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Aims of the project

m To setup a “full field” mathematical model for reasonable
and responsible predictions about the long-time behavior of
geothermal reservoirs in Tuscany (Italy) under standard
industrial energy production regimes
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Aims of the project

m To check the environmental impact of deep geothermal
fluids extraction process upon phreatic superficial water
layers

[
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Aims of the project

m The final product should be an easy-to-use package for
people in government supervising structures (because
energy resources remain a state property also if a private
society carry on the necessary technology)
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Aims of the project

m The underlying numerical code must interface with a G.I.S.
database carrying all field historical data (geological,
extraction, production and so on) to generate up-to-date
reliable simulations
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Is this an easy task?

No, it’s not!

A geothermal reservoir is a very complex physical system in
which chemistry, geology, thermodynamics and the physics of
fluids in porous-fractured media are all combined in a highly
nonlinear way.

Furthermore data access (from 1 to 4 km deep in the Earth
crust) is very poor.

Let’s take a look to geothermal energy from a general
point of view.
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Heat flux sources

Total heat power of the earth is evaluated to be 42 TW
(4.2 x 103 J/s). Where does all this heat come from?

There are several sources of heat inside Earth.

The decay of naturally radioactive elements within the mantle
(Potassium-40, Uranium-238, Uranium-235, and Thorium-232
are the most important) is commonly believed to be the leading
source (up to 80 % of total).

For example Thorium-232 has a half-live time of 14.1 x 10°
years Uranium-238 of 4.46 x 107 years.

Since the Earth is estimated to be 4.6 x 10° years old these
nuclei have not had time to completely decay away since the
formation of the Earth.
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The heat flux is not the same everywhere!

This depends on the fact that along tectonic plates boundaries
and subduction zones, the Earth crust is thinner.

Hottest Known Geothermal Regions
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Geothermal resource (from Greek Géo =Earth and
Thermos—heat)

The Earth heat power cannot be used directly: water is the
“carrier”medium. A geothermal resource is a natural
underground basin rich of overheated fluids (water) which can
be extracted to economic or social purposes.

(a) Geysers, Atacama desert (b) Geysers, Island
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Geothermal gradient
The standard geothermal gradient is about 2 + 3 °C'/100m.

An economically significant geothermal gradient should be
> 7°C/100m.

Close to the Earth surface geothermal energy is sufficient to
bring water to the boiling point. Then vapor strength can move
power generators.

This kind of energy is renewable (essentially infinite on the
human time scale).
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Some history

Geothermal energy at low enthalpy (thermal springs) has
been known for centuries and used by animals and humans.
Geothermal energy at high enthalpy is relatively recent:
4 July 1904 Prince Piero Ginori Conti (son in law of Earl
Florestano de Larderel) tested the first geothermal power
generator at the Larderello dry steam field in Italy
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Some history

1911: the world’s first geothermal power plant (250 KW) was
built in the Devil’s Valley of Larderello.

This remained the world’s only industrial producer of
geothermal energy until 1958 when New Zealand built a plant of
its own in Wirakei

Actually there geothermal power plants in 24 countries
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Geothermal power in the world

Power generation (24 countries worldwide) through high
enthalpy plants: more than 10 GW (power capacity).

Direct use (heating, thermal springs, enhanced growing,...):
more than 28 GW

Reduced environmental impact: a reduction of 118x10° tons of
CO4 per year of athmosferic pollution
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Main geothermal basins around the World

The Geysers
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Geothermal energy production

5 Dal 1980 - Incremento significativo della
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Figura 2 — Incremento della produzione geotermoelettrica in Italia
e realizzazioni impiantistiche geotermiche in altri paesi.
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Heat flux in Italy
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Interested areas in Tuscany
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Geothermal activity in Tuscany

(e) Power generation by geother-
mal energy (high enthalpy) covers
more than 28 % of the regional ne-
cessities (2 % of the national ones)
with ~ 800 MW capacity

(f) Low enthalpy production is
also important for human needs
(house heating, fish and vegetable
product artificial growing-up, ...)
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How it works

Magmatic intrusion is the deep (but not too deep) heat
source. To exploit this energy source we have to be able to
bring heat to the surface.

Above the heat source is the reservoir: fractured-porous
rocks where fluids (liquid/vapor) at high temperature and
pressure may circulate.

The reservoir need to be capped by an almost impermeable
layer (clay) to prevent fluids and heat losses.

