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Gravity-driven separation
of oil-water dispersions

Fabio Rosso and Giuliano Sona

Abstract. A model for the separation kinetics of a dispersion of two immiscible liquids
under the action of gravity is presented. The scalar case (one family of equally sized drops),
which is treated first, naturally suggests the guidelines for the vectorial case (n families of
droplets of different sizes). The general model is governed by a non–symmetric system which
is investigated for diluted dispersions and concentrated ones as well. In both cases and under
very reasonable hypotheses, the system is proved to be strictly hyperbolic which guarantees
local existence and uniqueness.

1 Introduction

A dispersion is a continuous medium formed by two immiscible liquid, one of which is
fragmented in drops (variable in dimension and size) in the other. The drops are usually
referred to as “dispersed phase”, while the second liquid is called “continuous (or host)
phase”.

A typical case occurs in petroleum industry during processing operation on crude oil re-
covered in offshore well-bores ([8]); one deals there with oil in water (O/W) and water in
oil (W/O) dispersions. Indeed, oil is usually recovered by using the original reservoir pres-
sure: however, after some years of well-bore activity it is necessary to maintain pressure by
injection of sea water, to assist in oil displacement. This leads to undesired O/W or W/O
(depending on the hold-up) dispersions or emulsions, and makes it necessary to treat the
product before shipping or pumping it to land, in order to separate phases and meet prod-
uct specifications. In this connection it should be noticed that the separated sea water is
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generally re-dispersed in the surrounding environment and therefore, to minimize pollution,
it should contain no more than a few p.p.m. (parts per million) of crude oil. Nevertheless,
oil needs to contain as less sea water as possible, because of the corrosive action of the latter
when oil is stocked in tanks or pumped through pipelines.

A rather standard procedure for treatment is to place the product in gravity-driven static
separators (settlers), until phase separation is complete. Indeed, the separation of oil and
water phases occurs spontaneously at rest because of the density difference; sometimes the
process needs to be sped up by adding chemical additives, but we will not consider this
complication here. Therefore the geometry for this problem is typically one-dimensional in
the vertical direction. In this paper we present a model for the separation process which
works well for both O/W and W/O dispersions, the only difference being whether denser
water drops settle or lighter oil drops rise up. This indifference of the model to phase
exchange may be useful for another problem which is also relevant to oil industry. Indeed,
it is well known that pure crude oil is very difficult or even impossible to pump directly
through a pipeline, because of its high viscosity. Thus it is generally necessary to produce
an O/W dispersion in order to drastically reduce viscosity (even up to a factor 10−3÷10−4).
In this case another scenario opens up to research, due to the instability features of this kind
of dispersion. However we do not consider here any shearing in the plane orthogonal to the
separation direction. This is a possible future development to be carried out.

The separation kinetics is examined in two subsequent steps; in the former we treat the
scalar case (equally sized drops, i.e. mono-dispersed oil in water), while in the latter we deal
with n (arbitrarily large integer) families of spherical droplets of different sizes; in both cases,
the unknown functions will be the local oil concentrations, which in turn depend on time and
space. In the mono-dispersed case we show exact concentration profiles (satisfying the model
equations in the sense of distributions), corresponding to different initial distributions of oil.
In the poly-dispersed case local existence and uniqueness of the solution are established.
In the latter two different situations need to be considered; that of a diluted dispersion
(where droplets are supposed to ascend according to a Stokes-like velocity) and that of a
concentrated dispersion (where Stokes’s law has to be modified to take into account the
interactions between the droplets). The same existence and uniqueness results are achieved
in both cases.

From the mathematical point of view the physical problem is expressed in terms of a
hyperbolic equation (in the mono-dispersed case) or of a non-symmetric hyperbolic system
(in the poly-dispersed case). The scalar case is rather elementary and can be approached
by classical arguments ([1]). On the contrary the vectorial case (which models better the
physical reality) presents some peculiar difficulties that make it nontrivial and original.
Because of the structure of the droplets velocity, where the coefficients depend on the relative
concentrations of oil droplets (which are the unknowns), the strict hyperbolicity of the system
is far from being obvious. A complication also arises from the fact that the system might show
parabolic features in some subregions of the domain where a solution is sought. Nevertheless,
under very reasonable and not restrictive assumptions on the data this condition can be
overcome, and existence and uniqueness are achieved in a suitable neighbourhood of the line
carrying the data.

The mono-dispersed case and some exact solutions are presented in section 2, while section



3 is fully devoted to the poly-dispersed case.

2 Mono-dispersed case

Consider a sample of O/W dispersion at rest in a typical settling device, which can be
simply modelled as a parallelepiped (see Fig. 1); we denote by x the position in the bulk
with respect to some frame of reference, and by So and Sw the normalized local densities of
oil and water in the dispersion, so that

(i) So(x, t) denotes the volume fraction of the unit cell around x occupied by oil at time t,

(ii) Sw(x, t) denotes the volume fraction of the unit cell around x occupied by water at
time t.

So and Sw may depend a priori on the three spatial directions and time, but if gravity is
the only macroscopic force driving the separation process, we may assume that variations
of density occur only in the vertical direction y, and write

So = So(y, t), Sw = Sw(y, t).

We assume a frame of reference like in Fig.1, where H is the height of the dispersion. We
have by definition

0 ≤ So(y, t) ≤ 1
∀(y, t) ∈ [0, H]× [0,∞)

0 ≤ Sw(y, t) ≤ 1
(1)

and

So(y, t) + Sw(y, t) = 1, ∀(y, t) ∈ [0, H]× [0,∞). (2)

We assume the volume of the container to be much larger than the mean drop diameter, in
order to neglect wall effects.

