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e Physical situatiort Two immiscible liquids (saywATER andoiL) are
mixed in some container. Depending on the hold—up (mutual
percentage of the two phases)ITATION yields aDISPERSIONOf
one liquid into the other.

problem: GIVEN f,(v,X) — the initial number of droplets of

dispersed phase with size(nv+ dv) per unit volume of the
continuous guesj phase at poirk — FIND f (v, x,t) for t sufficiently
large.

Industrial interest : dispersion are rather common in pharmacolog
chemistry, food manifacturing, crude oll transportatipaintings, ...!
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Typical “apparatus”: a blade impeller reactor

In many interesting cases the very high agitation speedi¢dnuds of
R.P.M.) allows to forget diffusion (the system can be coasad as
SPATIALLY HOMOGENEOUS

Blade
impeller

Sampling Injection

Costant temperature bath
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Two guide physical processeSOLLISIONS. andBRAKAGE (see

movieg
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standard model(before F. & R.) (without diffusion)

of
— =L+ Lyf
ot cl +Lp

Competing effectscoalescencandbreakage
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Is the classical model suitable to fully explain the obsdmgnamics?
Answer NO!

No satisfactory explanation for the instability of “largeoglets”

our model (without diffusion)

o0f

o = 0(t) (Lef + Lo f +Ls)

NEW TERMS. efficiency factorandvolume scattering

pt) =W (), ~(t)] where

Vm
/ f(v,t)dv,
0




Univ. Firenze, Dept. Math. “Ulisse Dini” ——— SIMAI 2004, 8&ervolo Island (Venezia) 10

State of the art as far as the mathematics is concerned

Under a “reasonable” set of hypotheses, the evolution exuatith the

initial condition f(v,0) = f(v) has one and only one solution with or
without diffusion(Fasano and R. 1998-2004 for the “new” model, man
other Authors for the “simplified” model in whichsf = 0 andW = 1)
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Our current business what is the very structure af, andLs?

Both are integral operators (linear the former, quadréaieclatter) but the
structure of their kernels is sistematically left ratheefigric” (several
reasons for this). However to investigate the kernel stingct

e would help to understand “intimately” the dynamics

e would provide useful insights “when doing mathematics”
towards the right choice of hypothesesabout all terms appearing
In the kernels themselves

Price to pay for thisthe mathematics becomes becomes very conhplex
Let’s see why.

11
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Structure of the coalescence operator

V/2
Lof(vt) :/ Te(w,v—w) f(wt)f(v—wt)dw
0

\ 4
~”

gain

—f(vt) /Ovm_v Tc(W, V) f(w,t) dw

\ 4

Ve

loss

Coalescence iglways binary| w |+| v-w | produce the gained drop
while| v |disappears because of its merging to produce v+w |.
Due to the finite size limiv,,, w cannot exceeudy — V.
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Structure of the breakage operator

Breakage is described by

Lof(vt) = /V "0 (sv)f(st) ds—Op (V) F(wt)
~ gjarin g loss

V

O, (s,v) is thegain breakage kernein the current literature nobody
distinguishes among the various breakage mode3his means that,
being| s|the size of thgarentdrop and v | that of theobserved daughter
s-v|is the cumulative size of other daughters regardless of how amy
they are! Similarly O (v) is theloss breakage kerneh this form it is
not possible to distinguish the contributions to the disaiy ofv due to
different fragmentation modes !
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Structure of the scattering operator

Vm+V  pS/2
/ Od (s,v,w) f(w,t) f(s—w,t) dwds
S—Vm

7

gam

_f(v,t)/vm Tc(w,v) f(w,t) dw

m—V
N /
~~

loss

07 (s,v,w) is thegain scattering kerneivhensis abovevy, it becomes
unstable and breaks up in many pieces. One of thegdhg remaining
ones amount tav. But OJ (s,v,w) still hides the contributions tev due to
each breakage mode.
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Although thelLs term (and its implications) was the main contribution of
our research on this topic, only recently we have been ahladerstand
the true structure of th®—kernels.Without this understanding it does no

make too much sense to make hypotheses upon the variousskenhe
guided by “mathematical necessitief’®t’'s see the “intimate” structure
of kernels
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Oy (s,v) = a2(s)B(s,V)

