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What is an emulsion?

Nature of emulsions

An emulsion is a �ne dispersion of a guest liquid L1 (also called

dispersed phase), into a host liquid L2 (also called

continuous phase), immiscible with L1.

We could assume %1 < %2 (although the opposite inequality is

also possible): this means that we think of the guest as oil and

of the host as water. This is also called sometimes an

oil-in-water emulsion, as opposite to the other case called

instead a water-in-oil emulsion.
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What is an emulsion?

Everyday life examples

(a) water-in-oil: in butter and
margarine, a continuous lipid
phase surrounds droplets of wa-
ter

(b) oil-in- wa-
ter: mayon-
naise is stabi-
lized with egg
yolk lecithin.

Chemical substances that stabilize an emulsion are called

emulsi�ers, or surfactants. Example are proteins,

phospholipids, and similar low-molecular-weight substances.
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What is an emulsion?

Everyday life examples

Examples of food emulsi�ers are egg yolk, in which the main

emulsifying agent is the phospholipid lecithin, and mustard, in

which a variety of chemicals in the mucilage surrounding the

seed hull act as emulsi�ers.

Other examples of industrially important emulsions: many

medical preparations, cosmetics, some complex foods,

most paints, the photosensitive side of a photographic

�lm, a cutting �uid for metalworking.
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What is an emulsion?

Liquid emulsions and their static stability

Emulsions are part of a more general class of two-phase systems

of matter called colloids. Although the terms colloid and

emulsion are sometimes used interchangeably, the word emulsion

tends to imply that the dispersed and continuous phases are

both liquids. We refer only to liquid emulsions.

The problem of the static stability of perfectly homogenized

emulsions is central in all industrial applications in the sense

that, once prepared, one wishes that the emulsion

remains perfectly close to its initial state as long as

possible.

Unfortunatley, unless some chemical surfactant is added to the

emulsion, homogenized systems show a more or less strong

tendency to separate with time! The emulsion breaks down.
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What is an emulsion?

Sources of instability

Density di�erence between the two phases implies buoyancy

and is a major source of instability: lighter (heavier) drops of

the dispersed phase to rise (settle) throughout the container.

Coalescence: two drops merge to form a single one. Obviously

coalescence helps buoyancy dramatically.

Flocculation (aggregation of drops which do not coalesce)

helps separation even more dramatically since �ocs rise (or fall)

more rapidly than separated drops.

Di�usion play a less signi�cant role. However, its main e�ect is

to prevent the formation of shocks.

Ostwald ripening is a further process which causes an

emulsion to separate.
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What is an emulsion?

Coalescence and creaming

We know that, if not chemically treated, emulsions are

unstable and do not form spontaneously. Here we will not

consider the presence of surfactants.

A very simple example of an unstable emulsion is homemade

salad dressing made by mixing oil and vinegar. The two phases

separate quickly unless shaken repeatedly. The phases

separate when smaller droplets recombine to form

larger ones by coalescence.

Fluid emulsions may also su�er from creaming: a layer of

densely packed bubbles forms at the top (or bottom) of the

container where the volume fraction of the continuous phase is

negligible and droplets are prectically at rest.
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What is an emulsion?

Visually...

(c) coalescence

(d) Ostwald ripening
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What is an emulsion?

Schematic picture

See http://www.pharmpedia.com/Emulsion for a deeper

discussion about problems related to preparation and stability

vs. time of emulsions for example in pharmacology and food

industry.

http://www.pharmpedia.com/Emulsion


Creaming and breaking of liquid emulsions: a free boundary problem 11 / 48

The mathematical problem

Geometry

z = H

z = h(t)

z

z = 0

S = 1

S < 1

The emulsion �lls completely a (cylindrical) container with

height H and cross sectional area A .

The axis z of the cylinder is parallel to the gravity vector and

directed upward.
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The mathematical problem

Notations

We introduce the oil volume fraction S and the volumetric

distribution of oil drops n per unit volume.

