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Minicourse in Industrial Mathematics
Segundo Enquentro Italo–Argentino

First lecture: Dynamics of degradating slurries
in a pipe

F. Rosso

www.math.unifi.it/˜ rosso/Baires/minicorso.pdf

fabio.rosso@math.unifi.it
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What is a CWS?
A Coal Water Slurry (CWS) is a mixture of coal (up to 70% in weight), water (up to 29%)

and suitable fluidizing agents (about 1%). Coal particles are micronized with a top size of

about 250 µm and a bimodal size distribution centered at 10 and 100 µm for optimal

(maximum) packing. An industrial CWS is totally stable at rest (therefore it can be

stocked for long periods of time) and burned without needing a preliminary dehydration.

10 100µ µm m0 250

MAXIMUM PACKING

CWS structure
Math. Dept. “U.Dini” Univ. of Firenze – 13th December 2002
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Industrial interest

These characteristics make CWS an important alternative source of energy for the pro-

duction of power in electric plants. Indeed an industrial CWS is totally stable at rest as far

as both rheological properties and sedimentation are concerned. Thus the product can

be stocked for a very long period of time (years) without any significant alteration. Dur-

ing the oil crises of past decades the CWS technology has been deeply investigated and

industrially operated in some areas of the World where the abundance of coal and the

geomorphology suggested the possibility of pipelining under pressure the mixture from

the production site to the electric plant.

Math. Dept. “U.Dini” Univ. of Firenze – 13th December 2002
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Main problems

Rheological degradation: it’s a long-time effect due to shear. The apparent

viscosity reaches extremely high values and the product becomes so viscous to

be no longer pumpable in a pipe and thus useless. This problem embodies

various subproblems: we will mention only some of them

Sedimentation: it’s also a long-time effect also due to shear which is responsible

of a breaking-up the internal structure of the mixture allowing manufacturing

impurities (sand, ashes, iron oxides, . . . ) which are not stabilized by chemical

additives to settle on the bottom of the pipeline. A sedimentation bed grows up on

the bottom of the first kilometers of a pipeline eventually compromising the

optimal discharge unless the pumping operation is stopped and the conduct is

cleaned up [THIS WILL BE THE OBJECT OF THE NEXT LECTURE]

Math. Dept. “U.Dini” Univ. of Firenze – 13th December 2002
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What is degradation?

0 100 200 300 400 500 600
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6

Relative apparent viscosity at 10 s

� 1 vs. specific cumulative energy (kJ/kg) for a polish

CWS. The different marks identify mixtures with 0.5%, 0.75%, and 1.00% of dispersed

additive
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Relative apparent viscosity at 10 s 1 vs. time for two different CWS at various shear

rates. The white and green marks identify a type of mixture (Colombian CWS) at two

different shear rates (20 s 1 and 50 s 1); the other marks identify another mixture

(Russian CWS) at three different shear rates (20 s 1, 50 s 1, and 80 s 1)
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Relative apparent viscosity at 10 s 1 vs. specific cumulative energy using the same data

of the previous plot. All marks related to the same type of mixture arrange themselves on

a unique curve regardless of the operated shear rate
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Additive dynamics

The additive dynamics is one keypoint to understand rheological degradation. The whole

process can be modelled via population dynamics. Let us define A to be the % of

additive available in water, B the % of additive adsorbed by non–ionized sites on coal

particles, Y the concentration of ions adsorbed on coal particles, I the concentration of

ions in water, B̄ the maximum quantity of dispersant adsorbable on coal particles, and D

the % of “inert” additive adsorbed on coal particles.

Then the following main facts need to be pointed out:

internal frictions cause the transition B D and I Y

The transition A B occurs to replace the dispersant becoming inert

While A B is reversible, I Y and B D are not

Irreversible transitions are activated only by internal dissipation due to shear

Math. Dept. “U.Dini” Univ. of Firenze – 13th December 2002
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Additive dynamics
These remarks suggest the following set of equations for the unknowns A � B � Y � D with