After some time the situation in the bulk will change: the density difference between oil
and water leads the oil droplets to flow upwards and form a compact water-free layer at the
top of the bulk, while water tends to move towards the bottom and form a layer with no oil
droplets; between these two single-phased regions we will find a layer of dispersion (Fig. 1).

2.1 Mathematical model

The governing equations are simply those expressing mass conservation for both phases

∂(So)

∂t
+
∂(SoVo)

∂y
= 0, (3)
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Figure 1: The separation process

∂(Sw)

∂t
+
∂(SwVw)

∂y
= 0, (4)

where
Vo = upward oil phase velocity,
Vw = downward water phase velocity.

We assume Vo to depend only on local concentration through the following law (see [4])

Vo = Vo(So) = k(1− So), (5)

where k is a positive constant depending on the particular physical features of the dispersion.

The total flux rate must be equal to zero, that is

SoVo + SwVw = 0, (6)

from which we get

Vw = − So
Sw
Vo; (7)

the latter, together with (2) and (5) yields

Vw = −kSo = −k(1− Sw).

Note that (3) and (4) are not independent; indeed, substitution of (6) and (2) into (3) yields
exactly (4); we may therefore restrict our analysis to one only of the two continuity equations,
e.g. the oil one; the behaviour of water phase, once the function So(y, t) is known, will follow
from relation (2). Substitution of (5) into (3) gives

∂So
∂t

+ k(1− 2So)
∂So
∂y

= 0. (8)



The initial condition for (8) is

So(y, 0) = So(y) ∀y : 0 < y < H, (9)

where So(y) is some regular function positive in (0, H).

The boundary conditions for (8) are obtained observing the following: from the beginning
of the separation process there will be no oil droplets close to the bottom of the bulk, since
those that might be there at t = 0 will immediately migrate upwards, due to their nonzero
ascending velocity (of course we do not consider the trivial cases So(y, 0) = 1 ∀y ∈ [0, H]
or So(y, 0) = 0 ∀y ∈ [0, H]). Similarly, the top of the bulk is free from water for any t > 0:
therefore we write

So(0, t) = 0, ∀t : 0 < t <∞, (10)

Sw(H, t) = 0, ∀t : 0 < t <∞. (11)

The latter means (remember (2)) that

So(H, t) = 1 ∀t : 0 < t <∞. (12)

Of course more general choices of the initial data are possible (for example So(y) vanishing
over a sub–interval of [0, H]) but, in that case, the boundary data So(H, t) cannot be assigned
any longer in a completely independent manner.

Multiply (8) by −2k and use the linear transformation

Σ(y, t) = k[1− 2So(y, t)] (13)

to get

∂Σ

∂t
+ Σ

∂Σ

∂y
= 0. (14)

The transformed initial and boundary conditions for (14) turn out to be

Σ(y, 0) = Σ(y) = k[1− 2So(y)], ∀y : 0 ≤ y ≤ H, (15)

Σ(0, t) = k, ∀t : 0 < t <∞, (16)

Σ(H, t) = −k, ∀t : 0 < t <∞, (17)

and the bounds on So take for Σ the form

|Σ(y, t)| ≤ k, ∀ (y, t) ∈ [0, H]× [0,∞). (18)

Equation (14) is the well-known nonlinear wave equation. Analytical solutions to problem
(14). . . (18) are easily obtained, provided a physically meaningful choice of the function (15)
is done (see for example [1]); the solution Σ(y, t) is often referred to as a traveling wave.



The regularity of the solution of the mixed (initial and boundary) problem (14) . . . (17)
depends on the choice of the initial function (15); in particular, discontinuities may propagate
from the points (y, t) = (0, 0) and (y, t) = (H, 0) if Σ(y, 0) does not join smoothly the
boundary conditions there (see Fig. 2). In this case (and also if Σ(y) fails to be continuous
in some subset of (0, H)) only generalized solutions can exist. Moreover, the nonlinearity of
(14) can cause the breakdown of the solution even if the data are smooth; it is well-known
that this happens when different characteristic curves (which are straight lines in our case)
intersect after some finite time (breaking time).
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Figure 2: Initial and boundary data

For what concerns the regularity of the data in dependence of Σ(y), observe that they will
be discontinuous if

lim
y→0+

Σ(y) 6= k (19)

and/or

lim
y→H−

Σ(y) 6= −k, (20)

while they will be at least C0 if lim
y→0+

Σ(y) = k,

lim
y→H−

Σ(y) = −k, (21)

and at least Cn if Σ(y) fulfills (21) and
lim
y→0+

Σ
(h)

(y) = 0,

lim
y→H−

Σ
(h)

(y) = 0,
(22)



for h = 1, 2, . . . , n; of course in the latter we assume that Σ(y) is smooth inside (0, H).

2.2 Exact solutions for particular initial data

Linear data

Continuous linear initial data have necessarily the form

Σ(y) = k
(
1− 2y

H

)
, y ∈ (0, H), (23)

which corresponds to an initial oil-phase density

S0(y) =
y

H
, y ∈ (0, H). (24)

A solution in the classical sense does not exist, due to the non-differentiability of the data
at the points (0, 0) and (H, 0), but we can obtain the following weak solution;

Σ(y, t) = k, 0 ≤ y ≤ kt, 0 ≤ t <
H

2k
,

Σ(y, t) = k
H − 2y

H − 2kt
, kt ≤ y ≤ H − kt, 0 ≤ t <

H

2k
,

Σ(y, t) = −k, H − kt ≤ y ≤ H, 0 ≤ t <
H

2k

(25)

for t <
H

2k
and

Σ(y, t) = k, 0 ≤ y <
H

2
,

H

2k
≤ t,

Σ(y, t) = −k, H

2
< y ≤ H

H

2k
≤ t,

(26)

for t ≥ H

2k
. It can be shown that other analitycal solutions to problem (14). . . (18), (23)

exist, but (25)-(26) is the only one with physical meaning since it satisfies the so-called
entropy condition (see [5], [6]).

