u1

} ⋃{
(u1, u2) |

w

3
< u1 ≤

w

2
, u1 ≤ u2 ≤ w − u1

}
.

Regions T3,i are shown in figure ??. Now we introduce the

w
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Fig. 1. Triangular regions T3,i where β is
defined. The three triangles have the same
area

function β3(w,u1, u2) such that β3(w,u1, u2) du1 du2 is the
probability that two among the daughters have volumes in
the intervals (u1, u1 + du1), (u2, u2 + du2). We impose the
natural normalization

∫

T3,1(w)

β3 (w,u1, u2) du1du2 = 1.

The probability density β3 is then extended over the other
two regions. Indeed the probability must remain the same if
ũ becomes the middle droplet or the smallest one. Consider
then the plane coordinate transformation

C : (u1, u2) 7→ (ξ, η)

given by ξ = w − u1 − u2, η = u1 and which is directly
suggested by the the definition of ũ. Transformation C is
area–preserving and such that C(T3,1) = T3,2 and C(T3,2) =
T3,3. Consequently

∫

T3,1(w)

β3 (w,u1, u2) du1du2 = 1

=

∫

C(T3,1(w))

β3 ◦ C
−1 (w, η, ξ) dηdξ =

∫

T3,2(w)

β3 (w,u1, w − u1 − u2) du1du2

=

∫

C(T3,2(w))

β3 ◦ C
−1 (w, η, ξ) dηdξ =

∫

T3,3(w)

β3 (w,w − u1 − u2, u2) du1du2.

(1)



The gain part of the breakage operator now writes as follows (ũ playing the role of v)

L
(3)
b,gainf(v, t) =

∫ vmax

v

dw

∫ (w−v)/2

0

α3(w)β3(w,u1, w − v − u1)f(w, t) du1. (2)

Let us set T3 =
3⋃

i=1

T3,i; due to the normalization property (??) it is easy to check that

∫ vmax

0

L
(3)
b,gainf(v, t) dv =

∫ vmax

0

dw

∫ w

0

dv

∫ (w−v)/2

0

α3(w)β3(w,u1, w − v − u1)f(w, t) du1

=

∫ vmax

0

[∫

T3(w)

β3(w,u1, u2) du1du2

]
α3(w)f(w, t)dw

= 3

∫ vmax

0

α3(w)f(w, t)dw,

(3)

which can be interpreted as the overall production rate due to ternary breakage; of course, since the

loss part of the breakage operator writes L
(3)
b,lossf(v, t) = α3(v)f(v, t), the net production amounts

to 2

∫ vmax

0

α3(w)f(w, t)dw. It can also be checked that within the above scheme the total volume is

preserved. Indeed we have

∫ vmax

0

v dv

∫ vmax

v

α3(w)f(w, t) dw

∫ (w−v)/2

0

β3(w,u1, w − v − u1) du1

=

∫ vmax

0

α3(w)f(w, t) dw

[∫

T3(w)

(w − u1 − u2)β3(w,u1, u2) du1 du2

]

and ∫

T3(w)

wβ3(w,u1, u2) du1 du2 = 3w.

Moreover, by means of transformation T ,

∫

T3,2(w)

(u1 + u2)β3(w,u1, u2) du1 du2 = w −

∫

T3,1(w)

ξβ3(w, η, ξ) dη dξ

and ∫

T3,3(w)

(u1 + u2)β3(w,u1, u2) du1 du2 = w −

∫

T3,1(w)

ξβ3(w, η, ξ) dη dξ.

Therefore ∫

T3(w)

(w − u1 − u2)β3(w,u1, u2) du1 du2

= 3w − 2w −

∫

T3,1(w)

(ξ + η)β3(w, η, ξ) dη dξ

+

∫

T3,1(w)

ξβ3(w, η, ξ) dη dξ +

∫

T3,1(w)

ηβ3(w, η, ξ) dη dξ = w.