The systems behaves like a natural “caldera’(pressure
boiling pan)

If exploited, the basin needs to be recharged either by
meteoric waters (rain) or artificial re-injection
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General structure of a geothermal basin
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Larderello basin cross-sections
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Physical characteristics

The Larderello-Travale reservoir produces thermal fluids at high
enthalpy (7" = 150 + 260°C and P = 2 =+ 15 bar). These fluids

are largely overheated vapor and minor quantities (15 % in wt.)
of gas (essentially C'O3) In the deep reservoir Tiax ~ 350°C and

Phax (of vapor) = 70 bar. This is a typical vapor dominated
basin.

Unlike Larderello-Travale, the Mount Amiata reservoir is a water
dominated basin. At top well geothermal fluids are two-phase
mixtures (water and vapor) at P & 20 bar e T' =~ 130° + 190°C
with very high salinity (10 + 12 g/1) In thew deep reservoir the
(hydrostatic) pressure P =~ 200 =+ 250 bar and T ~ 300 =+ 360°C’
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Geometry

m Depth: 10 Km
m Width:

m Larderello: 50 Km
m Amiata: 40 Km

m Length:

m Larderello: 60 Km
® Amiata: 50 Km
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“Vapour dominated” schematic picture
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Thermodynamics

Crucial hypothesis: local thermodynamical equilibrium. This
assumption is assumed also near any extraction well.

Thermal equilibrium is of course not true on the full scale of the
reservoir (temperature and pressure vary significantly over the
entire geothermal basin).
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Available geophysical data

Deep rocks data like permeability and porosity are scarcely
available. This situation suggests two possible modeling
scenarios

Continuum-equivalent model, that is:

(a) Constant porosity
(b) Isotropic constant absolute permeability, that
is the permeability tensor is

K =KId,

with K constant and Id identity matrix.
Double permeability and porosity model (in progress)

The former is obviously easier but the latter is closer to reality.
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Multiphase multicomponent model

porosity
i=1,...,N component index
a=l,g phase index
X mass fraction
P absolute a—phase density
Py = p* XY i-component density in phase o
S a—phase saturation
PSS i—component density in phase o in the porous medium
P! partial pressure of liquid phase
P9 partial pressure of gas phase

The geothermal fluid is a mixture of H>O in liquid and vapor
phase with a non negligible presence of Non-Condensible Gases
(essentially C'O3). These gases may be dissolved in the liquid
phase.
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Physical hypotheses

B S

Rocks are the porous matrix that hosts the geothermal
fluid which is a mixture of

= a liquid phase (1);

m a gas phase (g).

therefore
N
1:ZXZ-O‘, per a=1,g. (1)
i=1
the porous medium is saturated, that is it does not host dry

air: this means

Sty 89 =1. (2)
the two phases are in thermodynamical equilibrium
The fluid flux is due only to convection (diffusivity is
negligible)
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Mass and energy balance

For each component ¢ in phase a we write

0 M1
— (p* X G (X 8o ) 7 ‘Ileazt QX Ge ) o
8t (p (2 S ¢)+v (p (2 ¢vl ) Mtot ‘/eg;t +(IO 7 ¢) )
(3)
with

m v{ is the velocity of component 7 in phase a.

m U js the total mass of fluid extracted (or injected) in the
unit time.

m V., is the total volume of the extraction or injection zone

m I'“ is the source/sink term due to the change of phase
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For a fixed component ¢, we sum over phases a = [, g equations
(3):
D (PP X8 T =0,

a=l,g

Define the parent density to get

iV =3 XEs, (4)
a=l,g
8 (0) o Yo Qo « _ pz(O) 1 ext
e (pz- ¢) +V- Zl PEXESYpve | = PO Vm\p . (5)
a=t,g V)



The MA *EO project
L Mathematical problem

Some basic assumptions



The MA *EO project
L Mathematical problem

Some basic assumptions

There are only two pressures : P!, pressure of phase [, P9,
pressure of phase g.



The MAC-GEO project

L Mathematical problem

Some basic assumptions

There are only two pressures : P!, pressure of phase [, P9,
pressure of phase g.
The two pressures are related through the capillary

pressure:
P.=P.(S") =P9— P! (6)



The MAC-GEO project

L Mathematical problem

Some basic assumptions

There are only two pressures : P!, pressure of phase [, P9,
pressure of phase g.
The two pressures are related through the capillary

pressure:
P.=P.(S") =P9— P! (6)

Specific discharge of phase « is given by Darcy’s law:
k
q% = ¢S v = ~K—= (VP* + p®g) , where K, is the
w

(0%
tensor of absolute permeability of the medium, k¢, the
relative permeability of phase a and p® is its viscosity.



