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The project

Aims of the project

To setup a �full �eld� mathematical model for reasonable
and responsible predictions about the long-time behavior of
geothermal reservoirs in Tuscany (Italy) under standard
industrial energy production regimes
To check the environmental impact of deep geothermal
�uids extraction process upon phreatic super�cial water
layers
The �nal product should be an easy-to-use package for
people in government supervising structures (because
energy resources remain a state property also if a private
society carry on the necessary technology)
The underlying numerical code must interface with a G.I.S.
database carrying all �eld historical data (geological,
extraction, production and so on) to generate up-to-date
reliable simulations
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The project

Is this an easy task?

No, it's not!
A geothermal reservoir is a very complex physical system in
which chemistry, geology, thermodynamics and the physics of
�uids in porous-fractured media are all combined in a highly
nonlinear way.
Furthermore data access (from 1 to 4 km deep in the Earth
crust) is very poor.
Let's take a look to geothermal energy from a general

point of view.
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Geothermal energy

Earth internal structure
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Geothermal energy

Heat �ux sources

Total heat power of the earth is evaluated to be 42 TW
(4.2× 1013 J/s). Where does all this heat come from?

There are several sources of heat inside Earth.

The decay of naturally radioactive elements within the mantle
(Potassium-40, Uranium-238, Uranium-235, and Thorium-232
are the most important) is commonly believed to be the leading
source (up to 80 % of total).

For example Thorium-232 has a half-live time of 14.1× 109

years Uranium-238 of 4.46× 109 years.

Since the Earth is estimated to be 4.6× 109 years old these
nuclei have not had time to completely decay away since the
formation of the Earth.
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Geothermal energy

The heat �ux is not the same everywhere!

This depends on the fact that along tectonic plates boundaries
and subduction zones, the Earth crust is thinner.
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Geothermal energy

Geothermal resource (from Greek Gêo =Earth and
Thermòs=heat)

The Earth heat power cannot be used directly: water is the
�carrier�medium. A geothermal resource is a natural
underground basin rich of overheated �uids (water) which can
be extracted to economic or social purposes.

(a) Geysers, Atacama desert (b) Geysers, Island
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Geothermal energy

Geothermal gradient

The standard geothermal gradient is about 2÷ 3 ◦C/100m.

An economically signi�cant geothermal gradient should be
≥ 7 ◦C/100m.

Close to the Earth surface geothermal energy is su�cient to
bring water to the boiling point. Then vapor strength can move
power generators.

This kind of energy is renewable (essentially in�nite on the
human time scale).
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Geothermal energy

Some history

Geothermal energy at low enthalpy (thermal springs) has
been known for centuries and used by animals and humans.

Geothermal energy at high enthalpy is relatively recent:
4 July 1904 Prince Piero Ginori Conti (son in law of Earl
Florestano de Larderel) tested the �rst geothermal power
generator at the Larderello dry steam �eld in Italy
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Geothermal energy

Some history

1911: the world's �rst geothermal power plant (250 KW) was
built in the Devil's Valley of Larderello.

This remained the world's only industrial producer of
geothermal energy until 1958 when New Zealand built a plant of
its own in Wirakei

Actually there geothermal power plants in 24 countries
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Geothermal energy

Geothermal power in the world

Power generation (24 countries worldwide) through high
enthalpy plants: more than 10 GW (power capacity).

Direct use (heating, thermal springs, enhanced growing,...):
more than 28 GW

Reduced environmental impact: a reduction of 118×106 tons of
CO2 per year of athmosferic pollution
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Geothermal energy

Main geothermal basins around the World
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Geothermal energy

Geothermal energy production
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Heat �ux in Italy

Heat �ux in Italy

(c) (d)
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Geothermal areas in Tuscany

Interested areas in Tuscany



The MAC-GEO project 18 / 84

Geothermal areas in Tuscany

Geothermal activity in Tuscany

(e) Power generation by geother-
mal energy (high enthalpy) covers
more than 28 % of the regional ne-
cessities (2 % of the national ones)
with ≈ 800 MW capacity

(f) Low enthalpy production is
also important for human needs
(house heating, �sh and vegetable
product arti�cial growing-up, ...)
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Geothermal areas in Tuscany

How it works

Magmatic intrusion is the deep (but not too deep) heat
source. To exploit this energy source we have to be able to
bring heat to the surface.

Above the heat source is the reservoir: fractured-porous
rocks where �uids (liquid/vapor) at high temperature and
pressure may circulate.