The whole problem will be treated in one spatial dimension,

that is we allow n to depend, besides on the volume v of the

drops and on time t, only on the spatial coordinate z. Thus
S = S(z, t) and n = n(z, v, t).
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The mathematical problem

Concentration and drop number

Clearly

S(z, t) =

∫ vmax

0
vn(z, v, t) d v. (1)

S is nondimensional, while [n] = L−6. The drop density is

de�ned by

N(z, t) =

∫ vmax

0
n(z, v, t) d v, ([N ] = L−3) (2)

Moreover, since S(z, t)A d z is the amount of oil in the

elementary horizontal layer centered in z at time t, then

Φ(t) =

∫ H

0
S(z, t)A d z =

∫ H

0

∫ vmax

0
vn(z, v, t)A d v d z (3)

provides at t = 0 the so-called holdup that is the total volume

of oil dispersed in water. For t > 0 it includes also the separated

phase.
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The mathematical problem

Volume conservation

We notice that any meaningful mathematical model has to

guarantee that both the boundedness of S and volume

conservation (4).

Obviously, since we are not considering any chemical reaction,

we should have

Φ(t) = constant = Φ(0). (4)

We shall see that this is actually true (under simple and

physically obvious conditions).
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The mathematical problem

Drop volume upper bound

Without any local stress applied to the �uid, there is no active

mechanism to control the growth of drops driven by coalescence

besides the constraint of total volume of dispersed phase.

Thus there is an upper limit vmax for drop size (the largest

drop can never be larger than the total amount of dispersed

phase).

From this point of view the mathematics is de�nitely easier (we

deal with a �nite interval instead of an in�nite one)
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The mathematical problem

Balance equations

The following balance equation incorporates the e�ects of

buoyancy, di�usion and coalescence.

∂tn(z, v, t) + ∂zj(z, v, t) = Lc[S;n] (5)

where

j(z, v, t) := V (S(z, t), v, t)n(z, v, t)−D(S(z, t), v)∂zn(z, v, t) (6)

is the �ux and V , D are the upward velocity of a drop of

volume v due to the Archimedean force and the di�usivity

coe�cient of drops in the bulk, respectively and Lc[S;n] is the
coalescence operator.
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The mathematical problem

Coalescence operator

Lc[S;n] =
1

2

∫ v

0
n(z, v − w, t)n(z, w, t)Q(S(z, t); v − w,w) dw

−n(z, v, t)

∫ vmax−v

0
n(z, w, t)Q(S(z, t); v, w) dw

(7)

Physical meaning: (7) represents the di�erence between the

production rate of drops of volume v due to coalescence of a

drop of volume v − w with one of volume w and the loss rate of

drops of volume v due to coalescence with other drops in the

allowable range.

The coalescence kernel Q is a function with suitable regularity

properties that will be speci�ed later.
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The mathematical problem

Some general aspects and remarks

Notice that v has the role of a parameter in (5). Some

Authors let it vary in a discrete set.

The coalescence operator Lc, for Q symmetric and not

depending explicitly on S, is known to satisfy the

fundamental volume preserving relation∫ vmax

0
vLc[n] d v = 0. (8)

under very mild assumptions on Q. It is very easy to see

that for Q depending explicitly on S the proof proceeds

exactly the same way.
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The mathematical problem

Some general aspects and remarks

Bearing (1) and (8) into account, integrate (5) with respect

to v over (0, vmax). It follows that

∂tS + ∂zJ(z, t) = 0. (9)

where

J(z, t) :=

∫ vmax

0
vj(z, v, t) d v

(which can be interpreted as volume �ux)

It is not generally true that equation (9) reduces to a pure

equation for S. However, if both V and D do not

depend on v, we immediately get the simpli�ed

form

∂tS −D(S) ∂zzS

+S V ′(S, t) ∂zS + V (S, t) ∂zS −D′(S) (∂zS)2 = 0
(10)
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Which boundary conditions?

The free boundary

We may locate the free boundary z = h(t) through the

condition limz→h+(t) S(z, t) = Scrit where Scrit ≈ 1 corresponds,

e�ectively, to the saturation of oil at the onset of the �cream�.

From the practical point of view we can take Scrit = 1, without
generating any important perturbation.

Thus the mass

balance on the free boundary is

ḣ [Scrit − S(h(t), t)] = −J(h(t), t)

which is nothing but the Rankine-Hugoniot condition for

equation (5) (or (9)). We need one more condition on the free

boundary, which is the typical out�ow condition

[∂zn(z, v, t)]z=h(t) = 0.