The MAC-GEO project
L Mathematical problem

Some basic assumptions

There are only two pressures : P!, pressure of phase [, P9,
pressure of phase g.
The two pressures are related through the capillary

pressure:
P.=P.(S") =P9— P! (6)

Specific discharge of phase « is given by Darcy’s law:
k
q% = ¢S v = ~K—= (VP* + p®g) , where K, is the
w

(e
tensor of absolute permeability of the medium, k¢, the
relative permeability of phase a and p® is its viscosity.
in each phase all components move with the same velocity

vii=v* foralli=1.N



The MAC-GEO project
L Mathematical problem

Some basic assumptions

There are only two pressures : P!, pressure of phase [, P9,
pressure of phase g.
The two pressures are related through the capillary

pressure:
P.=P.(S") =P9— P! (6)

Specific discharge of phase « is given by Darcy’s law:
k
q% = ¢S v = ~K—= (VP* + p®g) , where K, is the
w

(e
tensor of absolute permeability of the medium, k¢, the
relative permeability of phase a and p® is its viscosity.
in each phase all components move with the same velocity

vii=v* foralli=1.N

P% and S¢ are related via a constitutive relationship
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Mass and energy balance equation for the ith—component

The above assumptions imply

8 (0) o Yo kra o o pEO) 1 ext
5 (pi cb)—V- > X KE(VP +0%g) OV
a=l,g J pj
(7)
a (e} o, O (e’
= [(1—¢)prch+¢Zp Su|+) _V-(h*q¥) = V-[Amia VT,
(8)
where

7

Amiz = (L= A+ 6> XaS* ¥ =D X

u is the internal energy per unit mass and h the enthalpy.
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number of unknowns: 7', P%, p§0)7 p%, 8¢, X, with

a=Ilgandi=1,..,N. Thus (3N + 7) unknowns.

The total number of available egs. is (2N + 6).

We still have (N + 1) egs. missing: these are provided
by the thermodynamics (phase equilibrium conditions)
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Closure of the system

number of unknowns: 7', P%, p(o) p%, 8¢, X, with

7 ?

a=Ilgandi=1,..,N. Thus (3N + 7) unknowns.

number of eqs: actually we have only N egs (mass
balance, 7) plus the energy balance (8). Thus (N + 1) egs.

constraints and relations: that for mass fractions (egs.
1) and that for saturations (eq. 2). Additionally there is
the capillary relation (eq. 6) plus the parent density
definition (eq. 4) which relates density and saturations.

The total number of available egs. is (2N + 6).

We still have (N + 1) egs. missing: these are provided
by the thermodynamics (phase equilibrium conditions)
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Phase equilibrium egs.

We need a general EOS which, by means of the compressibility

factor,
Poy®
YA 9
v )
writes
F(z9) =0, (10)

where v® is the molar volume (basically 1/p®), and F is a
known (generally cubic) function.
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Then, following Helmholtz, we define the chemical potential

0
Hi = aiF(pivT%

)

F being the Helmholtz free energy, and introduce the
Gibbs-Duhem eq.:

~P*=F 3 pu.
%

By definition, phase equilibrium holds in this case (liquid-gas) if
the following set of algebraic eqs. is satisfied

Eq. 10 and eq. 11 provide the set of N + 1 egs. missing.
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Boundary conditions

At the basin bottom: mass flux equal to zero and given
temperature (with constant gradient inside the basin)

At the basin top: depend on the choice of the geometry (if we
include or not the superficial (very low permeable) layer.

if included: atmospheric pressure and standard temperature
if not included: mass flux equal to zero and given temperature
(possibly a mixture of these two situations)

Lateral conditions: the physical boundary of the basin is
really uncertain. Thus we imply given temperature (from
standard geothermal gradient) and hydrostatic pressure
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Example: a very simplified geometry
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Simplified boundary conditions at z = 0

T|,_o =T, with T; uniform.

| 0 i
qil,—g €2 =Y, a_ = —pPg,
- 0z z=0
op,
Qg‘ _o € =0, . = —Pgg-
2=0 Oz 0
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Summarized boundary conditions at z = L

T|,_; = Tiop, with Ty, uniform.