Note that (25) is not differentiable along the straight lines y = H − kt and y = kt, while

(26) is discontinuous and shows that complete phase separation occurs for t ≥ H

2k
(see Fig.

3)
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Figure 3: Weak solution for linear initial data

Constant data with a small perturbation

It is certainly more interesting and realistic to work out the case of slightly perturbed constant
data, which amounts to consider a nearly homogeneous dispersion for t = 0. In this case
Σ(y) has the form

Σ(y, 0) = Σ(y) = σ0 + δF (y), 0 ≤ y ≤ H, (27)

where −k < σ0 < k, F (y) is a periodic function such that F (0) = F (H) = 0, e.g.

F (y) = sin
nπ

H
y, (28)

n is an arbitrary positive integer and δ is the small (positive) perturbation parameter.

The problem (14). . . (18), (27) can only have weak solutions , as it is evident from the
discontinuities in the data at (0, 0) and (H, 0) (see [2]); the determination of the discontinuity
curves is not as straightforward as in the previous case, and we must proceed with an
approximate method (see [9]). We look for a solution of type

Σ(y, t) = σ0 + δσ1(y, t) + δ2σ2(y, t) + · · · =
∞∑
i=0

δiσi(y, t); (29)

by formal substitution of this series into

∂tΣ + Σ∂yΣ = 0, (30)



on collecting equal powers of δ and equating their coefficients to zero, we get a recursive
family of partial differential equations in the unknowns σi(y, t), i = 1, 2, . . . and we obtain
the corresponding initial conditions by imposing

lim
t→0+

σ0 + δσ1(y, t) + δ2σ2(y, t) + · · · = Σ(y) = σ0 + δF (y); (31)

these problems are easily solved for i = 1, 2 and yield
σ1(y, t) = F (y − σ0t),

σ2(y, t) = −tF (y − σ0t)F
′(y − σ0t);

(32)

therefore the second order approximated solution in the influence domain of the initial data
is

Σ(y, t) = σ0 + δF (y − σ0t)− δ2tF (y − σ0t)F
′(y − σ0t) + o(δ2). (33)

If we choose F (y) as in (28), we obtain

Σ(y, t) = σ0 + δ sin
[nπ
H

(y − σ0t)
]

− nπ

H
δ2t sin

[nπ
H

(y − σ0t)
]

cos
[nπ
H

(y − σ0t)
]

+ o(δ2).

(34)

The discontinuity curves g(t), h(t) are defined by the differential equations
g′(t) =

1

2

[
k + lim

y→g(t)+
Σ(y, t)

]
,

g(0) = 0,

(35)

and 
h′(t) =

1

2

[
−k + lim

y→h(t)−
Σ(y, t)

]
,

h(0) = H,

(36)

which are solved using (34) and give the approximate solutions

g(t) ' kH

nπδ

[
e
nπδ
2H

t − 1
]

+
σ0

2
t, (37)

h(t) ' He
nπδ
2H

t + (σ0 + k)
H

nπδ

[
1− e

nπδ
2H

t
]

+ σ0t. (38)

The domain of existence of the approximate solution (34) is

0 ≤ t < H/2k, g(t) ≤ y ≤ h(t),



provided δ is small enough. In the subdomains

0 ≤ t < H/2k, 0 ≤ y ≤ g(t)

and
0 ≤ t < H/2k, h(t) ≤ y ≤ H,

we have respectively Σ(y, t) = k and Σ(y, t) = −k. The solution may clearly be extended
beyond the breaking time H/2k, in an analogous manner to (26), to describe complete phase
separation.
Note that when δ → 0 the approximate expressions for Σ(y, t), g(t) and h(t) become the
exact ones corresponding to unperturbed constant initial data.

3 Poly-dispersed case

In the previous model we implicitly assumed the droplets to be equally sized, i.e. spheres
with the same radius. Formula (5) for the ascending velocity only expresses a macroscopic
feature of the process, and does not involve any geometrical or rheological parameter of the
O/W dispersion. In the practical case, the droplets may have a high poly-dispersion degree
and their radii may vary a lot; this would affect the way the single droplet moves upwards.

To improve the accuracy of the model, we assume therefore that the droplets volumes range
in the discrete set {v1, v2, ...vn}, n being a positive arbitrary integer. Then we define fi(y, t)
to be the number of droplets with volume vi in the cell of unit volume centered in y at time

t. Let v0 be the volume of the unit cell, and Si(y, t) =
vifi(y, t)

v0

be the volume fraction (of

the unit cell at (y, t)) occupied by droplets with volume vi. If So denotes the local volume
fraction of oil as before, we have

n∑
i=1

Si(y, t) = So(y, t), (39)

with

So(y, t) + Sw(y, t) = 1 (40)

and {
0 < Si(y, t) < 1,
0 < Sw(y, t) < 1.