The reservoir need to be capped by an almost impermeable
layer (clay) to prevent �uids and heat losses.

The systems behaves like a natural �caldera�(pressure
boiling pan)

If exploited, the basin needs to be recharged either by
meteoric waters (rain) or arti�cial re-injection
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Geothermal areas in Tuscany

General structure of a geothermal basin
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Geothermal areas in Tuscany

Larderello basin cross-sections
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Geothermal areas in Tuscany

Physical characteristics

The Larderello-Travale reservoir produces thermal �uids at high
enthalpy (T = 150÷ 260◦C and P = 2÷ 15 bar). These �uids
are largely overheated vapor and minor quantities (15 % in wt.)
of gas (essentially CO2) In the deep reservoir Tmax ≈ 350◦C and
Pmax (of vapor) ≈ 70 bar. This is a typical vapor dominated
basin.

Unlike Larderello-Travale, the Mount Amiata reservoir is a water
dominated basin. At top well geothermal �uids are two-phase
mixtures (water and vapor) at P ≈ 20 bar e T ≈ 130◦ ÷ 190◦C
with very high salinity (10÷ 12 g/l) In thew deep reservoir the
(hydrostatic) pressure P ≈ 200÷ 250 bar and T ≈ 300÷ 360◦C
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Geothermal areas in Tuscany

Geometry

Depth: 10 Km

Width:

Larderello: 50 Km
Amiata: 40 Km

Length:

Larderello: 60 Km
Amiata: 50 Km
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Geothermal areas in Tuscany

�Vapour dominated� schematic picture
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Mathematical problem

Thermodynamics

Crucial hypothesis: local thermodynamical equilibrium. This
assumption is assumed also near any extraction well.

Thermal equilibrium is of course not true on the full scale of the
reservoir (temperature and pressure vary signi�cantly over the
entire geothermal basin).
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Mathematical problem

Available geophysical data

Deep rocks data like permeability and porosity are scarcely
available. This situation suggests two possible modeling
scenarios

1 Continuum-equivalent model, that is:

(a) Constant porosity
(b) Isotropic constant absolute permeability, that

is the permeability tensor is

K = K Id,

with K constant and Id identity matrix.

2 Double permeability and porosity model (in progress)

The former is obviously easier but the latter is closer to reality.
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Mathematical problem

Multiphase multicomponent model

φ porosity
i = 1, ..., N component index
α = l, g phase index
Xα
i mass fraction

ρα absolute α�phase density
ραi = ραXα

i i�component density in phase α
Sα α�phase saturation
ραi S

αφ i�component density in phase α in the porous medium

P l partial pressure of liquid phase
P g partial pressure of gas phase

The geothermal �uid is a mixture of H2O in liquid and vapor
phase with a non negligible presence of Non-Condensible Gases
(essentially CO2). These gases may be dissolved in the liquid
phase.
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Mathematical problem

Physical hypotheses

1 Rocks are the porous matrix that hosts the geothermal
�uid which is a mixture of

a liquid phase (l);
a gas phase (g).

therefore

1 =

N∑
i=1

Xα
i , per α = l, g. (1)

2 the porous medium is saturated, that is it does not host dry
air: this means

Sl + Sg = 1. (2)

3 the two phases are in thermodynamical equilibrium
4 The �uid �ux is due only to convection (di�usivity is

negligible)
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Mathematical problem

Mass and energy balance

For each component i in phase α we write

∂

∂t
(ραXα

i S
αφ)+∇·(ραXα

i S
αφvαi ) =

Mα
i

Mtot

1

Vext
Ψext+(ραXα

i S
αφ) Γα,

(3)
with

vαi is the velocity of component i in phase α.

Ψext is the total mass of �uid extracted (or injected) in the
unit time.

Vext is the total volume of the extraction or injection zone

Γα is the source/sink term due to the change of phase
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Mathematical problem

For a �xed component i, we sum over phases α = l, g equations
(3): ∑

α=l,g

(ραXα
i S

αφ) Γα = 0,

De�ne the parent density to get

ρ
(0)
i =

∑
α=l,g

ραXα
i S

α, (4)

∂

∂t

(
ρ

(0)
i φ

)
+∇ ·

∑
α=l,g

ραXα
i S

αφvαi

 =
ρ

(0)
i∑
j ρ

(0)
j

1

Vext
Ψext. (5)
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Mathematical problem

Some basic assumptions

1 There are only two pressures : P l, pressure of phase l, P g,
pressure of phase g.

2 The two pressures are related through the capillary
pressure:

Pc = Pc(S
l) = P g − P l (6)

3 Speci�c discharge of phase α is given by Darcy's law:

qα = φSαvα = −Kkrα
µα

(∇Pα + ραg) , where K, is the

tensor of absolute permeability of the medium, krelα the
relative permeability of phase α and µα is its viscosity.