N
+ z ak(s)/ ﬁk (Sa ul?"‘7uk—27S_V_Uk—2) do_k—Za
3 Dy (sv

16
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These kernels are “easy” to réad
e (V) is thebreakage frequency of thei—th mode

e Bk(s,ug,...,Ux 1) is thebreakage probability density of drops with
volumes € (0, 2vy,) to generate by breakagdragments with
prescribed volumes; (j =1,...,k—1) in increasing order

Tc(V,w) is thecoalescence kernel

Ak(S) is a suitablewveight (to be chosen conveniently) measuring th
chance of the parent droplet (v, 2vy| to break exactly irk pieces

N
within the scattering proce5<s S Ak(s) = 1)
k=2

Notice thatay, andAy appears in similar contexts but they have different
meanings: “ratest include the breakage frequencywhile in the
operator_s the breakage has probability one and all we need to know is
the probability of each breakage mode.
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MAIN ADVANTAGE : the hypotheses needed to prove existence and
unigueness are placelrectly on ay, Bk (S,u1,...,Ux_1) andAx and turns
out to be“extremely readable” and“easy to check” Moreovertheir
“form” is suggested by the physics

Hypotheses placedirectly on the whole kernel®; and©O{ are usually
very far from being “readable” or “easy to check” Their “form” is
non suggested by the physiceecause of their very “cumulative” nature.

MORE COMPLICATE IS TO DESCRIBE THE INTEGRATION DOMAINE

Integrals oveDy(s,Vv) do not appearf and only if breakage and volume
scattering do not involve modes higher than order two (ymeaents!).
We know that these events alone are almost impossible. Wausannot
get rid of higher order terms!
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EASIEST CASE N = 2 (binary events)

BZ(Sv U) — Bz(S,S— U), ﬁZ(Sv U) — 07 If s<u (01)

Assignedover

S
To1(s) = {u1 | 0 < ug <S—ug <V} = (max{o,s—vm}, 5) . (0.2)

thenextended by axial simmetry(with respect ts/2) over

S .
To2(s) ={ur | 0<s—ur < U <V} = <§’ mln{s,vm}) : (0.3)

Extension mag Cp : S—u+— u(mapsTz2(s) one-to-one ontdz 1(S))

Normalization: assign3, such as

/ Bo(s,u)du=1 (0.4)
T21(8)

19
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Co IS measure—conservingthus

/T " B2(s,s—U) du = / B2(s,u) du = 1.

T21(9)

20
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GENERAL CASE k > 2 (multiple events)

First consider the cases (0, vy and define the set of IR*

k—1
Tk1(s) = {O<u1< o <Uke1 < S— Z uh<vm}. (0.6)
h=1

k—1
Clearlyu=s— Y upidentifies one of th& daughters andy 1 Is

h=1
characterized by the circumstanceudfeing the volume of thiargest

daughter(s). Functiofi is assignedn Ty 1 in such a way that

| s ) doa=1 (0.7)
T 1(9)

We then introduce, for a fixesle (0, vy, the following domains in IR*
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Tkj(8)={0<u <. <u j <U< Uk 1 <. < Uk < Vi,

(0.8)
n—-1
whereu=s— 3 up. Notice that inTi k(s), Uis the volume of the smallest
h=1
drop(s).

These domains are mapped one into the other by the following
measure—conserving maps:

CJ : (617" '7Ek—1) = (U]_,.. .,Uk_]_),

j=1,....,k—1,
defined by
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)
U = &1,...,Uk—j—1 = Ek—j—1,

k—1
Uk—j = S— izl éi,

| Uk—jr1 = Ek—j+1s---rUk-1 = Gk_1.