(41)

Note that the inequalities in (41) differ from the corresponding limitations (1) of the scalar
case, since in (41) we assume strict inequality signs. This is just a formal restriction, which
leaves the physical situation unchanged but simplifies a bit the proof of the existence and
uniqueness results of this section (in particular, it prevents the problem to show parabolic
features, as it will be clear later). The unknown functions Si and Sw can be allowed to take
the limiting values in (41), but this requires a modification of the existence and uniqueness



proof techniques presented below: for the sake of brevity we do not show this case here.

The above relations are valid in the domain

0 ≤ y ≤ H, 0 ≤ t ≤ T,

(0 < T <∞ ). Let finally ηd, ηw, ηo (respectively ρd, ρw, ρo) be the viscosities (respectively
the densities) of dispersion, water and oil; as already pointed out, ρo < ρw is the driving
force of the separation process.
The following relation between densities holds

ρd = Soρo + Swρw = Soρo + (1− So)ρw, ρo < ρd < ρw; (42)

we assume ηd to be strictly positive and to depend smoothly on the local oil concentration,
and to be influenced in a different way from droplets of different volumes; in particular we
assume ηd to be a strictly increasing function of Si, i = 1, . . . , n. Further, when oil is nearly
absent, ηd must be equal to the water viscosity; summarizing we set

ηd = ηd(S1, S2, · · · , Sn) > 0,
∂ηd
∂Si

> 0, ηd|So<<1 ' ηw. (43)

We remind that in practice ηo is 2-3 order of magnitude larger than ηw, while differences in
density between oil and water are much smaller.

We will distinguish the case of a diluted dispersion from that of a concentrated one; in the
former, in fact, a Stokes-like model for the ascending droplet velocity is realistic, while in the
latter we need to modify our model to take into account the possible interactions between
droplets.

3.1 A model for diluted dispersions

For a single oil droplet rising up in a dispersion of viscosity ηd we propose the following
generalization of the classical Stokes’s law for the ascending velocity:

Vai(y, t) = γ
v

2/3
i

ηd(S1(y, t), . . . , Sn(y, t))
. (44)

Here g is gravity and

γ =
2g

9ζ
(ρd − ρo) , ζ =

(
4π

3

)2/3

, v
2/3
i = ζr2

i ,

ri being radius of the (spherical) droplet with volume vi.

A considerable simplification is achieved if the term ρd − ρo in γ is replaced by ρw − ρo;
this is not a strong assumption, since the difference (ρw−ρd) is small compared to the other



terms. In what follows, we omit the subscript in the viscosity of the dispersion. Then (44)
takes the form

Vai(y, t) = c
v

2/3
i

η(S1(y, t), · · · , Sn(y, t))
, (45)

with

c =
2g

9ζ
(ρw − ρo). (46)

The equations governing the poly-dispersed case are analogous to those of the mono-dispersed
one;

• CONTINUITY

∂Si
∂t

+
∂(SiVai)

∂y
= 0, i = 1, . . . , n, (47)

∂Sw
∂t

+
∂(SwVw)

∂y
= 0. (48)

• FLUX CONTINUITY

SwVw +
n∑
i=1

SiVai = 0. (49)

Note that (39), (40), (47), (48) and (49) are not independent; for example, (48) may be
obtained by summing (47) over i,

∂

(
n∑
i=1

Si

)
∂t

+

∂

(
n∑
i=1

SiVai

)
∂y

= 0, (50)

and using (39), (40) and (49); indeed we get

∂So
∂t

+
∂(−SwVw)

∂y
= 0⇒ −∂Sw

∂t
− ∂(SwVw)

∂y
= 0, (51)

which is (48). We may therefore confine ourselves to consider only (39), (40), (47) and (49);
once S1, S2, . . . , Sn are known, the function Sw(y, t) can be obtained directly from (40). To
this aim we substitute (45) into (47) to get

∂Si
∂t

+ Vai
∂Si
∂y
− cv

2/3
i

η2

(
∂η

∂S1

∂S1

∂y
+ · · ·+ ∂η

∂Sn

∂Sn
∂y

)
Si = 0. (52)



The n equations (52) can be written in the compact form

St + A(S)Sy = 0, (53)

where

[A(S)]ij =


1

η2

[
−aiSi

∂η

∂Sj

]
for i 6= j

1

η2

[
ai(η − Si

∂η

∂Si
)

]
for i = j.

(54)

i, j = 1, . . . , n, where ai = cvi
2/3 and S = (S1, . . . , Sn)t.

3.1.1 System (53) is strictly hyperbolic

We now prove the main result of this paper, that is, the first order quasi-linear system (53)
is strictly hyperbolic.

Theorem 1. The matrix A(S) in (53) has n real and distinct eigenvalues among which at
most one may not be positive; further, if the function η(S1, . . . , Sn) satisfies the inequality

η − S1
∂η

∂S1

− · · · − Sn
∂η

∂Sn
> 0, (55)

then all the eigenvalues are positive.

Proof. Without loss of generality, we may assume v1 > v2 > . . . > vn(> 0, obviously), and
therefore a1 > a2 > . . . > an. We consider the matrix Ã = η2A, whose eigenvalues are real
and positive if and only if A’s eigenvalues are real and positive. Let us put, for simplicity,
∂η

∂Si
= ηi, the characteristic polynomial Pn(λ) of Ã is given by

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(a1η − λ −a1S1η2 ... −a1S1ηn−1 −a1S1ηn
−a1S1η1 )

−a2S2η1 (a2η − λ ... −a2S2ηn−1 −a2S2ηn
−a2S2η2 )

.

.

.