The natural condition at the bottom surface z = 0 is

j(0, v, t) = 0, t > 0.
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Which boundary conditions?
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Which boundary conditions?

Mathematical model

∂tn(z, v, t) + ∂zj(z, v, t) = Lc[S;n] (11)

n(z, v, 0) = n0(z, v) (12)

S(z, 0) =

∫ vmax

0
vn0(z, v) d v = S0(z) < Scrit (13)

j(0, v, t) = 0 (14)

[∂zn(z, v, t)]z=h(t) = 0 (15)

ḣ [Scrit − S(h(t), t)] = −J(h(t), t) (16)

Condition [∂zn(z, v, t)]z=h(t) = 0 implies that (16) simply

reduces to

ḣ [Scrit − S(h(t), t)] = −
∫ vmax

0
vV (S(h(t), t), v)n(h(t), v, t) d v.

(17)
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Physical consistency of the model

Volume conservation

Lemma 1

Let us suppose that Q(S(z, t), v, w) is a non-negative smooth

function, symmetric w.r.t. the pair (v, w). Then∫ H

0

(∫ vmax

0
vLc[S;n] d v

)
d z = 0, for all t ≥ 0. (18)

Lemma 2

Let us assume S(H, t) = 1, and D(1, v) = V (1, v) = 0. Then∫ H

0

(∫ vmax

0
v∂zj(z, v, t) d v

)
d z = 0, for all t ≥ 0.
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Physical consistency of the model

Theorem 3

Under the hypotheses of Lemmas 1 and 2 we have that

Φ(t) =constant (i.e. volume is conserved).

Proof.

d

d t
Φ(t) =

∫ H

0

∫ vmax

0
v∂tn(z, v, t) d v d z

=

∫ H

0

(∫ vmax

0
vLc[S;n] d v

)
d z −

∫ H

0

(∫ vmax

0
v∂zj(z, v, t) d v

)
d z
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Physical consistency of the model

Positivity of n (and S)

Consider the following modi�ed version of equation (11):

∂tn(z, v, t) + ∂zj(z, v, t) = L+
c [S, n] (19)

where L+
c [S, n] is the following modi�ed version of the

coalescence operator

1

2

∫ v

0
n+(z, v − w, t)n+(z, w, t)Q(S(z, t); v − w,w) dw

−n(z, v, t)

∫ vmax−v

0
|n(z, w, t)|Q(S(z, t); v, w) dw

and n+ (n−) denotes the positive (negative) part of n
(= n+ + n−).



Creaming and breaking of liquid emulsions: a free boundary problem 26 / 48

Physical consistency of the model

Positivity of n (and S)

(19), coupled with (12)-(15) and (16) replaced with

dh(t)

d t
[Scrit − S(h(t), t)] = −

∫ vmax

0
v
(
n+V

)
z=h(t)

d v (20)

has non-negative solutions provided that
n(z, v, 0) ≥ 0
V ≤M < +∞
D ≥ m > 0

(21)

where m,M are given constants (notice that the hypothesis V
bounded is perfectly consistent with the fact that drop volume

cannot exceed a �nite value).
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Physical consistency of the model

Positivity of n (and S)

Evidently solutions of the original initial boundary value

problem and the modi�ed one identify over non-negative

solutions. Therefore, provided a uniqueness theorem holds, a

non-negative initial data guarantees the positiveness of the

regular solution of problem (11)-(15).

Theorem 4

Under hypotheses (21) and boundary conditions

(12)-(15), all regular solutions of the original

free-boundary problem are non-negative.
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Physical consistency of the model

Sketch of the proof

Multiply (11) by n− and integrate over

Ω t̂ :=
{

(z, t) | z ∈ (0, h(t)), t ∈ (0, t̂)
}

to get

1

2

∫
Ω t̂

∂t(n
−)2 dσ +

∫
Ω t̂

∂z(n
−j) dσ −

∫
Ω t̂

j∂z(n
−) dσ

=

∫
Ω t̂

n−L+
c [S;n], (dσ := d z d t).

