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Abstract

A new approach is presented to investigate the multiple breakage of liquid drop-
lets in agitated dispersions. The model includes, besides coalescence and break-
age, also the volume scattering as leading mechanism of the evolution. The key
role played, as far as the global existence of the solution, by a positive thresh-
old size below which drops are stable versus fragmentation and coalescence is
clearly emphasized.

1. Introduction

In [2,3] we presented a new model for the dynamics of dispersions in an agitated
vessel in which the break–up of droplets with volume above the critical size is
introduced in a quite natural way trough a new effect that we called volume
scattering. This effect consists in the coalescence of two droplets into a single unit
with total volume above the maximum value vm allowed for the system (which in
turn depends on side parameters, like the rotational velocity of the impeller, its
geometry, the chemical and physical nature of the two liquids and so on) followed
by an immediate rupture into two smaller droplets with volume below the critical
size (the model was confined to binary breakage).

Another novelty in [2,3] was the presence of an efficiency factor (depending on
the number of droplets and the total inter–facial area) in the evolution equation,



whose role is to offer a more precise control of the whole dynamics than the one
achievable by just modeling the interaction kernels.

However fragmentation appears to be instantaneously multiple in most experi-
ments and this implies that also the scattering term should be modified in our
model in order to allow the fragmentation of an unstable droplet in, possibly,
more than two pieces. In [4] we already presented a possible approach to this
kind of generalization and in [5] we worked out explicitly a case in which only a
ternary mode of rupture was taken into account. In any case the breakage rate
in the above quoted papers was taken to be bounded. Here we will present not
only a more natural approach to the problem of dealing with multiple breakage
but also remove the hypothesis of a bounded breakage rate.

It must be said that multiple breakage has been considered also by other Authors
(see [1,8,7]).

However our approach is rather different. Indeed in [8] the structure of the
breakage term in the evolution equation is taken to be the following:

Lbf(v, t) =

∫ vm

v

α(w)µ(w)β(w, v)f(w, t) dw − α(v)f(v, t). (1.1)

Here f (v, t) (v = volume, t = time) denotes the distribution function of droplet
size (per unit volume of dispersion), and

1. α(w) is the breakage frequency of a particle with size w
2. µ(w) the number of droplets with the same parent w
3. β(w, v) dw is the probability that a parent w generates a daughter of size v,

independently of the breakage mode.

The whole process is seen as a composite of a large number of independent ran-
dom processes. If the Central Limit Theorem applies, then β(w, v) can be ap-
proximated by a normal distribution with mean w? = w/µ(w) ∈ (0, w/2) and a
standard variation to be conveniently chosen.

A similar point of view is taken in the papers of [1,7]: according to these Authors

Lbf(v, t) =

∫ +∞

v

γ(w, v)(w)f(w, t) dw −
f(v, t)

v

∫ v

0

ω(v, w)w dw, (1.2)

but no assumption about the normality of β is made a priori. In this case γ(w, v)
(0 ≤ v ≤ w < +∞) is the multiple fragmentation kernel. Although seemingly
different, these two formulations can be proved to be equivalent (see [7]) (except
for the finite upper bound of the integral in (1.1)). Moreover the case of binary
breakage can be incorporated into this formulation by means of a suitable change
of variables (and by using the symmetry of the kernel characteristic of the binary
case, see [7] again).



From our point of view the above models for multiple breakage have some dis-
advantages: first of all none of them seems to take into account the randomness
of the breakage mode since the kernel is the same for all modes. Moreover the
fact that one of these models can be proved to be equivalent to that suited for the
binary breakage case, appears to be a strong indication that the physics of the
process has been somehow oversimplified. Finally if no information on the break-
age mode is specified (as in (1.1) and (1.2)) it is still possible to know the total
number of droplets but it appears impossible to count just those due to breakage.