−an−1Sn−1η1 −an−1Sn−1η2 ... (an−1η − λ− −an−1Sn−1ηn
an−1Sn−1ηn−1 )

−anSnη1 −anSnη2 ... −anSnηn−1 (anη − λ−
anSnηn )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(56)

Multiplying the first column of (Ã − λI) by (−ηn/η1) and adding the result to the n-th
column, we obtain the following expression for Pn(λ):



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(a1η − λ −a1S1η2 ... −a1S1ηn−1 (λ− a1η)(ηn/η1)
−a1S1η1 )

−a2S2η1 (a2η − λ ... −a2S2ηn−1 0
−a2S2η2 )

...

.

.

.

−an−1Sn−1η1 −an−1Sn−1η2 ... (an−1η − λ− 0
an−1Sn−1ηn−1 )

−anSnη1 −anSnη2 ... −anSnηn−1 anη − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(57)

Therefore

Pn(λ) = (anη − λ)Pn−1(λ) + (−1)n+1(−ηn/η1)(a1η − λ) det A, (58)

where Pn−1(λ) is the characteristic polynomial of Ã(n−1)×(n−1) and A is the (n− 1)× (n− 1)
matrix given by

[A]ij =


−ai+1Si+1ηj for i+ 1 6= j

i, j = 1, . . . , n− 1

ajη − λ− ajSjηj for i+ 1 = j.

(59)

We now multiply the i-th column of A by (−ηi−1/ηi) and add the result to the (i − 1)-th
column, i = 2, . . . , n − 1. This yields an upper triangular matrix C, where the first n − 2
entries on the diagonal are

(λ− ai+1η)
ηi
ηi+1

, i = 1, . . . , n− 2

and the last diagonal term is −anSnηn−1; evidently det C = det A, and so

det A = −anSnηn−1

n−2∏
i=1

ηi
ηi+1

(λ− ai+1η)

= (−1)n−1η1anSn

n−1∏
i=2

(aiη − λ)

(60)

Substituting the latter in Pn(λ) we get

Pn(λ) = (anη − λ)Pn−1(λ)− anSnηn
n−1∏
i=1

(aiη − λ)

= (anη − λ)Pn−1(λ)− anSnηnQn−1(λ),

(61)

where we have set

Qn−1(λ) = (a1η − λ)(a2η − λ) · · · (an−1η − λ). (62)



We now assume that

sgn Pn−1(ajη) = (−1)n+j, j = 1, 2, . . . , n− 1, (63)

and apply the induction principle. It is easily checked that (63) is true for P2(ajη); we now
verify that the same equality holds for n, i.e. that

sgn Pn(ajη) = (−1)n+j+1, j = 1, 2, . . . , n. (64)

Thanks to the previously found expression (58) it is quite straightforward to get

Pn(anη) =

<0︷ ︸︸ ︷
−anSnηn ·

>0︷ ︸︸ ︷
(a1 − an)η ·

>0︷ ︸︸ ︷
(a2 − an)η · · ·

>0︷ ︸︸ ︷
(an−1 − an)η < 0,

Pn(an−1η) =

<0︷ ︸︸ ︷
(an − an−1)η ·

<0 (ind. hp.)︷ ︸︸ ︷
Pn−1(an−1η)−anSnηn

=0︷ ︸︸ ︷
Qn−1(an−1η) > 0,

.

.

.

Pn(ajη) =

<0︷ ︸︸ ︷
(an − aj)η ·

has sign (−1)n+j (ind.hp.)︷ ︸︸ ︷
Pn−1(ajη)︸ ︷︷ ︸

has sign (−1)n+j+1

−anSnηn

=0︷ ︸︸ ︷
Qn−1(ajη),

(65)

where we have used the induction hypothesis (ind. hp.) on Pn−1; we end up with

sgn Pn(ajη) = (−1)n+j+1 ∀ j = 1, 2, . . . , n,

i.e.(64) turns out to be true.

We have now important indications about the values of Pn(λ) when

λ = anη, an−1η, . . . , a1η.

These indications are shown qualitatively in Fig. 4 (n even) and 5 (n odd).

Due to our assumptions on η, Pn(λ) has continuous coefficients. Therefore we may say
that for any n, Pn(λ) has a real zero in each interval (ai+1η, aiη). Moreover, since

Pn(λ) = (−1)nλn + (−1)n−1(trÃ)λn−1 + . . .− . . .+ det Ã, (66)

we get

lim
λ→±∞

Pn(λ) = +∞, if n is even,

lim
λ→±∞

Pn(λ) = ∓∞ if n is odd.

Therefore Pn(λ) must intersect exactly n times the λ-axis, and the eigenvalues λ1, . . . , λn of Ã
are all real; furthermore, if we rearrange them in such a way that λn < λn−1 < . . . < λ2 < λ1,
we find that for all n{

λi ∈ (ai+1η, aiη) i = 1, . . . , n− 1,

λn ∈ (−∞, anη).
(67)

This implies that:



6

r
anη

r
an−1η ran−2η

r
a3η

r
a2η

r
a1η

-
0

Pn(λ)

λ

Figure 4: Pn(ajη), n even

i) λ1, λ2, . . . , λn are distinct because they belong to disjoint intervals:

ii) λ1, λ2, . . . , λn−1 are strictly positive (since ai and η are positive quantities).

Recalling that Ã = η2A, it follows that the eigenvalues of A(S), say µ1, µ2, . . . , µn (µi =
λi
η2

),

satisfy
µi ∈

(
ai+1

η
,
ai
η

)
, i = 1, . . . , n− 1,

µn ∈
(
−∞, an

η

)
.