Then use n−L+[S, n] ≤ 0 and n(z, v, 0) = n0(z, v) ≥ 0 be obtain

1

2

∫ h(t̂)

0
(n−)2 d z −

∫ t̂

0
(n−(h(t)))2h′(t) d t

+

∫
Ω t̂

∂z(n
−j) dσ −

∫
Ω t̂

j∂z(n
−) dσ ≤ 0
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Physical consistency of the model

Sketch of the proof

Then use boundary conditions (20) to prove that

−
∫ t̂

0
(n−(h(t)))2

(
− 1

Scrit − S(h(t), t)

∫ vmax

0
v
(
n+V

)
z=h(t)

d v

)
d t

is non-negative. The third term is non-negative too since,

because of (14), it reduces to∫ t̂

0

(
V (n−)2

)
z=h(t)

d t

Therefore we remain with the following

1

2

∫ h(t̂)

0
(n−)2 d z ≤

∫
Ω t̂

j∂z(n
−) dσ =

∫
Ω t̂

(V n−D∂zn) ∂z(n
−) dσ
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Physical consistency of the model

Sketch of the proof

Hypotheses (21) and

n∂z(n
−) = n−∂z(n

−), ∂zn∂z(n
−) = ∂zn

−∂z(n
−)

imply

1

2

∫ h(t̂)

0
(n−)2 d z +m

∫
Ωt̂

(
∂z(n

−)
)2

dσ ≤M
∫

Ω t̂

n−∂z(n
−) dσ

Finally use classical Young's to get, for arbitrary ε > 0 and

suitableC(M, ε) > 0∫ h(t̂)

0
(n−)2 d z ≤ C(M, ε)

∫
Ω t̂

(n−)2 dσ
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Physical consistency of the model

Sketch of the proof

Being

y(t) :=

∫ h(t)

0
(n−)2 d z,

we have

y(t̂) ≤ C(M, ε)

∫ t̂

0
y(τ) d τ

for any t̂ > 0, which in turn implies that n− vanishes a.e. in Ω t̂.
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Physical consistency of the model

On the behaviour of small drops

At rest no breackage is possible to contrast coalescence.

Therefore one expects that if the dispersion has no drops below

a given threshold vmin at time t = 0, then no drops will ever be

observed in that range for t > 0. This of course is false if the
Ostwald ripening is taken into account, which however is not

our case.

Indeed we prove the following

Theorem 5

Let n be a regular solution of problem (11)-(15) such

that n(z, v, 0) is equal to zero for all v ∈ (0, vmin) and for

all z ∈ [0, h(0)]. Let also Q,D, V be smooth bounded

functions. Then n(z, v, t) remains equal to zero for

v ∈ (0, vmin) for all z ∈ [0, h(t)] and for all t > 0.
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Physical consistency of the model

Sketch of the proof

Multiply equation (5) by n and integrate over Ω t̂. Boundary

conditions (14), (15) and the hypothesis v ∈ (0, vmin) imply that∫
Ω t̂

n∂zj dσ = −
∫

Ω t̂

j∂zn dσ +

∫ t̂

0
(nj)|h(t)

0

= −
∫

Ω t̂

j∂zn dσ +

∫ t̂

0
(nj)z=h(t) d t

= −
∫

Ω t̂

j∂zn dσ +

∫ t̂

0
(V n2)z=h(t) d t;

(22)

therefore (being n0(z, v) = 0 for v ∈ (0, vmin)) we get

1

2

∫
Ω
n2(z, v, t̂) d z +

∫ t̂

0

(
V n2

)
z=h(t)

d t−
∫

Ω t̂

V n∂zn dσ

+

∫
Ω t̂

D (∂zn)2 dσ =

∫
Ω t̂

nLc[S;n] dσ

(23)
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Physical consistency of the model

Sketch of the proof

Dropping the second term on the l.h.s. and a standard use of

Young's inequality then produces

1

2

∫
Ω
n2(z, v, t̂) d z +

(
m− M

2
ε

)∫
Ω t̂

(∂zn)2 dσ

≤ M

2ε

∫
Ω t̂

n2 dσ +

∫
Ω t̂

nLc[S;n] dσ.
(24)

The coalescence source term can be estimated as follows∫
Ω t̂

nLc[S;n] dσ ≤ K

2

∫
Ω t̂

n

(∫ v

0
n2 dw

)
dσ

where K is an upper bound for Q.
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Physical consistency of the model