4 in each phase all components move with the same velocity

vαi = vα, for all i = 1, ..N

5 Pα and Sα are related via a constitutive relationship
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Mathematical problem

Mass and energy balance equation for the ith�component

The above assumptions imply

∂

∂t

(
ρ

(0)
i φ

)
−∇·

∑
α=l,g

ραXα
i K

krα
µα

(∇Pα + ραg)

 =
ρ

(0)
i∑
j ρ

(0)
j

1

Vext
Ψext.

(7)

∂

∂t

[
(1− φ)ρrcrT + φ

∑
α

ραSαuα

]
+
∑
α

∇·(hαqα) = ∇·[λmix∇T ] ,

(8)
where

λmix = (1− φ)λr + φ
∑
α

λαS
α hα =

∑
i

Xα
i h

α
i

u is the internal energy per unit mass and h the enthalpy.
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Mathematical problem

Closure of the system

1 number of unknowns: T , Pα, ρ
(0)
i , ρα, Sα, Xα

i , with
α = l, g and i = 1, .., N . Thus (3N + 7) unknowns.

2 number of eqs: actually we have only N eqs (mass
balance, 7) plus the energy balance (8). Thus (N + 1) eqs.

3 constraints and relations: that for mass fractions (eqs.
1) and that for saturations (eq. 2). Additionally there is
the capillary relation (eq. 6) plus the parent density
de�nition (eq. 4) which relates density and saturations.

The total number of available eqs. is (2N + 6).

We still have (N + 1) eqs. missing: these are provided

by the thermodynamics (phase equilibrium conditions)
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Mathematical problem

Phase equilibrium eqs.

We need a general EOS which, by means of the compressibility
factor,

Zα =
Pαvα

RT
, (9)

writes
F(Zg) = 0, (10)

where vα is the molar volume (basically 1/ρα), and F is a
known (generally cubic) function.
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Mathematical problem

Then, following Helmholtz, we de�ne the chemical potential

µi =
∂

∂ρi
F (ρi, T ),

F being the Helmholtz free energy, and introduce the
Gibbs-Duhem eq.:

−Pα = F −
∑
i

ραi µ
α
i .

By de�nition, phase equilibrium holds in this case (liquid-gas) if
the following set of algebraic eqs. is satis�ed

µli = µgi , (i = 1, .., N) (11)

Eq. 10 and eq. 11 provide the set of N + 1 eqs. missing.
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Mathematical problem

Boundary conditions

At the basin bottom: mass �ux equal to zero and given
temperature (with constant gradient inside the basin)

At the basin top: depend on the choice of the geometry (if we
include or not the super�cial (very low permeable) layer.

if included: atmospheric pressure and standard temperature

if not included: mass �ux equal to zero and given temperature

(possibly a mixture of these two situations)

Lateral conditions: the physical boundary of the basin is
really uncertain. Thus we imply given temperature (from
standard geothermal gradient) and hydrostatic pressure
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Mathematical problem

Example: a very simpli�ed geometry
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Mathematical problem

Simpli�ed boundary conditions at z = 0

T |z=0 = Tb, with Tb uniform.

ql|z=0 · ez = 0, ⇔ ∂Pl
∂z

∣∣∣∣
z=0

= −ρlg,

qg|z=0 · ez = 0, ⇔ ∂Pg
∂z

∣∣∣∣
z=0

= −ρgg.
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Mathematical problem

Summarized boundary conditions at z = L

T |z=L = Ttop, with Ttop uniform.

(Ttop < Tb)

ql|z=L · ez = 0, ⇔ ∂Pl
∂z

∣∣∣∣
z=L

= −ρlg,

qg|z=L · ez = 0, ⇔ ∂Pg
∂z

∣∣∣∣
z=L

= −ρgg.
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Mathematical problem

Summarized boundary conditions

At Γlat (lateral boundary)

T |Γlat = Tb −
Tb − Ttop

L
z.