(68)

Up to a scaling factor (1/η2), the same properties (i) and (ii) hold for the eigenvalues µi,
which are therefore real and distinct.

All eigenvalues, except at most the smallest µn, are positive, and it is readily seen that if
det Ã > 0 then also λn, and therefore µn, is positive. Now, we have

trÃ =
n∑
i=1

ai(η − Siηi),

det Ã = a1a2 . . . anη
n−1

[
η −

n∑
i=1

Siηi

] (69)

(the second equation is found through an induction argument); this shows that if the function
η(S1, . . . , Sn) satisfies the inequality

η >

n∑
i=1

Siηi (70)

then also the smallest eigenvalue µn is positive; the proof of the theorem is thus complete.
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Figure 5: Pn(ajη), n odd

Remark 1. A reasonable choice for η(S1, . . . , Sn) is

η(S1, S2, . . . , Sn) = ξ1S1 + ξ2S2 + · · ·+ ξnSn + ηwSw, (71)

where ξi > 0, i = 1, . . . , n, and ξi 6= ξj for i 6= j, (each Si(y, t) may influence the viscosity
of the dispersion in a different way); we can easily check that (71) satisfies condition (70)
for Sw > 0.

Remark 2. Note that (71) can be taken as the linear expansion of η(S) = η(S1, . . . , Sn)
around S1 = . . . = Sn = 0. Then we can infer from (69) and (70) that µn = µn(S1, . . . , Sn)
is positive at points of the yt-plane where the oil density functions take arbitrarily small
values.

3.1.2 Existence and uniqueness

Since A = A(S) n has real and distinct eigenvalues µ1, µ2, . . . , µn, the corresponding right
eigenvectors r1, r2, . . . , rn span IRn. Recalling [3], C.2, p.64, we set

W = L−1S, (72)

where L is the (non singular) n × n matrix whose i-th column is ri, and we can re-write
system (53) in the following form:

Wt +DWy +G = 0, (73)

or equivalently

∂Wi

∂t
+ µi(W )

∂Wi

∂y
+ (G)i = 0, (74)



where D is the diagonal n× n matrix such that Dii = µi and

G = (L−1Lt +DL−1Ly)W.

If A(S) has Lipschitz continuous coefficients w.r.t. S and if S ∈ C1, then (53) has n distinct
characteristic directions. The initial conditions are a straightforward generalization of (9);

Si(y, 0) = S0i(y) i = 1, . . . , n, (75)

i.e. S(y, 0) = S0(y): boundary conditions require some more care and we will formulate
them later. The initial data for the system (73) follow from W = L−1S;

Wi(y, 0) = W0i(y) = [L−1(y, 0)S(y, 0)]i, i = 1, . . . , n, (76)

that is, W (y, 0) = L−1(y, 0)S(y, 0) = W0(y).

We recall now that if (φ(y, t), 1) is the direction of a curve Γ of the yt-plane and P is a
point belonging to Γ, Γ is said to be spacelike in P with respect to system (53) if

µn(P ) ≤ φ(P ) ≤ µ1(P ),

and timelike in P otherwise. Evidently the y-axis is always timelike and therefore never a
characteristic direction. We now set

Γ1 :


y = 0,

0 ≤ t ≤ ∞,
(77)

Γ2 :


y = H,

0 ≤ t ≤ ∞,
(78)

M = {0 ≤ y ≤ H, 0 ≤ t < +∞} , (79)

and apply existence and uniqueness theorems shown in [3], C.2, by distinguishing two cases.

(1) µn|Γ2
≤ 0: in this case Γ2 is a spacelike curve. Since µ1, . . . , µn−1 are positive

(theorem 1) and only one eigenvalue (µn) is non-positive along Γ2, for any P ′ ∈ Γ2

and close to the initial line there are exactly n− 1 characteristic curves starting from
the initial line that intersect Γ2 in P ′, that means that we have to specify one extra
condition on Γ2; this will be obtained as a straightforward extension of the scalar
condition (12), namely we put

n∑
i=1

Si(H, t) = 1− ε, (80)



i.e. almost no water at the top of the bulk (ε arbitrarily small positive parameter); the
corresponding condition for W ’s components is found through W = L−1S to be

n∑
i=1

ziWi(H, t) = 1− ε (zi =
n∑
j=1

Lji). (81)

We can easily see that Γ1 is a timelike curve: indeed, along Γ1 a condition analogous
to (10) has to hold, i.e. Si(0, t) nearly zero, i = 1, . . . , n. By virtue of Remark 2 we
can infer that the smallest eigenvalue of A(S) is positive along Γ1, and the latter is
therefore timelike.

If the coefficients of A(S) have Lipschitz continuous second derivatives, then the W0i

(i.e. the components of the initial vector W0(y)) have Lipschitz continuous derivatives;
in this case theorem 2.2 p.74 in [3] applies and we can state that, in a neighbourhood
of the initial line 0 ≤ y ≤ H, t = 0, the system (73) with initial data (76) and boundary
data (81) has a unique solution: due to the one–to–one mapping (72), also system (53)
with conditions (75), (80) has a unique solution.

(2) µn|Γ2
> 0: in this case neither Γ1 nor Γ2 are spacelike curves. The problem is then a

purely initial value one, and (provided the coefficient of the matrix A(S) are smooth
functions) existence and uniqueness for this case are guaranteed by theorem 2.1, p.71
in [3].