Sketch of the proof

Thus, for a su�ciently small ε > 0, (24) rewrites

1

2

∫
Ω
n2(z, v, t̂) d z ≤ M

2ε

∫
Ω t̂

n2 dσ +
K

4

∫
Ω t̂

n2 dσ

+
K

4

∫
Ω t̂

(∫ v

0
n2(z, w, t) dw

)2

dσ

(25)

The last integral on the r.h.s. can be increased substituting v
with vmin. Then if we set

y(t̂) :=

∫
Ω

(∫ vmin

0
n2(z, v, t̂) d v

)
d z

and integrate (25) over (0, vmin) we get
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Physical consistency of the model

Sketch of the proof

y(t̂) ≤
(
M

2ε
+
K

4

)∫ t̂

0
y(t) d t+

K

4
vmin

∫ t̂

0
y2(t) d t. (26)

Notice now that, because of the hypotheses, we have y(0) ≡ 0
and that y(t̂) ≤ s(t̂) for all t̂ > 0 where s(t̂) solves the integral
equation

s(t̂) =

(
M

2ε
+
K

4

)∫ t̂

0
s(t) d t+

K

4
vmin

∫ t̂

0
s2(t) d t. (27)

Also notice that s(0) = 0; then (27) has s(t) ≡ 0 as unique

solution. In conclusion y(t̂) ≤ 0 for all t̂ > 0, i.e. n vanishes

identically for all z, t and v ∈ (0, vmin).
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A priori estimates

A priori estimates for S

Theorem 6

Maximum principle and Hopf's boundary point lemma

imply that

|S| ≤ maxS(z, 0) < Scrit, 0 ≥ dh

d t
≥ −M (28)

Theorem 7

For D and V independent of v, the following energy-type

estimate holds for S∫ h(t)

0
S2(z, t) d z +

∫
Ωt

(∂zS)2 dσ ≤ C1(M, ε, Scrit, T ) (29)
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A priori estimates

Some Hölder spaces

We denote with ||f || the standard supremum norm for f
continuous in ΩT , with C(ΩT ) the corresponding Banach space,

with |f |(α) the norm

||f ||+ sup
x′ 6=x′′

|f(x′, t)− f(x′′, t)|
|x′ − x′′|α

+ sup
t′ 6=t′′

|f(x, t′)− f(x, t′′)|
|t′ − t′′|α/2

for f ∈ C(ΩT ), α ∈ (0, 1), and with Hα,α/2(S ) the
corresponding Banach space with |f |(α) bounded.
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A priori estimates

Some Hölder spaces

The spaces H1+α,1/2+α/2(ΩT ) and H2+α,1+α/2(ΩT ) are de�ned
accordingly with bounded norms

|f |(1+α) := ||f ||+|∂xf |(α), |f |(2+α) := ||f ||+|∂tf |(α)+|∂xxf |(α)

respectively. For continuous functions g of a single real variable

over an open interval I ⊂ R we de�ne the Hölder spaces

Hα/2(I), H1+α/2(I) etc. and their related norms quite similarly.
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A priori estimates

A priori estimates for S in Hölder spaces

We can prove the following result:

Theorem 8

For D and V independent of v, we get

|S|(α) ≤ C,
∣∣∣∣dhd t

∣∣∣∣(α/2)

≤ C

in ΩT and [0, T ] respectively, for a suitable positive

constant C, an arbitrary T > 0 and a suitable α ∈ (0, 1).

The proof is based on the rectifying transformation y = z/h(t)
and suitable estimates by Ladyzenskaja et al. for quasi-linear

parabolic equations
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A priori estimates

A priori estimates for S in Hölder spaces

By means of the Kircho�'s transformation Ŝ :=

∫ S

0
D(η) d η

applied to (10) and the rectifying transformation plus a classical

bootstrap argument we can also prove

Theorem 9

For V and S independent of v we have

|h|(2+β/2) ≤ C (30)

|S|(2+β) ≤ C (31)

in [0, T ] and ΩT respectively, where β is the order of

Hölder continuity of the second derivative of the initial

data.
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A priori estimates

A priori estimates for n

It can be proved that∫ vmax

0
Lc[S;n] d v ≤ 0 (32)

Then N (the local number of drops per unit volume) obeys

∂tN−[D(S)] ∂zzN+
[
V (S)−D′(S)∂zS

]
∂zN+

[
V ′(S)∂zS

]
N ≤ 0
(33)