(Ttop < Tp)
q| e 0 il
lly=1 "€z =Y, . = —pPi9,
# 0z |,_1
0P,
qg| -1 € =0, = —Pg9-
z N 0z |,_p <
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Summarized boundary conditions

At T4 (lateral boundary)
Tb - Ttopz.

T|Flat = Tb o L

P|Flat = P (z), with P (z) solution in [0, L] of the following

b.v.D.
s G
P(0) = h,
P(L)= Biop,

where P, e P, are known.
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END OF THE FIRST PART

In the second part we will see some simplified
problems aimed to a better understanding of time
scales and reasonable modelling approaches.
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La simplified problem

Dinamic problem with phase separation

(Luca Meacci, 2009) Hypotheses

Geothermal fluid is pure H20 (liquid or gas).

Phases sharply separated by an interface s(¢) (no capillary
effects, saturations can be only 0 or 1)

Rocks have constant porosity ¢
Permeability independent of temperature

1-D geometry
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X it
e
pozzo
0
rocee ‘
onpermeabili
Ls
vapore
it}
hqude
L;
orzzomts k

The 1-D domain is [L;, Ls]: S, = 1,5, =0
above the free-boundary s(t). S, = 0,5, = 1 below.
Temperature changes linearly. At the upper boundary L,
pressure Ps is constant, at the lower boundary flux is null

(v =0).
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Parameter values

L, =—1300m L; = —3500m

T, =520°K T, = 610°K

sip = —3060m T(slp) =592°K

AL, = Ly — sip =~ 1800m T(x € [sip, Ls]) = 600°K
pre = 0D ~ 40K g/m? py = 10°Kg/m?

¢ =107 g:9,8m/8

o ~2x107°Pa- s K =101

r=4,6 x 10°J/K¢°K

Estimated Pressure:
Py (z = sip) = P*(T'(x = sip)) = P, = 1,1 x 107 Pa
P,(x=Ls)=P,=3,1x10°Pa
AP, =P,(x = L;) — P, (z = sip) = —8 x 10° Pa
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aﬁ (¢prvy) = 0, (p= constant). Consequently

=0 Uy|z=r, = 0 which implies
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Model egs

= % (o) + 8% (¢prvy) = 0, (p= constant). Consequently
. % =0 vly_z, = 0 which implies

o

[
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La simplified problem

Model egs

= % (o) + 8% (¢prvy) = 0, (p= constant). Consequently
a PU—0 gy, =0 which implies
m v = 0

m Recalling Darcy’s law v; = —q% (% + plg) =0,
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La simplified problem
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La simplified problem

Model egs

] E( 1) + 8% (¢prvy) = 0, (p= constant). Consequently

. % 0 wie—z, = 0 which implies
m v = 0
m Recalling Darcy’s law vy = —q% (8Pl 4 ng) 0,

pressure P solves % = —ng, P(x = s(t)) = B(s(t)),
with P;(s(t)) to be specified.
solution: P(x) =  Bi(s(t)) +pg(s(t) —x)
——— —_—
ph. change press hydrost. press
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m % (ppy) + 8% (ppyvy) =0, s(t) <z < Lg
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u % (d)pv) + a%g (¢vav) =0, S(t) <z <L
m which, by means of ideal gas law for p,, becomes
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La simplified problem

Model egs

u % (d)pv) + a%g (¢vav) =0, S(t) <z <L
m which, by means of ideal gas law for p,, becomes

a PU a P’U

Z o= — == =0 12

ot (¢TT) * Ox ((brTvv) (12)
m but Darcy’s law v, = —% (‘LDL + pyg) still applies, so

that
0 (P, 9 |Py, K (0P, _
" 5 () - & | B (Bt )| =0,
m and assuming viscosity pu, independent of temperature T’
oP, KT 0 |P, (OP, g¢gP, _0
ot py Ox or  rT )|
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Meaning: x is the velocity of mass transfer through the
interface s(¢). Thus x < 0 means § > 0, i.e. vapor
condensation while x > 0 means that liquid boils.
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i.e. [xUg — Tpii]; = 0. where Tg is the stress tensor in phase .
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Free boundary conditions
Obviously we need to impose the the continuity of mass flux
lpg (vg = )]} = 0.
Since v; = 0 it follows x := p, (v, — §) = —p;$. Note that
x - s <0.

Meaning: x is the velocity of mass transfer through the
interface s(t). Thus y < 0 means $ > 0, i.e. vapor
condensation while x > 0 means that liquid boils.