3.2 A model for concentrated dispersion

The previous model is valid as long as dispersions with a low fraction (generally less than
10%) of dispersed phase are considered, since in the opposite case the mutual interactions
of the droplets during their motion cannot be neglected. When the fraction of dispersed
phase increases above these values the expression (45) for the ascending velocity has to be
modified; this is achieved by introducing a crowding factor, like in the scalar case. So we
replace (45) by

Vai(y, t) = c
v

2/3
i

η(S1, . . . , Sn)
(1− So), (82)

i.e., reminding (39),

Vai(y, t) = c
v

2/3
i

η(S1, . . . , Sn)
(1−

n∑
i=1

Si), (83)

where c and vi have the same meanings described in section 3 and in subsection 3.1. All the

other equations found for the dilute dispersion still hold; again we set
∂η

∂Si
= ηi, substitute

(83) in each of the n equations

∂Si
∂t

+
∂(SiVai)

∂y
= 0, i = 1, . . . , n, (84)



and get the system

St +B(S)Sy = 0, (85)

where S = (S1, . . . , Sn) as before and B(S) is given by

[B(S)]ij =



− 1

η2
[aiSi(ηjSw + η)] for i 6= j,

i, j = 1, . . . , n,

− 1

η2
[ai(ηiSwSi + ηSi − ηSw)] for i = j.

(86)

The system (85) is again a first order quasi-linear one.

3.2.1 System (85) is strictly hyperbolic

We will go on proving that the eigenvalues of B(S) are real and distinct by a similar argument
as in the case of diluted dispersions. This is done in the following

Theorem 2. The matrix B(S) in (85) has n real and distinct eigenvalues. Moreover, if
the inequality

Sw

n∑
i=1

ηiSi + η(
n∑
i=1

Si − Sw) < 0

holds, then all the eigenvalues are positive.

Proof. The eigenvalues λ1, . . . , λn of B̃ = η2B differ from those of B, say µ1, . . . , µn, only
by a real and positive factor η2. The characteristic polynomial Pn(λ) of B̃ is

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−a1(η1SwS1+ −a1S1(η2Sw + η) −a1S1(η3Sw + η) ... −a1S1(ηnSw + η)
ηS1 − ηSw)− λ

−a2S2(η1Sw + η) −a2(η2SwS2+ −a2S2(η3Sw + η) ... −a2S2(ηnSw + η)
ηS2 − ηSw)− λ

−a3S3(η1Sw + η) −a3S3(η2Sw + η) −a3(η3SwS3+ ... −a3S3(ηnSw + η)
ηS3 − ηSw)− λ

.

.

.

−anSn(η1Sw + η) −anSn(η2Sw + η) −anSn(η3Sw + η) ... −an(ηnSwSn+
ηSn − ηSw)− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(87)

Multiply the first column of (B̃−λI) by −ηnSw + η

η1Sw + η
and add the result to the last column;

we get





−a1(η1SwS1+ ... −a1S1(ηn−1Sw + η) (λ− a1Swη)
ηnSw + η

η1Sw + η

ηS1 − ηSw)− λ
−a2S2(η1Sw + η) ... −a2S2(ηn−1Sw + η) 0

.

.

.

−an−1Sn−1 ... −an−1(ηn−1SwSn−1+ 0
(η1Sw + η) ηSn−1 − ηSw)− λ

−anSn(η1Sw + η) ... −anSn(ηn−1Sw + η) anSwη − λ


(88)

We then evaluate the determinant along the last column to get

det(B̃ − λI) = (anSwη − λ)Pn−1(λ)

+ (−1)n+1(λ− a1Swη)
ηnSw + η

η1Sw + η
det B,

(89)

where B is the (n− 1)× (n− 1) matrix given by

[B]ij =

{
−ai+1Si+1(ηjSw + η) i+ 1 6= j

−aj(ηjSwSj + ηSj − ηSw)− λ i+ 1 = j,
(90)

i, j = 1, . . . , n− 1. Multiply the (i+ 1)-th column of B by − ηiSw + η

ηi+1Sw + η
and add the result

to the i-th column, i = 1, . . . , n− 2: we end up with the upper triangular matrix K where
the first n− 2 entries on the diagonal are

(λ− ai+1ηSw)
ηiSw + η

ηi+1Sw + η
, i = 1, . . . , n− 2

and the last diagonal term is −anSn(ηn−1Sw + η). We obviously have det K = det B and
so

det B = (−1)n−1anSn(η1Sw + η)
n−2∏
i=1

(ai+1ηSw − λ). (91)

By substitution of the latter in (89) we find

Pn(λ) = det(B̃ − λI)

= (anSwη − λ)Pn−1(λ)− anSn(ηnSw + η)
n−1∏
i=1

(aiηSw − λ)︸ ︷︷ ︸
=: Qn−1(λ)

= (anSwη − λ)Pn−1(λ)− anSn(ηnSw + η)Qn−1(λ).

(92)

Now we assume as an induction argument that

sgn Pn−1(ajSwη) = (−1)n+j, j = 1, . . . , n− 1 (93)



(which is easily checked for n = 2), and show that it holds for n, i.e. that

sgn Pn(ajSwη) = (−1)n+j+1, j = 1, . . . , n. (94)

Let us evaluate Pn(λ) in the points λ = ajSwη, j = 1, . . . , n: we find

Pn(anSwη) =

<0︷ ︸︸ ︷
−anSn ·

>0︷ ︸︸ ︷
(ηnSw + η)

>0︷ ︸︸ ︷
n−1∏
i=1

(ai − an)ηSw < 0,

Pn(an−1Swη) =

<0︷ ︸︸ ︷
(an − an−1) ·

>0︷︸︸︷
Swη ·

<0 (ind.hp.)︷ ︸︸ ︷
Pn−1(an−1Swη) > 0,

.