initial conditions A

�

0

�

� A0, B

�

0

�

� B0, I

�

0

�

� I0, f

�

W

�

function of the dissipated power

and B∞ asymptotic value of B. Constants µ1

� µ2 are the rate of adsorption and desorption

respectively. Clearly I

�

t

� �

Y

�

t

�

� I0 and A

�

B � D
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� I0 and A

�

B � D

Ȧ � � µ1A

�

B̄ � B

� � µ2B

�

µ1

� µ2

� 0 constants

�

Ḃ � µ1A

�

B̄ � B

�

� µ2B

Ḋ � � λYD

�

λ � 0 constant

�

Ẏ � α1

�

B̄ � B � Y

� �

I0

� Y

�

� α2Y
�

α1

� α2

� 0 constants

�

˙̄B � f

�

W

� �

B∞ � B̄

�
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Once function B is determined, the CWS mixture can modeled as a Bingham fluid where

the characteristic rheological parameters are functions of B. Experimental data in a batch

reactor fit very well the model (in this case all parameters depend only on time, not on

spatial coordinates)
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CWS as a Bingham fluid

However in a pipeline the spatial dependence of rheological parameters cannot be

neglected and the problem is much more complicated.

This leads to the problem of analyzing degradation in a pipe loop.

From the rheological point of view a CWS shows all peculiarities of a Bingham fluid.

Within laminar regime (which is the standard operating condition), this means that there

exists a yield stress τ0 entering the relationship between the stress τ and the shear rate γ̇

�

τ � τ0

��� � ηB γ̇ �

where

��� �
� denotes the positive part and ηB=constant is the plastic viscosity. The main

effect of this constitutive law is that the region in which τ � τ0 undergoes no deformation,

while the Navier–Stokes equation governs the flow in the complementary region.
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Model equations

For an axisymmetric incompressible flow in a cylinder 0 � r � R driven by a sufficiently

large pressure gradient � G, we have an inner rigid core 0 � r � s

�

t

�

, while for s

�

t

� � r � R

and t � 0 the velocity satisfies the equation

ρ∂t v

� G �

1
r

∂r

�

rτ

�
ρ being the CWS density, with the usual no–slip condition at the rigid wall v

�

R � t

�

� 0. The

function s

�

t

�

is a free–boundary which has to satisfy the following conditions

∂rv

��
��
��
�

r �s

�

t

�

� 0 (absence of strain rate at the boundary)

ρ∂t v

��
��
��
�

r �s

�

t

�

� G �

2τ0

s

�

t

� (momentum balance of a unit length portion of the rigid core)

Math. Dept. “U.Dini” Univ. of Firenze – 13th December 2002
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Finding the right time scale

There is experimental evidence that the observed rheological degradation is mainly due

to the increase of τ0, the parameter ηB remaining virtually constant. Moreover the

microscopic model shows rather clearly that the rate of change of basic rheological

parameters is proportional to the dissipated power. This suggests the following law for

the local variation of τ0

∂t τ0

� ατ

��
��
� ∂rv

��
��
�

� ατ
1

ηB

�

τ � τ0
� �

where α � 0 is a given non–negative dimensionless constant.

The full free boundary problem, supplemented with initial conditions for v, s and τ0 looks

exceedingly complex.

However the variation of τ0 is very slow in the natural time scale, that is α �

1. This

amounts to say that the degradation time scale is much larger than the loop circulation

time and the problem can be approached through a quasi–steady approximation.
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Quasi–steady approximation

The main variables in the axisymmetric geometry are τ

�

r � t

�

(the shear stress),

ηB=constant (the plastic viscosity), τ0

�

r � t

�

(the yield stress), v

�

r � t

�

(the velocity), r (the

radius), G

�

t

�

(the pressure gradient), s

�

t

�

(the free surface).The mathematical model for

this case (quasi–steady approximation) is given by the following equations

(dimensionless form)

��
�����������������

��������������� �

�

τ � τ0

�
� �

�

ζ

�

4

�	

∂rv

	
� r 
 �

0 � 1

�
� t � 0

G

�

t

�

�

�

1

�

r

�

∂r

�

rτ
�

r 
 �

0 � 1

�
� t � 0

∂rv

	

r �s

�

t

� � 0 t � 0

s

�

t

�

� 2τ0
�

s
�
t

�
� t

� �

G

�

t

�

t � 0

∂t τ0

� τ
	

∂rv

	
� r 
 �

0 � 1

�
� t � 0
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Initial and boundary conditions