Let us now consider the scattering operator Ls; in this case the parent droplet s is greater that vmax

but less than 2vmax. As before we think of s and v as fixed and distinguish three cases according to
the size of ũ.

(s1) Suppose that u1 ≤ u2 ≤ ũ ≤ vmax; these relations imply that u1 ∈ (0, s/3), u2 ∈ (u1, s − u1 − u2)
and s − u1 − u2 < vmax. Let us define T ∗

3,1 to be the region of IR2

T ∗

3,1 (s) = {(u1, u2) | 0 < u1 ≤ u2, u1 + 2u2 ≤ s, u1 + u2 ≥ s − vmax} .

We notice that T ∗
3,1 6=

�
since for s ∈ (vmax, 2vmax) the straight line u1 + u2 = s − vmax remains

always below the line u1 + u2 = 2s/3.
(s2) suppose that u1 ≤ ũ ≤ u2 ≤ vmax; in this case, from these inequalities we get u1 ∈ (0, s/3) and

u2 ∈ ((s − u1) /2, s − 2u1). Let us define T ∗
3,2 to be the region of IR2

T ∗

3,2 (s) =

{
(u1, u2) | 0 < u1 ≤

s

3
,

s − u1

2
≤ u2 ≤ s − 2u1, u2 ≤ vmax

}
.

We notice that T ∗
3,1 6=

�
since for s ∈ (vmax, 2vmax) the horizontal line u2 = vmax is always above

the line u2 = s/3.
(s3) Let us finally assume that 0 < ũ ≤ u1 ≤ u2 ≤ vmax; in this case u1 is allowed to range between

0 and s/2 and these inequalities imply that for u1 ∈ (0, s/3) it must be u2 ∈ (s − 2u1, s − u1)
while, if u1 ∈ (s/3, s/2), the correct bounds are u2 ∈ (u1, s − u1). Then let T ∗

3,3(s) be the region

{
(u1, u2) |

s − vmax

2
< u1 ≤

s

3
, s − 2u1 ≤ u2 ≤ vmax

}⋃ {
(u1, u2) |

s

3
< u1 ≤

s

2
, u1 ≤ u2 ≤ s − u1

}
,

Regions T ∗
3,i are shown in figure ??. It is not difficult to
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Fig. 2. Triangular regions T ∗

3,i. The three
triangles have the same area

see that regions T ∗
3,i still have the same area. The same

argument developed for the breakage case still applies: β3

is extended for s ∈ (vmax, 2vmax) in such a way that

∫

T∗

3,1(s)

β3 (s, u1, u2) du1du2 = 1.

Transformation C still shows that
∫

T∗

3,1(s)

β3 (s, u1, u2) du1du2 = 1

=

∫

T∗

3,2(s)

β3 (s, u1, u2) du1du2

=

∫

T∗

3,3(s)

β3 (s, u1, u2) du1du2.

(4)

We are now ready to make the scattering operator explicit in the ternary case: if we set Ls =
Ls,gain − Ls,loss then

Ls,gainf(v, t) =

∫

Ω(v)

Sg(s, u, u1, u2 | v = s − u1 − u2) dω , Ls,loss =

∫

Λ(v)

S`(s, v, u1, u2) dλ



where

Sg = τc(u, s − u)β3(s, u1, u2)f(u, t)f(s − u, t), S` = f(v, t)f(s − v, t)τc(v, s − v)β3(s, u1, u2)

and

∫

Ω(v)

dω =

∫ vmax+v

vmax

ds

∫ s/2

s−vmax

du

∫ (s−v)/2

0

du1 +

∫ 2vmax

vmax+v

ds

∫ s/2

s−vmax

du

∫ (s−v)/2

s−v−vmax

du1,

∫

Λ(v)

dλ =

∫ vmax+v

vmax

ds

∫∫

T∗

3
(s)

du1du2.