.

.

Pn(ajSwη) =

<0︷ ︸︸ ︷
(an − aj)η

>0︷︸︸︷
Swη ·

has sign (−1)n+j︷ ︸︸ ︷
Pn−1(ajSwη)︸ ︷︷ ︸

has sign (−1)n+j+1

−anSnηn

=0︷ ︸︸ ︷
Qn−1(ajη),

(95)

where as in the diluted case we have used the induction argument (ind. hp.) for the sign of
Pn−1: it then follows that sgn Pn(ajSwη) = (−1)n+j+1 ∀ j = 1, 2, . . . , n, and (94) is proved.
By observing that Pn(ajSwη) has the opposite sign of Pn(aj+1Swη), j = 1, . . . , n − 1, and
using the relation

Pn(λ) = (−1)nλn + (−1)n−1(trB̃)λn−1 + . . .− . . .+ det B̃ (96)

to determine lim
λ→+∞

Pn(λ), we can see that Pn(λ) intersects the λ-axis exactly n times, namely

in the intervals (aj+1Swη, ajSwη), j = 1, . . . , n− 1, and (−∞, anSwη); Pn(λ) has n real and

distinct roots, and system (85) is therefore strictly hyperbolic. The relation µi =
λi
η2

between

the eigenvalues of B̃ and those of B shows immediately that the ranges of the eigenvalues
µi are (assume µn < µn−1 < . . . < µ2 < µ1)

µi ∈
(
ai+1Sw
η

,
aiSw
η

)
, i = 1, 2, . . . , n− 1,

µn ∈
(
−∞, anSw

η

)
.

(97)

All the eigenvalues, except at most the smallest µn, are positive; as in the diluted case, we
can see that the signs of λn and µn coincide with the sign of det B̃. By letting λ = 0 in (92)
we get

det B̃ = anSwηPn−1(0)− anSn(ηnSw + η)(ηSw)n−1a1 · · · an−1, (98)

which suggests the following expression for det B̃:

det B̃ = −a1a2 · · · an(ηSw)n−1

[
Sw

n∑
i=1

ηiSi + η

n∑
i=1

Si − Swη

]
(99)

Relation (99) can be proved to hold true by induction, and the sign of µn is then the opposite
of the quantity in square brackets in (99). This concludes the proof of the theorem.



3.2.2 Existence and uniqueness

As in the dilute case, the correct formulation of existence and uniqueness results depends
on the sign of the quantity in square brackets in (99) along the boundary. We use the same
notation as in 3.1.2 for the boundary lines, and therefore denote by Γ1 and Γ2 respectively
the curves {y = 0, t ≥ 0} and {y = H, t ≥ 0}.

It is readily seen by an argument similar to that in Remark 2 that Γ1 is always timelike,
while again Γ2 turns out to be spacelike if µn is non–positive (i.e. if the quantity in square
brackets in (99) is non–negative) and timelike otherwise.

In the first case data are specified partially on a timelike curve (Γ1 and the initial line
t = 0, 0 ≤ y ≤ H) and partially on a spacelike curve (Γ2), and the boundary conditions
on Γ2 are assigned exactly like in the diluted case. The system (85) represents then a mixed
problem, for which existence and uniqueness of the solution are ensured by theorem 2.2 p.74,
in [3].

When also the smallest eigenvalue µn is positive, none of the boundary curves is spacelike,
so that the problem is a pure initial value one; existence and uniqueness of the solution rely
both on theorem 2.1, p.71 in [3].

Remark 3. Comparison between (97) and (68) shows that the eigenvalues for dilute disper-
sions are larger than those for concentrate dispersions; this is simply a consequence of the
fact that in dilute dispersions the droplets’ ascending velocities are larger because of reduced
interaction among them.

Remark 4. The mono-dispersed model may be re-obtained from the poly-dispersed one (con-
centrated case) as follows. Let us first define (see [7])

r2
m =

n∑
i=1

Sir
2
i

n∑
i=1

Si

= quadratic mean radius, (100)

and remind that, for the i-th family of droplets, equation (47) holds. By summing over i and

using
n∑
i=1

Si = So we also get

∂So
∂t

+

∂(
n∑
i=1

SiVai)

∂y
= 0. (101)

If we define

Vo :=

n∑
i=1

VaiSi

n∑
i=1

Si

=: ascending mean velocity, (102)



(101) may be written as

∂So
∂t

+
∂(VoSo)

∂y
= 0. (103)

The ascending mean velocity Vo has the same meaning of the scalar ascending velocity

Vo(So) = k(1− So)

in (5), where the constant k introduced there had not been characterized any further. How-
ever, from (82) we have

Vai(y, t) =
2g

9ζ
(ρw − ρo)

v
2/3
i

η(S1, . . . , Sn)
Sw

=
2g

9
(ρw − ρo)

r2
i

η
Sw,

(104)

and so we get

Vo =

n∑
i=1

VaiSi

n∑
i=1

Si

=
2g

9η
(ρw − ρo)

n∑
i=1

Sir
2
i

n∑
i=1

Si

Sw

=
2g

9η
(ρw − ρo)r2

m(1− So) = Vo,

(105)

provided that k has been chosen to be

k :=
2g

9η
(ρw − ρo)r2

m. (106)

Note that the viscosity in (106) is constant. The equal size of all the droplets in the scalar
case is given by the mean radius defined in (100), while the way the constant k is related to
the physical properties of the dispersion is shown by (106).
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