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• Physical situation: Two immiscible liquids (sayWATER andOIL) are

mixed in some container. Depending on the hold–up (mutual

percentage of the two phases)AGITATION yields aDISPERSIONof

one liquid into the other.

• problem: GIVEN fo(v,x) — the initial number of droplets of

dispersed phase with size in(v,v+ dv) per unit volume of the

continuous (guest) phase at pointx — FIND f (v,x, t) for t sufficiently

large.

• Industrial interest : dispersion are rather common in pharmacology,

chemistry, food manifacturing, crude oil transportation,paintings, ...!
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Typical “apparatus”: a blade impeller reactor

In many interesting cases the very high agitation speed (thousands of

R.P.M.) allows to forget diffusion (the system can be considered as

SPATIALLY HOMOGENEOUS)

Baffle

impeller

Blade

Costant temperature bath

Sampling Injection
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Two guide physical processes:COLLISIONS. andBRAKAGE (see

movies)
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standard model(before F. & R.) (without diffusion)

∂ f
∂ t

= Lc f +Lb f

Competing effects:coalescenceandbreakage.
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Is the classical model suitable to fully explain the observed dynamics?

Answer: NO!

No satisfactory explanation for the instability of “large droplets”!

our model (without diffusion)

∂ f
∂ t

= φ(t)(Lc f +Lb f +Ls f )

NEW TERMS: efficiency factorandvolume scattering

φ(t) = Ψ [N (t),S (t)] where

N (t) =
∫ vm

0
f (v, t) dv , S (t) =

∫ vm

0
v(2/3) f (v, t) dv ,
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State of the art as far as the mathematics is concerned:

Under a “reasonable” set of hypotheses, the evolution equation with the

initial condition f (v,0) = fo(v) has one and only one solution with or

without diffusion(Fasano and R. 1998–2004 for the “new” model, many

other Authors for the “simplified” model in whichLs f = 0 andΨ ≡ 1)
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Our current business: what is the very structure ofLb andLs?

Both are integral operators (linear the former, quadratic the latter) but the

structure of their kernels is sistematically left rather “generic” (several

reasons for this). However to investigate the kernel structure

• would help to understand “intimately” the dynamics

• would provide useful insights “when doing mathematics”
towards the right choice of hypothesesabout all terms appearing
in the kernels themselves

Price to pay for this:the mathematics becomes becomes very complex!

Let’s see why.
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Structure of the coalescence operator

Lc f (v, t) =
∫ v/2

0
τc(w,v−w) f (w, t) f (v−w, t) dw

︸ ︷︷ ︸
gain

− f (v, t)
∫ vm−v

0
τc(w,v) f (w, t) dw

︸ ︷︷ ︸
loss

Coalescence isalways binary: w + v-w produce the gained dropv ,

while v disappears because of its merging withw to produce v+w .

Due to the finite size limitvm, w cannot exceedvm−v.
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Structure of the breakage operator

Breakage is described by

Lb f (v, t) =

∫ vm

v
O

+
b (s,v) f (s, t) ds

︸ ︷︷ ︸
gain

−O
−
b (v) f (v, t)

︸ ︷︷ ︸
loss

O
+
b (s,v) is thegain breakage kernel: in the current literature nobody

distinguishes among the various breakage modes! This means that,

being s the size of theparentdrop and v that of theobserved daughter,

s-v is the cumulative size of other daughters regardless of how many
they are! Similarly O

−
b (v) is theloss breakage kernel: in this form it is

not possible to distinguish the contributions to the disappering ofv due to

different fragmentation modes !
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Structure of the scattering operator

Ls f (v, t) =
∫ vm+v

vm

∫ s/2

s−vm

O
+
s (s,v,w) f (w, t) f (s−w, t) dw ds

︸ ︷︷ ︸
gain

− f (v, t)
∫ vm

vm−v
τc(w,v) f (w, t) dw

︸ ︷︷ ︸
loss

O+
s (s,v,w) is thegain scattering kernel: whens is abovevm it becomes

unstable and breaks up in many pieces. One of these isv, the remaining

ones amount tow. But O+
s (s,v,w) still hides the contributions tow due to

each breakage mode.
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Although theLs term (and its implications) was the main contribution of

our research on this topic, only recently we have been able tounderstand

the true structure of theO–kernels.Without this understanding it does not

make too much sense to make hypotheses upon the various kernels only

guided by “mathematical necessities”!Let’s see the “intimate” structure

of kernels
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O
+
b (s,v) = α2(s)β2(s,v)

+
N
∑

k=3
αk(s)

∫

Dk(s,v)
βk (s,u1, . . . ,uk−2,s−v−Uk−2) dσk−2,

O
−
b (v) =

N
∑

k=2
αk(v),

O+
s (s,v,w) = τc(s−w,w)(λ2(s)β2(s,s−v)

+
N
∑

k=3
λk(s)

∫

Dk(s,v)
βk (s,u1, . . . ,uk−2,s−v−Uk−2) dσk−2

)
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These kernels are “easy” to read!