The boundary condition is v

�

1 � t

�

� 0 and the initial conditions are

��
�����

��� �

τ0

�

r � 0

�

� 1 � 0

�

r

�

1 �

v

�

r � 0

�

� v0

�

r

�
� 0

�

r

�

1 �
s

�

0

�

� s0

� 2

�

ζ �

(0)

where ζ � G

�

0

� � 2 and v0

�

r

�

is given by

��
�

�

v0

�

r

�

� 1 �
�

r

� 2 � 2s0
�

1 � r

�
� s0 : �

�

2

�

ζ

� �

r

�

1 �

v0

�

r

�

�
�

1 � s0

� 2 � 0

�

r

�

s0

�

(-1)
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Solving the quasi–steady problem

This system shows unexpected phenomena: the free boundary (separating the sheared

and the unsheared regions) can touch the pipe wall or a new free boundary can grow on

the wall and meet the original one in a finite time. Both cases lead to the blockage of the

pipeline. However this does not happen in real cases since, because of the significant

difference between the degradation time scale and the characteristic pipelining time, the

time needed for a CWS to be pipelined between two pumping stations is much shorter

then the time required for its rheological degradation to start.
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Main theorem

Let G

�

t

�

be continuous for t

�

0 and piecewise continuously differentiable and such that

G

�

0

�

� ζ � 2. Then we distinguish two cases:

a) Ġ 0. The inner core is not expanding, no other regions in which ∂rv 0 will

appear and the problem has a unique solution for all times

b) Ġ 0. The inner core is not contracting and three sub–cases are possible:

(i) no other rigid region will appear and s t remains less tahn 1 for all t 0

(ii) the inner core invades the whore region in a finite time and the system

comes to rest

(iii) a new rigid layer grows from the outer wall r 1; thus we have two free

boundaries, which may or may not meet after a finite time

Moreover, each free boundary of the problem has the same regularity as the function G
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Sketch of the proof

The main advantage of the quasi–steady approximation consists in having a

simple form for the stress: τ is given by τ r t rG t 2

Let s τ v be a solution of the problem. If Ġ 0, the difference

Y r t τ r t τ0 r t will remain positive in the domain s t r 1, t 0. This

can be obtained by analyzing the equation for Y :

∂tY 2r ζ G t Y r 2 Ġ t Y 0

with the initial condition Y r 0 : Y0 r ζ r 2 1. This is easy since it is a

linear ODE!

Integration gives

Y r t
exp rF t

r
2

t

0
exp rF ϑ Ġ ϑ dϑ Y0 r r s0 1 t 0

exp rF t t0 r
r
2

t

t0 r
exp rF ϑ Ġ ϑ dϑ r 2 G t s0 t t0 r

with F t
2
ζ

t

0
G ϑ dϑ t0 r sup t : G t 2 r for r 2 G t
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Sketch of the proof
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0, the difference
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will remain positive in the domain s

�

t

� � r � 1, t � 0. This

can be obtained by analyzing the equation for Y :

∂tY
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�
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G

�
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�
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�

r

�

2

�

Ġ

�

t

�
� Y

�

0

with the initial condition Y

�

r � 0

�

: � Y0

�

r

�

� ζ

�

r
�

2
�

� 1. This is easy since it is a

linear ODE!

Integration gives

Y

�

r � t

�

�
�
�����

��� �

exp

�

� rF

�

t

� �

�

r
2

t

0
exp

�
rF

�

ϑ

� �

Ġ

�

ϑ

�

dϑ �

Y0

�

r

�
�

� r 
 �

s0

� 1

�
� t � 0

exp

�

� rF

�

t � t0
�

r
� � � r

2

t

t0

�

r

� exp

�

rF

�

ϑ

� �

Ġ

�

ϑ

�

dϑ � r 
 �

2

�

G

�

t

�
� s0

�
� t � t0

�

r

�

with F

�

t

�

� 2
ζ

t

0
G

�
ϑ

�

dϑ � t0

�

r

�

� sup

�

t : G

�

t

�

� 2

�

r

�
� for r � 2

�

G

�

t

�
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Consequences

The form of the solution says that, when Ġ t 0, then Y r t 0 implies

Y r t 0 for any t t . Therefore if G is not decreasing the rigid core lies

between 0 and s t 2 G t and no new free boundary will appear

The case Ġ 0 is much more complicated and can give rise to a variety of

behaviours. Summarizing we have

1. Let s τ v be a solution of the problem. If Ġ 0 (and not identically zero

near t 0), as long as s t 1 the difference Y r t τ r t τ0 r t cannot

have a relative minumum equal to zero in the interval s t 1

2. The necessary condition for a finite time extinction or appearance of a new

free boundary is that there exists a solution t such that
t

0
exp F ϑ Ġ ϑ dϑ ζ 2.