The above models share the common underlying philosophy of capturing a global
information about breakage, in view of the difficulty of analyzing the single
modes. Here we prefer to follow a more direct approach, evaluating the contribu-
tion of each event to the rate of change of the distribution function.

2. Evolution equation

As in [2,3] we write the evolution equation for f as follows

∂f

∂t
= φ(t) (Lcf + Lbf + Lsf) . (2.1)

where (see [2,3] for example) φ(t) = Ψ [N (t),S(t)] is the efficiency factor and

N (t) =

∫ vm

0

f(v, t) dv , S(t) =

∫ vm

0

v(2/3)f(v, t) dv ,

represents, respectively, the instantaneous total number of droplet and inter–
facial area per unit volume of dispersion.

The operators at the r.h.s. of (2.1) have a rather complex structure: Lc is the
coalescence operator and depends on a coalescence kernel τc which is a known
function of the sizes of the two colliding droplets; Lb is the breakage operator
summing up the contributions of the various rupture modes (binary, ternary,
etc.), having defined, for each breakage mode, its frequency αk and the probability
density βk of its outcome. Finally Ls is the scattering operator and the kernel of
the k-th mode is just the product of βk and τc. We recall that Ls has represented
the main novelty of our model in the current literature about drops dynamics
since we first proposed it in [2,3]. Its role is to justify the instability of droplets
resulting from coalescence and with volume above the threshold value vm with-
out invoking any extra condition besides the true physics involved: indeed Ls is
nothing but a suitable combination of the two main factors driving the dynamics
of droplets, namely coalescence and breakage.

Natural size limitations among droplets impose particular care when the inte-
gration domains of the various terms on the r.h.s. of (2.1) are specified. To be
precise we put



Lcf(v, t) =

∫ v/2

0

τc(w, v − w)f(w, t)f(v − w, t) dw

− f(v, t)

∫ vm−v

0

τc(w, v)f(w, t) dw, (2.2)

Lbf(v, t) =

∫ vm

v

α2(s)β2(s, v)f(s, t) ds

+

N∑

k=3

∫ vm

v

αk(s)f(s, t) ds

×

∫

Dk(s,v)

βk (s, u1, . . . , uk−2, s− v − Uk−2) dσk−2

−
N∑

k=2

αk(v)f(v, t), (2.3)

Lsf(v, t) =

∫ vm+v

vm

λ2(s)β2(s, s− v) ds

∫ s/2

s−vm

τc(s− w,w)f(w, t)f(s − w, t) dw

+

N∑

k=3

[∫ vm+v

vm

λk(s) ds

∫ s/2

s−vm

τc(s− w,w)f(w, t)f(s − w, t) dw

×

∫

Dk(s,v)

βk (s, u1, . . . , uk−2, s− v − Uk−2) dσk−2

]

− f(v, t)

∫ vm+v

vm

τc(v, s− v)f(s− v, t) ds, (2.4)

where dσk−2 = du1 · · · duk−2 denotes the measure element in IRk−2. Notice that

∫ vm+v

vm

τc(v, s− v)f(s− v, t) ds =

∫ vm

vm−v

τc(w, v)f(w, t) dw, (2.5)

so that the last term in (2.4) is nothing but the continuation of the last term in
(2.2). The symbols appearing above have the following meaning:

– αk(s) is the breakage rate of droplets with volume s ∈ (0, vm) in k pieces.
– λk(s) is a suitable weight (to be chosen conveniently) measuring the chance

of the parent droplet s ∈ (vm, 2vm) to break exactly in k pieces within the

scattering process; we assume
N∑

k=2

λk(s) = 1 in any case.

– Un =
n∑

h=1

uh.



– βk (s, u1, . . . , uk−1) is the breakage probability density of drops with volume
s ∈ (0, 2vm) to generate by breakage k fragments with prescribed volumes uj

(j = 1, . . . , k − 1) in increasing order, 0 < u1 ≤ u2 ≤ . . . ≤ uk−1.
– τc(v, w) is the coalescence kernel, that is proportional to the probability that

two colliding droplets of respective volumes v and w coalesce to form a unique
droplet of volume v + w.