P |Γlat = P (z), with P (z) solution in [0, L] of the following
b.v.p. 

∂

∂z

{
φ (K)zz

[
Sl
krl (Sl)

µl

(
∂Pl
∂z

+ ρlg

)
+ (1− Sl)

krg (1− Sl)
µg

(
∂Pg
∂z

+ ρgg

)]}
= 0,

P (0) = Pb,

P (L) = Ptop,

where Pb e Ptop are known.
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Mathematical problem

END OF THE FIRST PART

In the second part we will see some simpli�ed
problems aimed to a better understanding of time
scales and reasonable modelling approaches.
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A simpli�ed problem

Dinamic problem with phase separation

(Luca Meacci, 2009) Hypotheses

1 Geothermal �uid is pure H2O (liquid or gas).

2 Phases sharply separated by an interface s(t) (no capillary
e�ects, saturations can be only 0 or 1)

3 Rocks have constant porosity φ

4 Permeability independent of temperature

5 1-D geometry
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A simpli�ed problem

The 1-D domain is [Li, Ls]: Sv = 1, Sw = 0
above the free-boundary s(t). Sv = 0, Sw = 1 below.

Temperature changes linearly. At the upper boundary Ls
pressure Ps is constant, at the lower boundary �ux is null

(vl = 0).
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A simpli�ed problem

Parameter values

Ls = −1300m Li = −3500m
Ts = 520 oK Ti = 610 oK
sip ≈ −3060m T (sip) = 592 oK

∆Lv = Ls − sip ≈ 1800m T̂ (x ∈ [sip, Ls]) ≈ 600oK

ρvc =
P ∗(T (sip))

rT ≈ 40Kg/m3 ρl = 103Kg/m3

φ = 10−2 g = 9, 8m/s
µv ≈ 2× 10−5Pa · s K = 10−16m2

r = 4, 6× 102J/KgoK

Estimated Pressure:

Pv (x = sip) = P ∗(T (x = sip)) = P ∗
ip ≈ 1, 1× 107 Pa

Pv (x = Ls) = Ps = 3, 1× 106 Pa

∆Pv = Pv (x = Ls)− Pv (x = sip) ≈ −8× 106 Pa
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A simpli�ed problem

Model eqs

for the liquid domain Li < x < s(t)

∂
∂t (φρl) + ∂

∂x (φρlvl) = 0, (ρl= constant). Consequently

∂vl
∂x

= 0 vl|x=Li = 0 which implies

vl = 0

Recalling Darcy's law vl = − K
φµl

(
∂Pl
∂x + ρlg

)
= 0,

pressure Pl solves
∂Pl
∂x

= −ρlg, Pl(x = s(t)) = Pl(s(t)),

with Pl(s(t)) to be speci�ed.

solution: Pl(x) = Pl(s(t))︸ ︷︷ ︸
ph. change press

+ ρlg(s(t)− x)︸ ︷︷ ︸
hydrost. press
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A simpli�ed problem

Model eqs

for the vapor domain s(t) < x < Ls

∂
∂t (φρv) + ∂

∂x (φρvvv) = 0, s(t) < x < Ls

which, by means of ideal gas law for ρv, becomes

∂

∂t

(
φ
Pv
rT

)
+

∂

∂x

(
φ
Pv
rT

vv

)
= 0 (12)

but Darcy's law vv = − K
φµv

(
∂Pv
∂x + ρvg

)
. still applies, so

that
∂
∂t

(
Pv
T

)
− ∂

∂x

[
Pv
T

K
φµv

(
∂Pv
∂x + Pv

rT g
)]

= 0,

and assuming viscosity µv independent of temperature T

∂Pv
∂t
− KT

φµv

∂

∂x

[
Pv
T

(
∂Pv
∂x

+
g

r

Pv
T

)]
= 0.
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A simpli�ed problem

Free boundary conditions

Obviously we need to impose the the continuity of mass �ux

[ρβ (vβ − ṡ)]vl = 0.

Since vl = 0 it follows χ := ρv (vv − ṡ) = −ρlṡ. Note that
χ · ṡ < 0.

Meaning: χ is the velocity of mass transfer through the

interface s(t). Thus χ < 0 means ṡ > 0, i.e. vapor
condensation while χ > 0 means that liquid boils.

Also we need to impose the continuity of momentum �ux,
i.e. [χ~vβ −Tβ~n]vl = 0. where Tβ is the stress tensor in phase β.