Also we need to impose the continuity of momentum flux,
i.e. [xUg — Tpii]; = 0. where Tg is the stress tensor in phase .

Since v; = 0 and Ty = Pgl, last conditions reduces to
XUy =— (P, — F).
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Suppose [Pg]; =0, that is Py, = Pilsq) = P*l54 » Then the
continuity of momentum flux implies xv, = 0, which holds iff
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Suppose [Pg]; =0, that is Py, = Pilsq) = P*l54 » Then the
continuity of momentum flux implies xv, = 0, which holds iff

Case 1 : x =0. We have p, (by —8) =0 = wy|y4) = § which
implies
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and so Uv|s(t) = 5 = 0. The free boundary does not move.

Case 2 : uy\s(t) = 0. Then the definition of x implies p,$ = p;$
which shows again that vy[;) = =0.
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Main question: which pressure at the phase change interface ?

Suppose [Pg]; =0, that is Py, = Pilsq) = P*l54 » Then the
continuity of momentum flux implies xv, = 0, which holds iff

Case 1 : x =0. We have p, (by —8) =0 = wy|y4) = § which
implies
ps=0 = 5=0
and so Uv|s(t) = 5 = 0. The free boundary does not move.

Case 2 : uy\s(t) = 0. Then the definition of x implies p,$ = p;$
which shows again that vy[;) = =0.

In conclusion moving free boundary does not agree with a
vanishing pressure jump at the interface. Thus we assume

[Ps]] #0



The MAC-GEO project
La simplified problem

A reasonable assumption: p, < p;.

"Recall that x - $ < 0



The MAC-GEO project
La simplified problem

A reasonable assumption: p, < p;. In this case x ~ p,v, which
in turn implies

XVulus(ty = PoV| oy = Pilsy = Polsgry »

Some simple consequences:

"Recall that x - $ < 0



The MAC-GEO project
La simplified problem

A reasonable assumption: p, < p;. In this case x ~ p,v, which
in turn implies

XVulus(ty = PoV| oy = Pilsy = Polsgry »
Some simple consequences:

(1) Plocay = Poloe

"Recall that x - $ < 0



The MAC-GEO project
La simplified problem

A reasonable assumption: p, < p;. In this case x ~ p,v, which
in turn implies

XVulus(ty = PoV| oy = Pilsy = Polsgry »
Some simple consequences:

(1) Plocay = Poloe

(2) s and v, have the opposite sign! (s(t) moves downward if
the vapor volumetric flux is upward and vice versa).

"Recall that x - $ < 0



The MAC-GEO project
La simplified problem

A reasonable assumption: p, < p;. In this case x ~ p,v, which
in turn implies

XVulus(ty = PoV| oy = Pilsy = Polsgry »
Some simple consequences:

(1) Plocay = Poloe

(2) s and v, have the opposite sign! (s(t) moves downward if
the vapor volumetric flux is upward and vice versa).

(3) [Pg]; can be estimated in terms of the mass flux.

We assume Py[,_ 4y = P*[,_yy) , P* being the “saturated
vapor pressure”.

"Recall that x - $ < 0
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Saturated vapor pressure for H,O

Clapeyron curve (left) and Andrews’ diagram (right)

w1’ P

“ / |
T 4 ] \‘
g fase liquida S /

6 7

S
2 —— fase gassosa
T b e m_uw b w m V.,
T —273
P*(T) =961, 7exp {17, 33— 5,
T

(T in Kelvin, 961, 7 in Pa).
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Liquid pressure
Previous assumption implies that
2
F)l’z:s(t) = Pl(s(t)) - P*‘x:s(t) + pyvv‘x:s(t) :

However

K
oy

vy | =

Thus
pov2 = 1071 Pa

when ambient pressure is of order 106 = 107 Pa!
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Liquid pressure
Previous assumption implies that
* 2
B’z:s(t) = Pl(s(t)) =P ‘x:s(t) + pvvv‘x:s(t) :

However

K
oy

AP
il PR T R

L S

vy | =

Thus
pov? =~ 10713 Pa

when ambient pressure is of order 106 = 107 Pa!

We conclude that the pressure jump at the interface is
very small and consequently $ ~ 0 (but we have seen
before that if it is totally neglected then s(¢) remains
steady).
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i.e. pressure jump equal to zero, but we need to consider
two different time scales to account for the movement of the
interface!

Conclusion:
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We can still consider

‘Pl|:v:s(t) = Pv|$:s(t) = P*(T(:’C)”x:s(t) :

i.e. pressure jump equal to zero, but we need to consider
two different time scales to account for the movement of the
interface!