If t is meant as the inf of these instants and it also turns out that
t

0
F ϑ exp F ϑ Ġ ϑ dϑ 2 then t is the extinction time, i.e. s t 1,

otherwise we have s t 1 and a new free boundary will be present for

t t̃, being t̃ inf t : t t Ġ t 0 . The new free boundary bounds a

rigid region s1 t r 1, provided that Ġ 0 identically for t t .
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Math. Dept. “U.Dini” Univ. of Firenze – 13th December 2002



��
��
��
��
��
��
�

� �

17/42

Consequences
The form of the solution says that, when Ġ
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�

0 is much more complicated and can give rise to a variety of

behaviours. Summarizing we have

1. Let s τ v be a solution of the problem. If Ġ 0 (and not identically zero

near t 0), as long as s t 1 the difference Y r t τ r t τ0 r t cannot

have a relative minumum equal to zero in the interval s t 1

2. The necessary condition for a finite time extinction or appearance of a new

free boundary is that there exists a solution t such that
t

0
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between 0 and s
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The case Ġ
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0 is much more complicated and can give rise to a variety of

behaviours. Summarizing we have

1. Let

�

s � τ � v

�

be a solution of the problem. If Ġ

�

0 (and not identically zero

near t � 0), as long as s

�

t

� � 1 the difference Y
�

r � t
�

� τ

�

r � t

�

� τ0

�

r � t

�

cannot

have a relative minumum equal to zero in the interval

�

s
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t

�
� 1

�

2. The necessary condition for a finite time extinction or appearance of a new

free boundary is that there exists a solution t

�

such that
t

�

0
exp

�

F

�

ϑ

� �

Ġ

�

ϑ

�

dϑ � ζ � 2.

If t

�

is meant as the inf of these instants and it also turns out that
t

�

0
F

�

ϑ

�

exp

�

F

�

ϑ

� �

Ġ

�

ϑ
�

dϑ �

� 2 then t

�

is the extinction time, i.e. s

�

t

� �

� 1,

otherwise we have s
�

t
� � � 1 and a new free boundary will be present for

t � t̃, being t̃ � inf
�

t : t � t

�
� Ġ

�

t

� � 0

�

. The new free boundary bounds a

rigid region s1
�

t
� � r � 1, provided that Ġ

�
� 0 identically for t � t

�

.
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Qualitative properties of the solution

The velocity of the flow is given by

v

�

r � t

�

� 4
ζ

1

r

�

Y

�

u � t

� � � du

Thus we can easily predict whether the system will come to rest

If G attains the value 2 for some t t , then the motion becomes extinct at some

earlier time

If G is bounded, the velocity field tends to zero as t ∞ uniformly in 0 1

In the following class of decreasing functions

G t ζ ε 1 exp β t

for any ε 0 ζ 2 we can select β 0 in such a way that there is no finite

stopping time
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Qualitative properties of the solution

The velocity of the flow is given by
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�
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Qualitative properties of the solution

Let Ġ

�

t

� �

0. When the new free boundary is formed each of the following cases

can occur:

(a) the new and the old free boundary meet after a finite time, i.e. s te s1 te
for some finite te; in this case te is the stopping time

(b) the two free boundaries may stay separate for ever and the velocity field

never vanishes identically
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Initially Newtonian CWS

Some CWS show no yield stress before stress–induced degeneration. For these we can

prove that

If Ġ 0 the flow has no free boundaries. If Ġ 0 and t exists such that

t

0
exp F ϑ Ġ ϑ dϑ 2 0

then a rigid layer is formed ar r 1 for t t̄ defined by

t̄ inf t : t T Ġ t 0

An inner rigid core is never present

A necessary and sufficient condition for finite time extinction of the flow is that G

vanishes. The extinction time is the first zero of G
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then a rigid layer is formed ar r � 1 for t � t̄ defined by

t̄ � inf

�

t : t � T
�

� Ġ

�

t

� �

0

�
�

An inner rigid core is never present

A necessary and sufficient condition for finite time extinction of the flow is that G