Since vl = 0 and Tβ = PβI, last conditions reduces to
χvv = − (Pv − Pl) .
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A simpli�ed problem

Main question: which pressure at the phase change interface ?

Suppose [Pβ]vl = 0, that is Pv|s(t) = Pl|s(t) = P ∗|s(t) , Then the
continuity of momentum �ux implies χvv = 0, which holds i�

Case 1 : χ = 0. We have ρv (vv − ṡ) = 0 ⇒ vv|s(t) = ṡ which
implies

ρlṡ = 0 ⇒ ṡ = 0

and so vv|s(t) = ṡ = 0. The free boundary does not move.
Case 2 : uv|s(t) = 0. Then the de�nition of χ implies ρv ṡ = ρlṡ
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In conclusion moving free boundary does not agree with a
vanishing pressure jump at the interface. Thus we assume
[Pβ]vl 6= 0



The MAC-GEO project 48 / 84

A simpli�ed problem

Main question: which pressure at the phase change interface ?

Suppose [Pβ]vl = 0, that is Pv|s(t) = Pl|s(t) = P ∗|s(t) ,

Then the
continuity of momentum �ux implies χvv = 0, which holds i�

Case 1 : χ = 0. We have ρv (vv − ṡ) = 0 ⇒ vv|s(t) = ṡ which
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which shows again that vv|s(t) = ṡ = 0.
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A simpli�ed problem

A reasonable assumption: ρv � ρl.

In this case χ ≈ ρvvv which
in turn implies

χvv|x=s(t) = ρvv
2
v

∣∣
s(t)

= Pl|s(t) − Pv|s(t) ,

Some simple consequences:

(1) Pl|x=s(t) ≥ Pv|x=s(t).

(2) ṡ and vv have the opposite sign
1 (s(t) moves downward if

the vapor volumetric �ux is upward and vice versa).

(3) [Pβ]vl can be estimated in terms of the mass �ux.

We assume Pv|x=s(t) = P ∗|x=s(t) , P
∗ being the �saturated

vapor pressure�.

1Recall that χ · ṡ < 0
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A simpli�ed problem

Saturated vapor pressure for H2O

Clapeyron curve (left) and Andrews' diagram (right)

P ∗(T ) = 961, 7 exp

{
17, 35

T − 273

T

}
,

(T in Kelvin, 961, 7 in Pa).
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A simpli�ed problem

Liquid pressure

Previous assumption implies that

Pl|x=s(t) = Pl(s(t)) = P ∗|x=s(t) + ρvv
2
v

∣∣
x=s(t)

.

However

|vv| ≈
K

φµv

∣∣∣∣∆PL
∣∣∣∣ ≈ 10−6 m

s

Thus
ρvv

2
v ≈ 10−13 Pa

when ambient pressure is of order 106 ÷ 107 Pa!

We conclude that the pressure jump at the interface is

very small and consequently ṡ ≈ 0 (but we have seen

before that if it is totally neglected then s(t) remains

steady).
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A simpli�ed problem

We can still consider

Pl|x=s(t) = Pv|x=s(t) = P ∗(T (x))|x=s(t) .

i.e. pressure jump equal to zero, but we need to consider

two di�erent time scales to account for the movement of the
interface!

Conclusion:

The dynamics of vapor di�usion in [s(t), Ls]
occurs over a time scale for which the free boundary

appears at rest.

Vice versa over the time scale where the movement of

the interface is not negligible di�usive e�ects appears at

equilibrium.

This suggests to use a quasi stationary approach to study the
movement of s(t).
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A simpli�ed problem

Free boundary equation

Apply Darcy's law to the equation of mass �ux continuity
through the interface. to get

ṡ

(
1− ρv

ρl

)
=
ρv
ρl

Kv

φµv

(
∂Pv
∂x

+ ρvg

)∣∣∣∣
x=s(t)

. (13)

Then recalling the assumption about the vapor pressure at
interface the free boundary eq. writes

ṡ

(
1− P ∗(s(t))

rTρl

)
=
P ∗(s(t))

rTρl

Kv

φµv

(
∂Pv
∂x

+
P ∗(s(t))

rT
g

)∣∣∣∣
x=s(t)

.