• αk(v) is thebreakage frequency of thei–th mode

• βk (s,u1, . . . ,uk−1) is thebreakage probability densityof drops with

volumes∈ (0,2vm) to generate by breakagek fragments with

prescribed volumesu j ( j = 1, . . . ,k−1) in increasing order

• τc(v,w) is thecoalescence kernel

• λk(s) is a suitableweight (to be chosen conveniently) measuring the

chance of the parent droplets∈ (vm,2vm] to break exactly ink pieces

within the scattering process

(
N
∑

k=2
λk(s) = 1

)

Notice thatαk andλk appears in similar contexts but they have different:

meanings: “rates”αk include the breakage frequency, while in the

operatorLs the breakage has probability one and all we need to know is

the probability of each breakage mode.



Univ. Firenze, Dept. Math. “Ulisse Dini” ———– SIMAI 2004, San Servolo Island (Venezia) 18

MAIN ADVANTAGE : the hypotheses needed to prove existence and

uniqueness are placeddirectly on αk, βk (s,u1, . . . ,uk−1) andλk and turns

out to be“extremely readable” and“easy to check”. Moreovertheir
“form” is suggested by the physics.

Hypotheses placeddirectly on the whole kernelsO+
b andO+

s are usually

very far from being “readable” or “easy to check”. Their “form” is
non suggested by the physicsbecause of their very “cumulative” nature.

MORE COMPLICATE IS TO DESCRIBE THE INTEGRATION DOMAINS!

Integrals overDk(s,v) do not appearif and only if breakage and volume

scattering do not involve modes higher than order two (binary events!).

We know that these events alone are almost impossible. Thuswe cannot
get rid of higher order terms!
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EASIEST CASE: N = 2 (binary events)

β2(s,u) = β2(s,s−u), β2(s,u) = 0, if s≤ u (0.1)

Assignedover

T2,1(s) = {u1 | 0 < u1 ≤ s−u1 ≤ vm} =
(

max{0,s−vm},
s
2

)
, (0.2)

thenextended by axial simmetry(with respect tos/2) over

T2,2(s) = {u1 | 0 < s−u1 < u1 ≤ vm} =
( s

2
,min{s,vm}

)
, (0.3)

Extension map: C0 : s−u 7→ u (mapsT2,2(s) one-to-one ontoT2,1(s))

Normalization: assignβ2 such as
∫

T2,1(s)
β2(s,u) du = 1 (0.4)
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C0 is measure–conserving: thus

∫

T2,2(s)
β2(s,s−u) du =

∫

T2,1(s)
β2(s,u) du = 1. (0.5)
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GENERAL CASE: k > 2 (multiple events)

First consider the cases∈ (0,vm] and define the set of IRk−1

Tk,1(s) =

{
0 < u1 ≤ . . . ≤ uk−1 ≤ s−

k−1

∑
h=1

uh ≤ vm

}
. (0.6)

Clearly ũ = s−
k−1
∑

h=1
uh identifies one of thek daughters andTk,1 is

characterized by the circumstance ofũ being the volume of thelargest

daughter(s). Functionβk is assignedonTk,1 in such a way that

∫

Tk,1(s)
βk (s,u1, . . . ,uk−1) dσk−1 = 1. (0.7)

We then introduce, for a fixeds∈ (0,vm], the following domains in IRk−1
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Tk, j(s) =
{

0 < u1 ≤ . . . ≤ uk− j ≤ ũ≤ uk− j+1 ≤ . . . ≤ uk−1 ≤ vm
}

,

j = 2, . . . ,k,
(0.8)

whereũ = s−
n−1
∑

h=1
uh. Notice that inTk,k(s), ũ is the volume of the smallest

drop(s).

These domains are mapped one into the other by the following
measure–conserving maps:

Cj : (ξ1, . . . ,ξk−1) 7→ (u1, . . . ,uk−1) ,

j = 1, . . . ,k−1,

(0.9)

defined by
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



u1 = ξ1, . . . ,uk− j−1 = ξk− j−1,

uk− j = s−
k−1
∑

i=1
ξi ,

uk− j+1 = ξk− j+1, . . . ,uk−1 = ξk−1.