The definitions of the functions βk (s, u1, . . . , uk−1) and of the domains Dk(s, v)
need several preliminaries: we devote the following Section just to this topic.
As far as the regularity properties of the functions appearing in the kernels of
Lc, Lb, Ls and the efficiency factor Ψ , we assume the following

(H1) Ψ is strictly positive, Lipschitz continuous and bounded in IR2. We also assume
inf
IR2

Ψ = Ψ̂ > 0.

(H2) τc is non–negative, symmetric and continuously differentiable in [0, vm] ×
[0, vm].

(H3) For k = 2, . . . , N , αk is non–negative, continuously differentiable and non de-

creasing in [0, vm), unbounded as v tends to vm. We also assume
N∑

k=2

αk > 0 for

all v ∈ (vcrit, vm) and
a) αk ' (vm − v)−µ with µ ∈ (0, 1) in a left neighbourhood of v = vm,
b) αk ' (v − vcrit)

δ
+ with δ > 0 in a right neighbourhood of v = vcrit,

where vcrit ∈ [0, vm) is a given threshold and (•)+ := max{•, 0}.
(H4) For k = 2, . . . , N , functions λk are continuous in [vm, 2vm].

A widely used (empirical) law, called Weber relation, assumes

vcrit = 10−4π (σ/%)
9/5
(
ω2D4/3

)
−9/5

,

where σ and % are, respectively, the surface tension and the density of the dis-
persed phase, ω is the angular velocity of the impeller and D is the impeller
diameter. Therefore it is quite reasonable to think of vcrit as a very small but
not vanishing value. Indeed vcrit → 0 only if either ω → +∞, i. e. by spending
an infinite amount of energy, or σ → 0 which is a rather unphysical situation.
It is worth noticing that – while the local existence in time of the unique solu-
tion to the Cauchy problem for equation (2.1) can be achieved regardless of being
vcrit equal to zero or not – to prove the global existence we are forced to assume
vcrit > 0. This fact is strictly related to the very physics of the problem.

3. Functions βk and domains Dk

Function β2 is such that



β2(s, u) = β2(s, s− u), β2(s, u) = 0, if s ≤ u (3.1)

In other words, for each s ∈ (0, 2vm], we can take β2 as assigned only in [0, s/2].
Now, for a given k ≥ 3, let us first consider the case s ∈ (0, vm] and define the set
of IRk−1

Tk,1(s) = {(u1, . . . , uk−1) | 0 < u1 ≤ . . . ≤ uk−1 ≤ s− Uk−1 ≤ vm} . (3.2)

Clearly ũ = s−Uk−1 identifies one of the k daughters of s and Tk,1 is characterized
by the circumstance of ũ being the largest daughter. Function βk is assigned on
Tk,1 in such a way that

∫

Tk,1(s)

βk (s, u1, . . . , uk−1) dσk−1 = 1. (3.3)

For a fixed s ∈ (0, vm], define Tk,j(s) to be the set of points of (u1, . . . , uk−1) ∈ IRk−1

such that

{0 < u1 ≤ . . . ≤ uk−j ≤ s− Uk−1 ≤ uk−j+1 ≤ . . . ≤ uk−1 ≤ vm} ,
j = 2, . . . , k,

(3.4)

where, by definition, u0 = 0. If s ≤ vm, the last inequality in (3.2) and (3.4) is
obviously redundant. We notice that the j−th domain Tk,j is characterized by
the circumstance ũ has an intermediate size between uk−j and uk−j+1. We now
consider, again for a fixed s, the maps

{
Cj : (ξ1, . . . , ξk−1) 7→ (u1, . . . , uk−1) ,
j = 1, . . . , k − 1,

(3.5)

defined by





u1 = ξ1, . . . , uk−j−1 = ξk−j−1,

uk−j = s−
k−1∑
i=1

ξi,

uk−j+1 = ξk−j+1, . . . , uk−1 = ξk−1.