(14)
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A simpli�ed problem

Free boundary prob. with Pv|x=s(t) = P ∗|x=s(t) ,

∂Pv
∂t
− K T

φµv

∂

∂x

[
Pv
T

(
∂Pv
∂x

+
g

r

Pv
T

)]
= 0,

Pv(x = Ls) = Ps,

Pv(x = s(t)) = P ∗(s(t)),

ṡ

(
1− P ∗(s(t))

rTρl

)
=
P ∗(s(t))

rTρl

K

φµv

(
∂Pv
∂x

+
P ∗(s(t))

rT
g

)∣∣∣∣
x=s(t)

,

Pv(t = 0) = Pin(x),

s(t = 0) = sin,

Here T (x) is known, P ∗(x) = P ∗(T (x)), Pin(x) and sin are
initial values.
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A simpli�ed problem

Possible simpli�cations for typical values

β1(x) :=

Pv
rT

g

∂Pv
∂x

=
gravitational force

pressure gradient
≈

Pv
rT

g

∆Pv
∆Lv

≈ 10−1

We cannot neglet the gravitational contribution! Consider then
the ratio vapor density/liquid density at the interface:

β2 :=
ρv(x = s(t))

ρl
=

P ∗(s(t))

rT (s(t))ρl
≈

P ∗
ip

rT̂ ρl
≈ 10−2

This justi�es the assumption ρv � ρl made before. We the
neglect β2 to get a simpli�ed free boundary equation

ṡ =
P ∗(s(t))

rTρl

K

φµv

(
∂Pv
∂x

+
P ∗(s(t))

rT
g

)∣∣∣∣
x=s(t)

.
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A simpli�ed problem

Equations scaling

Take tdiff := φµvL2

KP ∗
ip

as a characteristic di�usion time and

ts := ρl
ρvc
tdiff as a characteristic interface time. For typical

values tdiff ≈ 8, 4 × 108 s ≈ 27 years, and ρl/ρvc ≈ 25. Thus ts
is of order hundreds of years.

If we take as scale time that of the
interface, then the scaled (adimensionalized) equations appear
as follows

tdiff

ts︸︷︷︸
ρvc
ρl

≈ 4×10−2

∂P̃v

∂t̃
− T̃ ∂

∂x̃

[
P̃v

T̃

(
∂P̃v
∂x̃

+ α
P̃v

T̃

)]
= 0,

˙̃s =
P̃ ∗(x̃)

T̃

(
∂P̃v
∂x̃

+ α
P ∗(x̃)

T

)∣∣∣∣∣
x̃=s̃(t̃)

(α :=
gL

rTi
≈ 10−1)
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A simpli�ed problem

Quasi-steady problem



∂

∂x̃

[
P̃v

T̃

(
∂P̃v
∂x̃

+ α
P̃v

T̃

)]
= 0,

P̃v(x̃ = 0) = P̃s,

P̃v(x̃ = s̃(t̃)) = P̃ ∗(s̃(t̃)),

˙̃s =
P̃ ∗(x̃)

T̃

(
∂P̃v
∂x̃

+ α
P̃ ∗(x̃)

T

)∣∣∣∣∣
x̃=s̃(t̃)

,

P̃v(t̃ = 0) = P̃in(x̃),

s̃(t̃ = 0) = s̃0.

(15)
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A simpli�ed problem

Some implications

Being T a known linear function of x the quasi-steady problem
can be written as a function of T and easily integrated:

P =

√
A

1− δ
T 2 +BT 2δ, δ = α/(1− Ts)

Ts = 0.85 is the temperature at basin top boundary, A and B
are known functions of σ(t) := T (s(t)).

(g) A as a function of σ (h) B as a function of σ

Both functions diverges as σ → Ts.
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A simpli�ed problem

Reparametrized free boundary eq

σ̇ = A(σ)γ2, σ(0) = σ0,

If s(t) is su�ciently far from the the basin top boundary then
A(σ) ≈ A0 −A(s0) and

σ(t) = A0γ
2t+ σ0,

This allows the characteristic time of the moving boundary can
be better estimated

ts,new :=
ts

A0γ2
≈ ρl
ρvc

1

A0γ2
tdiff

Being A0 ≈ 4 and γ2 ≈ 2, 2× 10−2 we get

ts,new ≈ 2, 8× 102 tdiff ≈ 7500 years

which appears compatible with geological estimates: this seems
to be the time needed for the Larderello basin to evolve from
water dominated to vapor dominated.
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A simpli�ed problem

Numerical simulations (unsteady problem)

Use now the di�usive time scale.