(0.10)
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These maps have two main purposes:

• to “re–locate”theresidual dropũk with respect to the ordered set of

the other daughters

• to extendthe probability density over all domainsTk, j

Crucial (non obviuos) result: for all k ≥ 3 all open domains
◦
Tk, j are

mutually disjoint and
k⋂

j=1

Tk, j reduces to a single point which can be

identified with the event

u1 = u2 = . . . = uk−1 =
s
k
, (0.11)

that isall droplets have the same volume.
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Because of the properties of the mapsCj , we have

∫

Tk,1(s)
β̃k dσk−1 =

∫

Tk,2(s)
β̃k dσk−1 = . . . =

∫

Tk,k(s)
β̃k dσk−1 = 1; (0.12)

if we defineTk =
k⋃

j=1
Tk, j andDk(s,v) = Tk(s)∩

{
k−1
∑

h=1
uh = s−v

}
.

Thus in all theTk, j contributing toDk(s,v), the volumev is the one of the
“residual drop”. Notice thatTk(s) is (k−1)−dimensional polytope, so
thatDk(s,v) is nothing but a finite portion of an hyperplane in IRk−2.

Since we allows in the interval(0,2vm], the function βk is defined in a
k−dimensional polytope

Tk =

{
s∈ (0,2vm],0 < u1 ≤ u2 ≤ . . . ≤ uk−1 ≤ uk,

k

∑
h=1

uh = s

}
.

The domainTk(s) is justTk
⋂
{s= constant}.
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Figure 1:s< vm; the stright line isu1 +u2 = s−v
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Figure 2:s> vm; the stright line isu1 +u2 = s−v
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Figure 3:s< vm; the intersecting plane isu1 +u2 +u3 = s−v
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Figure 4:s< vm; u1u2 projection of the polytope–plane intersection
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Figure 5:s> vm; the intersecting plane isu1 +u2 +u3 = s−v
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Figure 6:s> vm; u1u2 projection of the polytope–plane intersection
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EXAMPLE OF PROBABILITY FUNCTIONS
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Figure 7:Example of β2(s,u)
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Figure 8:Contour plot of β2(s,u)
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s= 1.3

Example of β3(s,u)
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Figure 9:Contour plot of β3(s,u)
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NUMERICAL SIMULATIONS

WE PROVED EXISTENCE AND UNIQUENESS GLOBALLY–IN–TIME FOR

OUR MODEL INDEPENDENTLY OF HOW MANY MODES ARE TAKEN

INTO ACCOUNT.

ALL SIMULATIONS USE THE PROBABILITY FUNCTIONSβk SHOWN

BEFORE: EVENTS UP TO THE FORTH ORDER ARE TAKEN INTO

ACCOUNT. THE COLESCENCE KERNEL IS TAKEN FROM THE

TECHNICAL LITERATURE. ALL BREAKAGE FREQUENCY FUNCTIONS

αk VANISH AT v = 0 AND BLOW UP AT v = vm.

ALL MULTIPLE INTEGRAL ARE EVALUATED BY SUITABLE

MONTECARLO METHODS. FOR MODES HIGHER THAN THE FORTH

THE COMPUTATIONAL TIME INCREASES CONSIDERABLY.
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Figure 10: Evolution of f (v, t) for a given initial data: only binary
events are considered



Univ. Firenze, Dept. Math. “Ulisse Dini” ———– SIMAI 2004, San Servolo Island (Venezia) 40

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  0.2  0.4  0.6  0.8  1

[Ab=1.0, Ac=10.0, DV<1.27%, DN~535.97%]

initial data
evolution

Figure 11:Evolution of f (v, t) for a given initial data : events up to the
third order are considered
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Figure 12:Evolution of f (v, t) for a given initial data : events up to the
fourth order are considered
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Figure 13: Evolution of f (v, t) for a given initial data: a comparison
among the three previous graphs
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Figure 14: Evolution of f (v, t) for three different initial data: the
asymptotic form is independent of f (v,0)
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POSSIBLE FUTURE PERSPECTIVES:

• the last graph shows that the asymptotic (in time) solution shows very

little dependency uponfo(v). Is this a theorem?

• existence of a steady no–trivial solution has been obtainedfor the

model with volume scattering only very recently ( P. Laurenc¸ot and

C. Walker 2004).Can this be done also for the model with explicit
multiple breakageunder “good” and “easy–to–read” hypotheses on

αk,βk,λk?

• Extension to the discrete case (more suitable for polymericmedia) is

routine for the classical model.Is there any similar extension for
our model?

• inclusion of inlet-outlet flow (external sources), chemical agents, a

temperature field....