(3.6)

It is not difficult to check the maps (3.6) “re–locate” the residual drop ũ with
respect to the ordered set of the other daughters and that

{
Cj (Tk,j(s)) = Tk,j+1(s),
Cj (Tk,j+1(s)) = Tk,j(s)

(3.7)

so that Cj = C−1
j .



Evidently the residual drop is the largest one in Tk,1 and the smallest one in Tk,k.

Then we can complete the definition of the maps (3.5)–(3.6) also for j = k, by
assuming that Ck (Tk,k(s)) = Tk,1(s) which makes the family of maps Cj cyclic
among the domains Tk,j(s). Because of (3.7) it turns out that Ck = C1◦C2◦. . .◦Ck−1

The main reason for introducing the maps Cj is to extend the probability density
over all domains Tk,j. The procedure is the following. Indeed we can prove that,

for all k ≥ 3 all open domains
◦

T k,j are mutually disjoint and that
k⋂

j=1

Tk,j reduces

to a single point which can be identified with the event u1 = u2 = . . . = uk−1 = s
k .

that is “all droplets have the same volume”. Now, by means of the maps Cj we
extend βk from Tk,1 to Tk,2, from Tk,2 to Tk,3 and so on, up to Tk,k. In other words
we put β̃k (s, u1, . . . , uk−1) equal to





βk (s, u1, . . . , uk−1) , in Tk,1(s),
βk ◦C1 (u1, . . . , uk−1) , in Tk,2(s),
...

...
βk ◦C1 ◦C2 ◦ . . . ◦ Ck−1 (u1, . . . , uk−1) , in Tk,k(s).

(3.8)

Because of the properties of the maps Cj, we have
∫

Tk,j(s)
β̃k dσk−1 = 1 for all

j = 1, . . . , k; if we define Tk =
k⋃

j=1

Tk,j and recall that
◦

T k,j ∩
◦

T k,i= ∅ for i 6= j,

we also have
∫

Tk(s) β̃k dσk−1 = k. We now put Dk(s, v) = Tk(s) ∩ {Uk−1 = s− v}

(see figure 3.1 for the case k = 3). Thus in all the Tk,j contributing to Dk(s, v), the
volume v is the one of the “residual drop”. Notice that Tk(s) is (k−1)−dimensional
polytope, so that Dk(s, v) is a (k − 2)−dimensional set. From now on we drop the
“tilde” above βk in (3.8), i.e. we identify βk with its extension over Tk(s). Since
we allow s in the interval (0, 2vm], function βk is defined in the k−dimensional
polytope T ∈ IRk

{s ∈ (0, 2vm], 0 < u1 ≤ u2 ≤ . . . ≤ uk−1 ≤ uk, Uk = s} . (3.9)

The domain Tk(s) is nothing but the intersection of T with the plane s =constant.
We now extend the definitions (3.2) and (3.4) of the domains Tk,j(s) to the case
s ∈ (vm, 2vm]. In this case the last inequality appearing in the definitions (3.2) and
(3.4) (which, in the case s ∈ (0, vm], is automatically satisfied) plays an effective
role. We also extend the assumption (3.3): we put

∫

Tk,1(s)

βk (s, u1, . . . , uk−1) dσk−1 = 1, (3.10)

regardless of the size of s in (0, 2vm]. The maps Cj then allow to extend βk over
the whole set Tk(s) also for s ∈ (vm, 2vm).
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Fig. 3.1: The domain D3(s, v) when s is smaller (left) than vm and when s is larger (right)
than vm. The domain D3(s, v) is represented by the (yellow) intersection of the
dashed line with the T3(s) domain. In both figures T3,1 is gray-colored, T3,2 is
cyan-colored, T3,3 is red-colored