In particular, because of (??),

∫

Λ(v)

S`(s, v, u1, u2) dλ = 3f(v, t)

∫ vmax+v

vmax

f(s − v, t)τc(v, s − v) ds.

The same argument we used for the breakage operator shows that also the scattering operator is
volume preserving.

4 Choice of the kernels

The model presented applies to any kind of fluid-fluid dispersion (with no chemical reactions) since
it is based on the mechanics of breakage and coalescence. However the selection of the parameters
of the model (the coalescence kernel τc, the breakage-frequency α and the probability distribution β)
able to fit the effective behavior of a real dispersion is really a hard problem.
In our approach, we used the simplest possible equations for the kernels based just on geometrical and
mechanical considerations. Moreover, for simplicity, only the binary mode of rupture is taken into
account since even the addition of the sole ternary mode increases considerably the computational
time.
We used two very simple expressions of the initial distribution fo(v):

• a Gaussian distribution function centered at 0.4

fo(v) = k exp(−((v − 0.40)(v − 0.40)) ∗ 128)/0.1567

• a piecewise constant function

fo(v) =






k if v ∈ [0.2, 0.6],

0 otherwise,

where k is determined by assigning the volume fraction λ ∈ (0, 1] of dispersed phase: indeed

λ =

∫ 1

0

vfo(v) dv.

The function β is just a probability distribution function. A simple form satisfying the requirements
(ii) and (iii) is

d(s) =
(vmax

2
− vb

)

+
=

(
1

2
− vb

)

+

= const.,








β(w, v) = 12
(v − vb)+ (w − v − vb)+

(w − 2vb)
3
+

if w ∈ (2vb, vmax + vb) ,

β(s, v) = −
c(s)

2

(
v −

s

2

)2

+ d(s) if s ∈ (vmax + vb, 2vmax) .

and

c(s) =





0 if s ∈ (vmax, vmax + vb) = (1, 1 + vb),

(s − vmax − vb) = (s − 1 − vb) if s ∈

(
vmax + vb,

3vmax

2

)
=

(
1 + vb,

3

2

)
,

g(s) if s ∈

(
3vmax

2
, 2vo

)
=

(
3

2
, 2

)
.

In order to work out some significant numerical simulations we need to make some remarks about
the integration domain. From the mathematical point of view vmax is a fixed upper bound for the
volume size of droplets independent of time.

However the characteristic length scales for fo and f(v,∞) may differ, in some cases, even by two or
three orders of magnitude. To see one of these cases let us define

v?(t) = sup suppf(v, t);

clearly v? depends, besides t, on the rotational speed Θ, the geometry of the container and impeller,
the hold-up λ, the temperature and many other rheological parameters (see [?] for example): for
a water in (light crude) oil dispersion, temperature ' 60 ◦C, high rotational speeds (say 4000-
6000 r.p.m.), a percentage of dispersed phase water about 60%, and an agitation time of about 15
minutes, the top size diameter is about 60÷ 70 µm. This can be identified with the asymptotic value
since there is practically no change for t > 15 minutes. This means, for this case, that we can set
v?(∞) ' 10−7 cm3; since typical values of the maximum diameter at the very early stages of agitation
is about ten times larger than the initial ones, we have

v?(∞)

v?(0)
' 10−3.

Thus, in cases like the above, it is quite difficult to show graphically the evolution of f from fo

using the same length scale vmax. In these cases we did not use the effective initial data but rather an
intermediate configuration with a characteristic length much closer to that of the expected asymptotic
distribution. Physically this corresponds to a pre–mixing period before examining the evolution.

Concerning a lower bound for the volume of breakable drops, we decided to set vb = 0 in all simula-
tions. Indeed, if we refer to the expression found in literature for vb (called Weber relation, see [?]),
we get that the stable drop size is given by

vb = 10−4πD3We−1.8,

(
We :=

ΘD3ρc

σ

)

where σ, ρc and D are the surface tension, the density of the dispersed phase and the impeller diameter
respectively. The following table shows the critical lower droplet volume vb for a real dispersion (for

σ = 29 dyne/cm, ρ ' 1 gr/cm
3

and D = 15 cm) vs. the angular velocity Θ of the impeller.