Conclusion: The dynamics of vapor diffusion in [s(t), L]
occurs over a time scale for which the free boundary
appears at rest.

Vice versa over the time scale where the movement of
the interface is not negligible diffusive effects appears at
equilibrium.

This suggests to use a quast stationary approach to study the
movement of s(t).
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Free boundary equation

Apply Darcy’s law to the equation of mass flux continuity
through the interface. to get

v v K’U 8'P’U
s(1-l) e (CR ) (13)
Pl pL Py \ Ox o=s(t)
Then recalling the assumption about the vapor pressure at
interface the free boundary eq. writes
(oo OO _ Pe) Ko (9P, , PO,
rTp; rTp; ¢y, \ Ox T 7 s (t)
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Free boundary prob. with PU]‘T:SU) — P*|1,:S(t) :

Pv apv ng o
T<8x+rT)]_0’

P,z =L,) = P,

0P, _ KTE
ot Oy Ox

z=s(t)

() T ()

Py(t = 0) = Pin(),

[ s(t =0) = sin,
Here T'(z) is known, P*(z) = P*(T(x)), Pin(x) and s;, are

initial values.
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P, P,

v
177 _ gravitational force 77

Bi(z) = ~ 107!

" 0P,  pressure gradient ~ AP,
ox AL,

We cannot neglet the gravitational contribution! Consider then
the ratio vapor density/liquid density at the interface:

po(z =s(t)) P (st)) ~ Pip ~ 10-2
Pl rT(s(t)p T

Bo =

This justifies the assumption p, < p; made before.
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Possible simplifications for typical values

P, P,

v
177 _ gravitational force 77

Bi(z) = ~ 107!

" 0P,  pressure gradient ~ AP,
ox AL,

We cannot neglet the gravitational contribution! Consider then
the ratio vapor density/liquid density at the interface:

po(z =s(t)) P (st)) ~ Pip ~ 10-2
Pl rT(s(t)p T

Bo =

This justifies the assumption p, < p; made before. We the
neglect B2 to get a simplified free boundary equation

_ PA(s(t)) K (0P,  P*(s(1))
°T Ty ¢uv<3w+ rT g)

x=s(t)
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Take tgig := %”PL* as a characteristic diffusion time and
ip
ts := pp—ltdi #f as a characteristic interface time. For typical

values tqir ~ 8,4 x 10%s ~ 27 years, and p;/pve ~ 25. Thus t
is of order hundreds of years.
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Equations scaling

2 . . . . .
Take tgig := %”PL* as a characteristic diffusion time and
ip

g = ﬁtdi ff s a characteristic interface time. For typical
values tqir ~ 8,4 x 10%s ~ 27 years, and p;/pve ~ 25. Thus t
is of order hundreds of years. If we take as scale time that of the
interface, then the scaled (adimensionalized) equations appear

as follows
tag 0P, 70 %(azfuaz@)
T \ 0z T

ts  Of 0%
—~—

Lue 5 4%x10-2
Pl

=0,
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Equations scaling

2 . . . . .
Take tgig := %”PL* as a characteristic diffusion time and
ip

g = ﬁtdi ff s a characteristic interface time. For typical
values tqir ~ 8,4 x 10%s ~ 27 years, and p;/pve ~ 25. Thus t
is of order hundreds of years. If we take as scale time that of the
interface, then the scaled (adimensionalized) equations appear

as follows
ts ot or | T \ oz T
~—
Lue g 4x10~2
[
. P*&) (0P,  P*(&) gL .
= — :7%1
S = <8i+aT o (a T 0 )
z=3(t)
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Quasi-steady problem

o A (o, BY]_,
oz |7 \oz "% )| T
P, (% =0) = P,,
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Some implications

Being T a known linear function of z the quasi-steady problem
can be written as a function of 7" and easily integrated:

P= 1/—11:15T2+BT25, §=a/(1-T,)

Ts = 0.85 is the temperature at basin top boundary, A and B
are known functions of o(t) := T'(s(¢)).