4. Further preliminary results

First of all we complete the set of hypotheses (H) by adding the following

(H5) (Normalization). When s ∈ (0, vm], β2 is normalized as follows
∫ s/2

0

β2(s, v) dv = 1, (4.1)

while, for s ∈ (vm, 2vm]

∫ s/2

s−vm

β2(s, u) du = 1. (4.2)

For k = 3, . . . , N , we recall that we have set
∫

Tk,h(s)

βk (s, u1, . . . , uk−1) dσk−1 = 1, ∀h = 1, . . . , k. (4.3)

(H6) (Regularity).
(i) β2(s, v) is continuous in (0, 2vm) × (0, s) and continuously differentiable in

(0, 2vm) for all s ∈ (0, 2vm) and in addition

(a) α2(s)

∣∣∣∣
∂β2(s, ξ)

∂ξ

∣∣∣∣
ξ=s−v

∈ L1(v, vm) for all s ∈ [v, vm] and for all v ∈

(0, vm];



(b)
∣∣∣∣
∂

∂ξ
β2(s, ξ)

∣∣∣∣
ξ=s−v

≤ M1 for a suitable positive constant M1, for all s ∈

[vm, vm + v] and all v ∈ (0, vm].

(ii) For k = 3, . . . , N , we assume βk continuous in
◦

T and continuously differ-
entiable in

◦

T k (s) for all s ∈ (0, 2vm). Moreover

(c) for all k ≥ 2, βk vanishes if the size of the smallest daughter goes to
zero; in particular

lim
v→0

βk

∣∣∣
Dk(s,v)

= 0,

for all k ≥ 3.

(d)

(∫

Dk(s,v)

βk (s, u1, . . . , uk−2, s− v − Uk−2) dσk−2

)∣∣∣∣∣
s=vm+v

< M2 for a

suitable positive constant M2, for all v ∈ (0, vm].

(e) αk(s)

∫

Dk(s,v)

∂βk

∂uk−1
(s, u1, . . . , uk−2, s− v − Uk−2) dσk−2 ∈ L1(v, vm) for

all v ∈ (0, vm).

(f)
(

∂βk

∂uk−1
(s, u1, . . . , uk−1)

) ∣∣∣∣∣
uk−1=s−v−Uk−2

∈ L1 [Dk(s, v)] for all s ∈ (v, vm+

v) and for all v ∈ (0, vm)

(g) (βk (s, u1, . . . , uk−1)) |uk−1=s−v−Uk−2
∈ L1 [∂Dk(s, v)] for all s ∈ (v, vm+v)

and v ∈ (0, vm)
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Fig. 4.1: The domain T3,1(s) (left), the contour level plot (center) and graph (right) of an
example of function β3. In this case s is smaller than vm
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In an extended version of this paper we will show that all the hypotheses we
made are consistent by showing, in particular, an example of β and α function in
the case that both binary and ternary fragmentation modes may occur. Here we
confine to show just a figure of β3 (see figures 4.1 and 4.2).

Concerning the initial data we assume that

fo(v) is continuously differentiable in [0, vm],

fo(v) is non–negative in [0, vm],

fo(0) = fo(vm) = 0.

(4.4)

As in [3] we look for a solution– in a suitable class of regular functions f to be
specified later – to both the original Cauchy problem





∂f

∂t
= φ(t)(Lcf + Lbf + Lsf),

f(v, 0) = fo(v),

(4.5)

and the so–called modified Cauchy problem





∂ψ

∂t
= φ(t)(L+

c ψ + L+
bψ + L+

s ψ),

ψ(v, 0) = fo(v),

(4.6)

where the L+–operators are defined as follows



L+
cψ(v, t) =

∫ v/2

0

τc(w, v − w)ψ
+
(w, t)ψ

+
(v − w, t) dw

− ψ(v, t)