Θ (in r.p.m.) vb (in cm3)

1000 8.094 10−9

2000 6.675 10−10

3000 1.550 10−10

4000 5.505 10−11

5000 2.465 10−11

6000 1.278 10−11

7000 7.342 10−12

8000 4.540 10−12

Therefore v?(∞)/vb ' 104 for Θ ' 4000 ÷ 6000 r.p.m. (which is a rather standard rotational speed
in industrial applications). This means that only with a very large sampling in the v axis (something
like 105 or more nodes in the v direction) the numerical code is able to appreciate the effect of vb 6= 0.
Being all the simulations done with nodes on the v axis spaced not less than .01 units, we consistently
set vb = 0.

As far as the breakage frequency is concerned
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Fig. 3. Evolution from a stepwise initial data (dashed)
towards a final distribution (solid lines). The asymptotic
shape fits one of the experimental curves (histogram)
shown in [?] and obtained with a high-speed rotational im-
peller (ultra-Turrax at 8000 r.p.m.); vmax is about 70 µm

we follow [?] and [?]: thus, for vb = 0, we
write

α(w) = Abw, (1)

and

τc(v,w) = Ac exp

[
−

(
v1/3+w1/3

v1/3w1/3

)4
]

×
(
v

1

3 + w
1

3

)2

,

(2)

although other laws are commonly encoun-
tered in the literature (for example α(w) =
Abwq with a positive q 6= 1).
The proportionality factors depend on the
rotational speed: we set Ab(Θ) = AbΘ, Ac(Θ) =

Ac(Θ−Θ)Θ, where Ab, Ac, Θ are constants which typically depend on the rheology, geometry and the
hold-up λ. The expression for Ac is suggested by the fact that in most cases (see [?]) the coalescence
efficiency increases with Θ up to a maximum and then reduces drastically for high rotational speeds.

5 Numerical simulations

In our simulations we allowed Θ to range from few hundreds to some thousands although, for brevity,
only few cases are reported here. We made only one comparison with a real experiment (see figure ??)
to match some constants and scale measures. Indeed our aim here is mainly to show the qualitative
behavior of solutions and the distinctive features of the model.

(i) Figure ?? shows a comparison with some available experimental data. Data are taken from [?].
The agreement is rather satisfactory.

(ii) Figure ?? and shows the relevance of scattering. Indeed they show the contribution (gain and loss)
related to breakage, coalescence and scattering respectively at a mean range rotational speed. The
scattering effect plays a significant role being of the same order of magnitude of the other two
terms. Data for these figures are all the same as those for figure ?? but Θ that is now 4000 r.p.m.



(iii) Figure ?? shows that the limit configuration depends only on the hold-up while it is totally in-
dependent of the specific initial configuration. In our simulations we used the same amount of
dispersed phase and the same scale parameters, but we changed the shape of the initial configu-
ration. The final configuration turned out to be always the same.

6 Additional remarks

Further numerical simulations (that we skip for shortness) also confirmed some expected properties
of the solution.

(iv) Possible initial discontinuities are rapidly smoothed out by the dynamics and most of the changes
in the distribution occurs in the first time steps. Indeed we can prove that the jump discontinuities
decrease exponentially.

(v) When coalescence is the dominating effect, volume scattering becomes of great relevance. This
is justifies why although the support of the initial distribution grows with time, the asymptotic
distribution vanishes at vmax.
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Fig. 4. Mutual importance at equilibrium (large t) of breakage, coalescence and scattering terms at low
rotational speed; the dashed line represents the loss term, the solid one the gain term



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 10

1

0

0.2

0.4

0.6

0.8

Fig. 5. Invariance of the asymptotic configuration with respect to fo(v): in the two cases considered the
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