If we take initial values n(v, z, 0) and N(z, 0) that are bounded,
then

0 ≤ N ≤ C exp(λt) ≤ C exp(λT ) := G(T ) in Ωt (34)

for C and λ su�ciently large.
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A priori estimates

A priori estimates for n

For bounded Q and because of (34),

Lcn ≤ G(T ) maxv∈(0,vmax) n(z, v, t). This implies that the

function

n∗(t) := max
z∈(0,h(0))
v∈(0,vmax)

n(v, z, 0) exp[(G(T ) + µ)t]

is a supersolution of equation (5) provided that the upper

bound M of Q is su�ciently large and µ is chosen conveniently.

In conclusion for any solution of (5) we have

0 ≤ n(z, v, t) ≤ max
z∈(0,h(0))
v∈(0,vmax)

n(v, z, 0) exp[(G(T ) + µ)T ] (35)
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A priori estimates

Higher order estimates for n

With a combined and subtle use of the rectifying transformation

and some results by Ladyzenskaja et al. on quasi-linear

parabolic equations we can prove the following further estimates

|n|(2+γ) ≤ C(v) where γ is the Hölder order of continuity of

∂zzn
∗(z, v, 0).

∂vn ∈ L∞

|∂vn| ≤ C(v)

All estimates obtained so far, joined with a local existence

theorem (still to be proved), do imply the global existence and

uniqueness of a solution S, h to the original problem.
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Existence and uniqueness

Existence and uniqueness

We use the technique of constructing a suitable contraction

mapping. De�ne the space

H α
T := H1+α,(1+α)/2

(
RT
)
×H1+α/2 ([0, T ]) ,

||(ψ, χ)||(α)
T = |ψ|(1+α)

RT
+ |χ|(1+α/2)

[0,T ] its norm and denote with E

the set of solutions of equation (36) with the relevant

initial-boundary conditions (37). Finally de�ne

U α
T :=

{
(ω, h) ∈H α

T s.t. ||(ω, h)||(α)
T ≤M,ω ∈ E

}
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Existence and uniqueness

Existence and uniqueness

Now apply again the rectifying transformation y = z/h(t) and
set ω := Ŝ(yh(t), t): equation for S trasforms into

∂tω −
[
D

h2

]
∂yyω +

[
V

h
+
V ′F

h
− yh′

h

]
∂yω = 0 (36)

We remark explicitly that all coe�cients in equation (36) have

bounded Hölder norms and will therefore considered as known.

The initial-boundary conditions to be appended to (36) are

ω =

∫ S0(yh(0))

0
D(η) d η for t = 0

∂yω = 0 for y = 1

−∂yω + hV (F (ω))F (ω) = 0 for y = 0.

(37)
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Existence and uniqueness

Existence and uniqueness

We now refer to equation (36): de�ne the map

T : (ω, h) 7→ (ω̂, ĥ)

where ω̂ veri�es equation (36) with the terms in square brackets

recalculated using the pair (ω, h) and ĥ satis�es equation

ĥ′ = V (Ŝ)
Ŝ

Scrit − Ŝ(h(t), t)
(38)

Theorem 10

Provided that T � 1 and M � 1, the operator T maps

U α
T into itself, i. e. T (U α

T ) ⊆ U α
T . Moreover for a

suitable choice of parameters, T is a contraction in U α
T
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Existence and uniqueness

Existence and uniqueness

The local existence theorem for n is still based upon the

construction of a suitable contraction mapping de�ned over the

space

K := {n∗(y, v, t) s.t. n ∈ L∞(AT ), n∗(y, v, 0) = n∗0(y, v),

||n||n∈L∞(AT ) ≤M }

where AT := [0, 1]× [0, vmax]× [0, T ]. Consider the map

F : n 7→ n̂

where n̂ solves equation (5) with Lc at the r.h.s. evaluated in n.

Theorem 11

For a suitable choice of parameters, F is a contraction in

K .
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