(g) A as a function of o (h) B as a function of o

Both functions diverges as 0 — T5.
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Reparametrized free boundary eq

6= A(o)y?, a(0) = oo,
If s(¢) is sufficiently far from the the basin top boundary then
A(O’) ~ AO — A(So) and
o(t) = Agy*t + oo,
This allows the characteristic time of the moving boundary can
be better estimated

ST A2 pue Agy2 Y

Being Ag ~ 4 and 72 ~ 2,2 x 1072 we get
tsnew = 2,8 x 10% 457 =~ 7500 years

which appears compatible with geological estimates: this seems
to be the time needed for the Larderello basin to evolve from
water dominated to vapor dominated.
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Numerical simulations (unsteady problem)

Use now the diffusive time scale.

9P 19 [h (0B, R)\|_,
o Tox|T \oz ' *T/)|™™

Zm=0) =2,
Py(z = s(t)) = P*(s(t)),

P*(z) (apv . P*(x))

s=b—7\a to 7

)

x=s(t)

Pv(t = 0) = P()(.’L’),

s(t =0) = so.

where ;
P

-~ rTipt

and Py(z), so given i. c.
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Dimensionless input data

L,=0 L= -1
T,=0,8525 T,=1
so=—0,8  T(so) =0,9705
Py=0,2818 Ph(t=0)=1
a=00768 j3=0.0392

Table: Larderello simulation with diffusive scaling time

Pressure initial condition

Py(z) = P, — (1 — P,)(~0,2 + z).
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Vapour pressure w.r.t. depth

Pressure w.r.t. depth x at different times. The domain of
definition increases with time (the free boundary moves
downwards).
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Vapour pressure w.r.t. time

— 08
—-0.6
—-0.4
0.2

0 01 02 03 04 05 0.6 07 08 09 1
Tempo

Pressure w.r.t. time t at different depths.
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Moving boundary

Spostamento in dir, x [m]

0
-0.005
E
= 001
j
c
E]
T
E
2
8 -0.015
3
002
-0.025
0 01 02 03 04 05 0.6 07 08 09 1
Tempo

Interface boundary vs. time: s(t) moves downwards.
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Some conclusions

At time t = 2250 years the moving boundary reaches the
bottom of the geothermal basin.

Although simplified, this analysis shows that diffusive effects
have a characteristic time of decades while the free boundary
needs thousands of years to vanish

This appears compatible with geological studies: Larderello is
an “old”basin. Thousands of years ago it was a water dominated
basin which has now turned to a vapor dominated one.
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Clapeyron pressure at the interface

P_star

1.025

1.015

1,005

0.095
0 01 0z 03 04 05 0.6 07 08 09 1

Tempo

The interface pressure increases with time since temperature
increases with depth.
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Larderello simulation with moving boundary scaling time

gdP 190 [P (OB | PN _
ot Tox|T \oz "¢T )| ™"

Pv(t = 0) = P0($)7

s(t =0) = sp.

\

Input data are the same as before
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Comparison with the quasi-steady problem

1.005

—— Modello completo - Elementi finiti

L
0.3
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A true well

Temperature [° C]
0 50 100 150 200 250 300 350

Temperature 6/9/1987
W Temperature 291811990
A Temperature 18611992

==Temperature 221411997

1° serbatoio

Falda Toscana

Quota [m]

2° serbatoio
Basamento
Metamorfico

Figure: A typical temperature profile (Bagnore, Amiata Volcano)
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Convective motions

(Matteo Cerminara, 2009) The temperature well profile suggests
the possibility of convective (efficient) motions where VT is very
small.

Navier-Stokes eqn. in porous media (Oberbeck-Boussinesq
approx.)

(V-q(x,t) =0

+ 0098 (T(x,t) = Ty, + AT) Vz — E2q(x, 1)

m

( (00)0T(x,t) = (NVT(x,1) — ucwa(x,t) - VT(x,1)

where (o C> Qb wew + (1 = @) omem, (A) 1= ¢Aw + (1 — @) A,
and p(x,t) := P(x,t) — Puy(2)
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Geometry

z=L, T=T_L-DT

T=T_L z=0
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Question: are convective cells possible?
There exists a steady conductive: (dimensionless variables)

q =0
T =1-—z2
p =-C(l-2)

where C is a given parameter.

Linear stability analysis shows that the above solution may be
unstable. Fourier modes may develop if

Cw0ugBAT Lk _ (€7 + 5°7%)°
fm () ¢

where & is the horizontal wave-number and j is any integer.

Ra :=
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Linear stability
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The r.h.s. minimum is 47%. Many physical parameters have a
well defined value so that the instability conditions rewrites
simply as

kmATL > 2.6 x 10'%m?3°C

and being At ~ 100°C and L ~ 1000m we obtain the lower limit
for permeability, above which convective motions may occur:

km > 1md

Above this value water has the necessary mobility to generate
convective cells. This appear in agreement with geological
estimates.