∂P

∂t
− 1

T

∂

∂x

[
Pv
T

(
∂Pv
∂x

+ α
Pv
T

)]
= 0,

Pv(x = 0) = Ps,

Pv(x = s(t)) = P ∗(s(t)),

ṡ = β
P ∗(x)

T

(
∂Pv
∂x

+ α
P ∗(x)

T

)∣∣∣∣
x=s(t)

,

Pv(t = 0) = P0(x),

s(t = 0) = s0.

where

β =
P ∗
ip

rTiρl

and P0(x), s0 given i. c.
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A simpli�ed problem

Dimensionless input data

Ls = 0 Li = −1
Ts = 0, 8525 Ti = 1
s0 = −0, 8 T (s0) = 0, 9705
Ps = 0, 2818 P ∗

ip(t = 0) = 1

α = 0.0768 β = 0.0392

Table: Larderello simulation with di�usive scaling time

Pressure initial condition

P0(x) = Ps − (1− Ps)(−0, 2 + x).
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A simpli�ed problem

Vapour pressure w.r.t. depth

Pressure w.r.t. depth x at di�erent times. The domain of
de�nition increases with time (the free boundary moves

downwards).
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A simpli�ed problem

Vapour pressure w.r.t. time

Pressure w.r.t. time t at di�erent depths. .
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A simpli�ed problem

Moving boundary

Interface boundary vs. time: s(t) moves downwards.
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A simpli�ed problem

Some conclusions

At time t = 2250 years the moving boundary reaches the
bottom of the geothermal basin.

Although simpli�ed, this analysis shows that di�usive e�ects
have a characteristic time of decades while the free boundary
needs thousands of years to vanish

This appears compatible with geological studies: Larderello is
an �old�basin. Thousands of years ago it was a water dominated
basin which has now turned to a vapor dominated one.
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A simpli�ed problem

Clapeyron pressure at the interface

The interface pressure increases with time since temperature
increases with depth.
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A simpli�ed problem

Larderello simulation with moving boundary scaling time



β
∂P

∂t
− 1

T

∂

∂x

[
Pv
T

(
∂Pv
∂x

+ α
Pv
T

)]
= 0,

Pv(x = 0) = Ps,

Pv(x = s(t)) = P ∗(s(t)),

ṡ =
P ∗(x)

T

(
∂Pv
∂x

+ α
P ∗(x)

T

)∣∣∣∣
x=s(t)

,

Pv(t = 0) = P0(x),

s(t = 0) = s0.

Input data are the same as before



The MAC-GEO project 68 / 84

A simpli�ed problem

Comparison with the quasi-steady problem
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Another simpli�ed problem

A true well

Figure: A typical temperature pro�le (Bagnore, Amiata Volcano)
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Another simpli�ed problem

Convective motions

(Matteo Cerminara, 2009) The temperature well pro�le suggests
the possibility of convective (e�cient) motions where ∇T is very
small.

Navier-Stokes eqn. in porous media (Oberbeck-Boussinesq
approx.)

∇ · q(x, t) = 0

%w (∂t + q(x, t) · ∇) q(x, t) = −∇p(x, t)
+ %wgβ (T (x, t)− TL + ∆T )∇z − µw

km
q(x, t)

〈%c〉∂tT (x, t) = 〈λ〉∇2T (x, t)− %wcwq(x, t) · ∇T (x, t)

where 〈%c〉 := φ%wcw + (1− φ)%mcm, 〈λ〉 := φλw + (1− φ)λm,
and p(x, t) := P (x, t)− Phy(z)
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Another simpli�ed problem

Geometry

T=T_L  z=0

z=L, T=T_L−DT

k_m

z

x

y
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Another simpli�ed problem

Question: are convective cells possible?

There exists a steady conductive: (dimensionless variables)
q = 0
T = 1− z
p = −C(1− z)2

where C is a given parameter.

Linear stability analysis shows that the above solution may be
unstable. Fourier modes may develop if

Ra :=
cw%

2
wgβ∆TLkm
µm〈λ〉

>
(ξ2 + j2π2)2

ξ2

where ξ is the horizontal wave-number and j is any integer.
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Another simpli�ed problem

Linear stability
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Another simpli�ed problem

The r.h.s. minimum is 4π2. Many physical parameters have a
well de�ned value so that the instability conditions rewrites
simply as

km∆TL > 2.6× 1010m3◦C

and being ∆t ' 100◦C and L ' 1000m we obtain the lower limit
for permeability, above which convective motions may occur:

km > 1md

Above this value water has the necessary mobility to generate
convective cells. This appear in agreement with geological
estimates.
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Another simpli�ed problem

The experimental temperature pro�le (Bagnore well)

Measured temperature pro�les seem to validate the existence of
convective motions.