24
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These maps have two main purposes:

e to “re—locate"theresidual dropuy with respect to the ordered set of
the other daughters

e to extendthe probability density over all domaifig ;

Crucial (non obviuos) result for all k > 3 all open domainsgk,j are
k
mutually disjoint ancﬂ Ti j reduces to a single point which can be
j=1
identified with the event

5
k7

Ui =U=...=Uk_1=

that isall droplets have the same volume

25
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Because of the properties of the m&gswe have

| Bdoci=[ Bdoci=..=[ Bdoci=1 (0.12
T 1(8) Ty 2(8) T k(S)

K k—1
if we defineTy = | Tk j andDy(s,v) = Tk(s) N { S U= s—v} :
j=1 h=1

Thus in all theTy ; contributing toDy(s,Vv), the volumev is the one of the
“residual drop”. Notice thali(s) is (k— 1)—dimensional polytope, so
thatDy(s,Vv) is nothing but a finite portion of an hyperplane in IRK—2,

Since we allows in the interval(0, 2vy), the function S is defined in a
k—dimensional polytope

k
Tk = {SG(O,ZVm],O<U1<U2<...<Uk1<Uk, Zuh_s}.
h=1

The domainly(s) is just Z({s= constan}.
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Figure 1:s < Vpy; the stright line isu; +up =s—v

27
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Figure 2:s > vpy; the stright line isu; +up =s—v

28
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Figure 3:s < vy, the intersecting plane is, + U + Uz =s—V

29
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Figure 4:s < vm; U1Up projection of the polytope—plane intersection

30
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Figure 5:s > v, the intersecting plane is, + Uy + U3 =Ss—V

31
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Figure 6:S > vm; U1Up projection of the polytope—plane intersection

32
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EXAMPLE OF PROBABILITY FUNCTIONS

33
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<
3
<
(7))
—
QD
=

Figure 8:Contour plot of B2(s,u)
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Example of B3(s,u)

36
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s= 1.56667

Figure 9:Contour plot of B3(s,u)

37
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NUMERICAL SIMULATIONS

WE PROVED EXISTENCE AND UNIQUENESS GLOBALL¥IN—TIME FOR
OUR MODEL INDEPENDENTLY OF HOW MANY MODES ARE TAKEN
INTO ACCOUNT.

ALL SIMULATIONS USE THE PROBABILITY FUNCTIONS[)’k SHOWN
BEFORE EVENTS UP TO THE FORTH ORDER ARE TAKEN INTO

ACCOUNT. THE COLESCENCE KERNEL IS TAKEN FROM THE
TECHNICAL LITERATURE. ALL BREAKAGE FREQUENCY FUNCTIONS
O VANISH AT V=0 AND BLOW UP AT V= V.

ALL MULTIPLE INTEGRAL ARE EVALUATED BY SUITABLE
MONTECARLO METHODS. FOR MODES HIGHER THAN THE FORTH
THE COMPUTATIONAL TIME INCREASES CONSIDERABLY
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[Ab=1.0, Ac=10.0, DV<0.27%, DN~328.11%)]

|
initial data
evolution

Figure 10: Evolution of f(v,t) for a given initial data: only binary
events are considered
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[Ab=1.0, Ac=10.0, DV<1.27%, DN~535.97%)]

| | |
initial data
evolution

[
P

g,
bt

Figure 11:Evolution of f(v,t) for a given initial data : events up to the

third order are considered
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[Ab=1.0, Ac=10.0, DV<3.51%, DN~662.92%)]

| |
initial data

|
evolution
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Figure 12:Evolution of f(v,t) for a given initial data : events up to the

fourth order are considered
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[Ab=1.0, Ac=10.0, DV<3.51%, DN~662.92%)]

Figure 13: Evolution of f(vt) for a given initial data: a comparison
among the three previous graphs
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L — — ,:.:.:-...-...-.L....-..-...-..-...-..-...-.
0 0.2 0.4 0.6 0.8 1

Figure 14: Evolution of f(vt) for three different initial data: the
asymptotic form is independent off (v, 0)
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POSSIBLE FUTURE PERSPECTIVES:

e the last graph shows that the asymptotic (in time) solutfows very
little dependency upoify(V). Is this a theorent?

existence of a steady no-trivial solution has been obtdmeithe
model with volume scattering only very recently ( P. Layi@rand

C. Walker 2004)Can this be done also for the model with explicit
multiple breakage under “good” and “easy—to—read” hypotheses o

Ok, Bk, Ak?

Extension to the discrete case (more suitable for polynmeadia) is
routine for the classical modek there any similar extension for
our model?

Inclusion of inlet-outlet flow (external sources), chenhmgents, a
temperature field....