∫ vm−v

0

τc(w, v)|ψ(w, t)| dw, (4.7)

L+
bψ(v, t) =

∫ vm

v

α2(s)β2(s, v)ψ+
(s, t) ds

+
N∑

k=3

∫ vm

v

αk(s)ψ+
(s, t) ds

∫

Dk(s,v)

βk (s, u1, . . . , uk−2, s− v − Uk−2) dσk−2

−
N∑

k=2

αk(v)ψ(v, t), (4.8)

L+
s ψ(v, t) =

∫ vm+v

vm

λ2(s)β2(s, s− v) ds

∫ s/2

s−vm

τc(s− w,w)ψ
+
(w, t)ψ

+
(s− w, t) dw

+
N∑

k=3

[∫ vm+v

vm

λk(s) ds

∫ s/2

s−vm

τc(s− w,w)ψ
+
(w, t)ψ

+
(s− w, t) dw

×

∫

Dk(s,v)

βk (s, u1, . . . , uk−2, s− v − Uk−2) dσk−2

]

− ψ(v, t)

∫ vm

vm−v

τc(v, w)|ψ(w, t)| dw, (4.9)

where, in writing L+
s , we made use of (2.5).

5. Physical consistency of the model

It is worth noticing that in the exceptional case of binary ruptures only (that is
αk = λk = 0 for all k ≥ 3) the model we propose identifies with the one presented
in [2,3].

We now list the main results that we can prove.



Lemma 5.1. (Positiveness) Under assumptions from (H1) to (H6), all bounded
solutions to problem (4.6) are non–negative.

Theorem 5.1. (Volume conservation) Let fo(v) be a (continuous) initial data for
f(v, t). Then, if f(v, t) is a regular solution to equation (2.1), we have

∫ vm

0

vf(v, t) dv =

∫ vm

0

vfo(v) dv. (5.1)

Theorem 5.2. (Uniqueness) Under assumptions from (H1) to (H6), problem (4.5)
has at most one bounded solution.

We now prove that problem (4.6) has a local bounded solution provided that the
initial data go to zero sufficiently fast as v goes to vm. Because of positivity, all
solutions to problem (4.6) with initial data fo(v) also satisfy problem (4.5) with
the same data. Moreover, because of the uniqueness Theorem, to achieve the
existence of solutions to problem (4.5), it suffices to prove it for problem (4.6).

Theorem 5.3. (Local existence) Assume that hypotheses from (H1) to (H6) be sat-
isfied and that fo(v) satisfy both (4.4) and

||α′

k(v)fo(v)|| < +∞, ∀k = 2, . . . , N. (5.2)

Then problem (4.6) has at least one Lipschitz continuous solution in [0, vm]× [0, T )
for a suitable finite T > 0.

All proofs are rather long and need several side lemmas. For this reason they will
be published elsewhere.

6. The key point for proving global existence

The reason for which we need to assume vcrit > 0 find its justification in the very
physics of the problem. Indeed it is well known that droplets of arbitrary small
size cannot be obtained through breakage from larger droplets unless we spend
an infinite power (infinite rotational speed of the impeller). The same request is
needed for τc: indeed it is also very difficult to make two very small droplets coa-
lesce (see figures 6.1 and 6.2 taken from [6]) because of the large energy needed to
drain and break the interposed enveloping protective film. Similarly, if we look at
the probability to get a very small droplet v as the final product of either a break-
age or a scattering event, since very small droplets are very unlike to appear as
a rupture event of a larger parent.
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Fig. 6.1: Coalescence region for drops of equal size: very large and very small droplets do
not coalesce regardless of the mutual angle of approach (αapp = 0◦ means “head-
on collision”, αapp = 90◦ means “grazing droplets”).