There are two clearly distinct zones: one where the geothermal
gradient η ≈ 0.15◦Cm−1 (conductive), the other where
η ≈ 0.02◦Cm−1 (convective): there is one order of magnitude
di�erence between the two values! In this conditions the linear
approach (small perturbations) cannot be applied.
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Another simpli�ed problem

Thus the Rayleigh approach does not justify completely the heat
�ux measured! Indeed it can be proved that the mean vertical
heat �ux is (at �rst order) the same as the conductive one.

Consider then the Navier-Stokes eqn. in porous media
(Oberbeck-Boussinesq approx.) in the steady case with the
inertial term neglected:

∇ · q(x, t) = 0

0 = −∇p(x, t) + %wgβ (T (x, t)− TL + ∆T )∇z − µw
km

q(x, t)

0 = 〈λ〉∇2T (x, t)− %wcwq(x, t) · ∇T (x, t)
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Another simpli�ed problem

Boundary conditions

Take

qz(x, y, 0) = qz(x, y, L) = 0, T (x, y, 0) = TL, T (x, y, L) = TL−∆T.

It can be proved that the mean vertical heat �ux 〈Jz〉S (which is
a function of z only) is preserved, being the �mean� de�ned as

〈f(x, y, z)〉S =
1

S

∫
S
f(x, y, z)dxdy

where S is any su�ciently extended horizontal surface. Thus

−〈λ〉∂z〈T (x, y, z)〉S︸ ︷︷ ︸
conductive

+ %wcw〈Tqz〉S︸ ︷︷ ︸
convective

= constant
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Another simpli�ed problem

Idea

The transition from the convective to conductive zone is not
sharp! The temperature gradient changes smoothly accordingly
with the convective heat �ux, maintaining constant the total
�ux!

One analytic solution that �ts this idea is:

qx = qy = 0, qz = BT2 cos(ξ · r), r := (x,y)

T = T1 − ηz + T2 cos(ξ · r),

p = p1 + (B/A)(T1z
1
2ηz

2), ξ2 = (B/D)η

however this solution does not �t the boundary conditions but,
unlike the Rayleigh solution, the vertical mean convective �ux is
not zero: in dimensional form

〈Jz〉S = 〈λ〉
(
η +

kmT
2
2

2C1

)
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Another simpli�ed problem

The extra term is just the heat transported by convective
motions. Notice that as T2 → 0 we get again the conductive
solution and pressure remains the same independently of
absence or presence of convective motions.

Fictitious boundary conditions:

qz(x, y, 0) = qz(x, y, L) = %wgβkm
µw

T2 cos(ξ · r),

T (x, y, 0) = T1 + T2 cos(ξ · r),

T (x, y, L) = TL − ηL+ T2 cos(ξ · r).

These are the b.c. the would attained by the previous analytic
solution. Since they di�er from the original ones, we are forced
to allow that solution only in a narrowed layer (z0, z1) ⊂ (0, 1).
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Another simpli�ed problem

Mixing zones

It can be proved that the analytic solution is unique in the
narrower convective region. Due to the constancy of
〈Jz〉S = −D∂z〈T 〉S + 〈Tqz〉s =constant, in the mixing zones qz
decreases and ∂z〈T 〉S increases so that the boundary conditions
have time to adjust to the right ones.
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Another simpli�ed problem

This procedure has been tested using �eld data. In particular

order of magnitude of all relevant parameters �t the
measured values (for example speci�c discharge w is of
order 10−8 m/s)

convective motions seem to have very little in�uence on the
hydrostatic pressure

the dimension of convective cells depends on the Rayleigh
number: as Ra increases new modes may grow and the cell
dimension Lcell decreases more and more.

the characteristic time tchar = Lcell/w of convective motions
is estimated to be ≈ 1000 years.
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Another simpli�ed problem

Work in progress

So far things appear easy but I didn't mention

The phase equilibrium stability approach

The choice of the right EOS

The IMPES approach

The role of capillary pressure

The numerical procedure

Each of these subjects (actually under investigation) would
require a dedicated lecture and even the recent literature is
controversial.

This justi�es the full re-examination of the whole problem that
is at the base of the MACGEO project.
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