The MAC-GEO project
L Another simplified problem

The experimental temperature profile (Bagnore well)

Measured temperature profiles seem to validate the existence of
convective motions.

......................

There are two clearly distinct zones: one where the geothermal
gradient 7 &~ 0.15°Cm~! (conductive), the other where

N~ 0.02°Cm~" (convective): there is one order of magnitude
difference between the two values! In this conditions the linear
approach (small perturbations) cannot be applied.
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Thus the Rayleigh approach does not justify completely the heat
flux measured! Indeed it can be proved that the mean vertical
heat flux is (at first order) the same as the conductive one.

Consider then the Navier-Stokes eqn. in porous media,
(Oberbeck-Boussinesq approx.) in the steady case with the
inertial term neglected:

V-q(x,t) =0

0= —Vp(x,1) + 0ugB (T(x,1) — Tp + AT) Vz — E2q(x,1)

m

0= (ANV?T(x,t) — 0wcwq(x,t) - VT (x,1)
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Boundary conditions
Take
2:(2,9,0) = ¢.(2,y,L) =0, T(z,y,0) =T, T(zy,L)=T—AT.

It can be proved that the mean vertical heat flux (J,)g (which is
a function of z only) is preserved, being the “mean” defined as

1
<f(xaya Z)>S = S/ f(l',y,Z)dl’dy
S
where S is any sufficiently extended horizontal surface. Thus

- <)‘>8Z <T(.%', Y, Z)>S + OwCuw <qu>s = constant

conductive convective
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Idea

The transition from the convective to conductive zone is not
sharp! The temperature gradient changes smoothly accordingly
with the convective heat flux, maintaining constant the total
flux!
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L Another simplified problem

Idea

The transition from the convective to conductive zone is not
sharp! The temperature gradient changes smoothly accordingly
with the convective heat flux, maintaining constant the total
flux! One analytic solution that fits this idea is:

e = qy = 0, qg.=BI> COS(E : I‘), ri= (XvY)
T=T—nz+Trcos(§ r),
p=p + (B/A)(Tizyn2%), & =(B/D)

however this solution does not fit the boundary conditions but,

unlike the Rayleigh solution, the vertical mean convective flux is
not zero: in dimensional form

s = 03 (n+ 222}
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The extra term is just the heat transported by convective
motions. Notice that as T — 0 we get again the conductive
solution and pressure remains the same independently of
absence or presence of convective motions.

Fictitious boundary conditions:
q:(z,y,0) = qx(z,y, L) = %Tg cos(€ - r),
T(xz,y,0) =Ty + Thcos(€ - 1),
T(x,y,L) =T, —nL+ Tycos(€ - r).

These are the b.c. the would attained by the previous analytic

solution. Since they differ from the original ones, we are forced
to allow that solution only in a narrowed layer (29, 2z1) C (0,1).
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Mixing zones

Conductive zone

D
™, Mixing zone

| Vertical convective motions
|

“._ Conductive zone

It can be proved that the analytic solution is unique in the
narrower convective region. Due to the constancy of

(J2)s = —D0,(T')s + (T'q»)s =constant, in the mizing zones ¢,
decreases and 0,(T)g increases so that the boundary conditions
have time to adjust to the right ones.
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This procedure has been tested using field data. In particular

m order of magnitude of all relevant parameters fit the
measured values (for example specific discharge w is of
order 10~ m/s)

m convective motions seem to have very little influence on the
hydrostatic pressure

m the dimension of convective cells depends on the Rayleigh
number: as Ra increases new modes may grow and the cell
dimension L. decreases more and more.

m the characteristic time t.pqr = Leen/w of convective motions
is estimated to be ~ 1000 years.
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Work in progress

So far things appear easy but I didn’t mention

m The phase equilibrium stability approach

Each of these subjects (actually under investigation) would
require a dedicated lecture and even the recent literature is
controversial.

This justifies the full re-examination of the whole problem that
is at the base of the MACGEOQO project.
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Work in progress
So far things appear easy but I didn’t mention
m The phase equilibrium stability approach
m The choice of the right EOS
m The IMPES approach

The role of capillary pressure

m The numerical procedure

Each of these subjects (actually under investigation) would
require a dedicated lecture and even the recent literature is
controversial.

This justifies the full re-examination of the whole problem that
is at the base of the MACGEOQO project.
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