This circumstance suggests to assume, in addition to all previous hypotheses
made for αk, also the following

αk ≡ 0, ∀k ≥ 2, ∀v ∈ [0, vcrit], (6.1)

where 0 < vcrit � vm is a (small) threshold value (see Remark 2 at page 5). The
same request is needed for τc: indeed it is also very difficult to make two very
small droplets coalesce (see figures 6.1 and 6.2 taken from [6]) because of the
large energy needed to drain and break the interposed separating film1

Therefore we also assume

τc ≡ 0, in [0, vcrit] × [0, vcrit]. (6.2)

Similarly, considering there is no chance to get a droplet of subcritical size as the
final product of either a breakage or a scattering event, we need to impose

βk ≡ 0, if v ∈ [0, vcrit]. (6.3)

1 One should eventually distinguish between a lower threshold value v
(b)
crit below which

a drop is unbreakable and a similar value v
(c)
crit under which a pair of droplets are unable

to coalesce into a unique object. This further complication has not been considered here
although the mathematics involved does not change very much.
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As a consequence the only physical mechanism remaining active for v ∈ [0, vcrit]
is the loss of small droplets due to coalescence with ones of ordinary size (see
figures 6.1 and 6.2 again).

The additional assumptions (6.1), (6.2) and (6.3) have an immediate consequence
on the behaviour of f in a right neighbourhood of v = 0. Indeed from (2.2), (2.3),
(2.4), we get that

v ∈ [0, vcrit] ⇒





Lcf(v, t) = −f(v, t)

∫ vm−v

vcrit

τc(w, v)f(w, t) dw,

Lbf(v, t) = 0,

Lsf(v, t) = −f(v, t)

∫ vm

vm−v

τc(w, v)f(w, t) dw,

(6.4)

so that

∂f

∂t
= −φ(t)f(v, t)

∫ vm

vcrit

τc(w, v)f(w, t) dw < 0, ∀v ∈ [0, vcrit]. (6.5)

Consequently



f(v, t) ≤ fo(v), (v, t) ∈ [0, vcrit] × [0, T ]. (6.6)

Relation (6.6) implies that, because of the conservation of volume (Theorem 5.1),
also the number of droplets cannot go to infinity because of a possible non–
integrable singularity of f near v = 0. Indeed from

∫ vcrit

0

vf(v, t) dv +

∫ vm

vcrit

vf(v, t) dv ≡ V(t) = V(0), (6.7)

we obtain

vcrit

∫ vm

vcrit

f(v, t) dv ≤ V(0), (6.8)

and also

∫ vcrit

0

vf(v, t) dv ≤

∫ vcrit

0

vfo(v) dv ≤ vcrit

∫ vcrit

0

fo(v) dv. (6.9)

Therefore

N (t) =

∫ vm

0

f(v, t) dv =

∫ vcrit

0

f(v, t) dv +

∫ vm

vcrit

f(v, t) dv

≤

∫ vcrit

0

fo(v) dv +
V(0)

vcrit
≤ N (0) +

V(0)

vcrit
.

(6.10)

Estimate (6.10) for N is a priori, global and independent of any bound for f in
the local time of existence.

Proposition 6.1. Let f be a bounded solution to problem (4.5); then, under as-
sumptions from (H1) to (H6), all products

αk(v)f(v, t), k = 2, . . . , N (6.11)

are bounded for all v ∈ [0, vm].

Now we can go back to (2.1): from (6.10), hypotheses (H1) to (H6) and Lemma 6.1
we easily get that

(
∂f

∂t

)

+

≤ C (1 + {f}t) , (6.12)



where C does not depend on f . We can thus proceed as in [2] to prove that (6.12)
implies the global existence of f . In conclusion we have

Theorem 6.1. (GLOBAL EXISTENCE) If the hypotheses of Theorem 5.3 are com-
pleted with (6.1), (6.2) and (6.3), then the solution to problem (4.5) given by Theo-
rem 5.3 can be extended through t = T over any finite time interval with the same
regularity properties.
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