vanishes. The extinction time is the first zero of G
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�

t

� �

0

�
�

An inner rigid core is never present

A necessary and sufficient condition for finite time extinction of the flow is that G

vanishes. The extinction time is the first zero of G

Math. Dept. “U.Dini” Univ. of Firenze – 13th December 2002



��
��
��
��
�

� �

21/42

Solutions

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

RIGID

CORE SHEARED

REGION

Stationary free boundary. In this case G

�

t

�

� ζ constantly so that s

�

t

�

� 2

�

ζ . The figure

refers to ζ � 4 and shows the level curves of Y . The thick line rapresents the free

boundary
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Solutions

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

RIGID

MOTION
SHEARED

MOTION

Plot of the velocity field and its level lines for the previous figure
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Solutions

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2

0.25

RIGID

CORE

SHEARED

REGION

One free boundary only, hitting the outer wall in a finite time. In this case

G

�

t

�

� 5exp
�

� 4t
�

. The thick line rapresents the free boundary
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Solutions

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

RIGID
MOTION

SHEARED

MOTION

VELOCITY=0

Plot of the velocity field and its level lines for the previous figure
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Solutions

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

RIGID

CORE

SHEARED

REGION

Appearance of a second free boundary. Here we take G

�

t

�

� 30exp

�
� 2t

�

. The two free

boundaries meet with infinite speed.
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Solutions

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

VELOCITY=0

RIGID
MOTION

SHEARED

MOTION

Plot of the velocity field and its level lines for the previous figure
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Solutions

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

RIGID

CORE

SHEARED

REGION

Initially Newtonian CWS. In this case τ0

�

0

�

� 0 and G

�

t

�

� 0 � 5exp

�
� t

� �

1 � 5. A rigid shell

is formed at the outer boundary at time t

� � 0
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Solutions

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

VELOCITY=0

SHEARED
MOTION

Plot of the velocity field and its level lines for the previous figure
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Solutions

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

3.5

RIGID
CORE

SHEARED
REGION

The inner core grows as t � � ∞ but the free boundary never hits the outer wall
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Another interesting problem

When degradation starts, how long can we pipeline a CWS until the viscosity is so high

that the is a serious rirk to break the pumping system? In other words:

since a constant flow rate cannot be maintained forever, how long is the the critical

interval of time between the beginning of the degradation process and the moment in

which the yield stress is, say, two or three times the initial one?

This is important from the industrial point of view, since if the critical interval is very short

(say few hours) safety reasons suggest to stop the system very well in advance.

Fortunately the interval can be estimated in a couple of days which makes the risk of

overloading the pumping system very low.
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The constant flow rate problem
Recall that the velocity field is given by

v

�

r � t

�

� 4
ζ

1

r
Y�

�

u � t

�

du;

Equivalent forms of the volumetric flow rate are listed below

Q

�

t

�

� 2π
1

0
rv

�

r � t

�

dr � 4π
ζ

1

0
r2Y�

�

r � t

�

dr � �

1

s

�

t

� r
2 ∂v

∂ r

�

r � t

�

dr

To keep Q

�

t

�

� Q

�

0

�

we need a growing pressure gradient

Theorem Let

�

v � τ � τ0

� s

�

be a smooth solution of the free boundary value problem corre-

sponding to a smooth pressure gradient � G

�

t

�

over the interval

�

0 � T

�

and such that Q

�

t

�

�

Q

�

0

�

for all t 
 �

0 � T

�

. Then G is strictly increasing on

�

0 � T

�

. Moreover if lim
t � T

G

�

t

� � � ∞ the

T cannot be equal to

� ∞.
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Generalized Buckingham equation

It is not difficult to see that for a Bingham fluid with constant rheological parameters (τ0

and ηB) the request Q

�

t

�

� Q

�

0

�

implies that G must solve a forth degree algebraic

equation.

This is no longer true in our case: when τ0 and ηB depend on time, condition Q

�

t

�

� Q

�

0

�

implies that G must solve a complicated nonlinear integral equation that we called

Generalized Buckingham equation.

Let’s see how this equations looks like:

��
���

� �

G �

��� � t

0
��

1
�

G �

�
G

� � �

2

�

G

� �

du

�

�

G � G � Id (Id is the identity map in R)

where

���

is the inverse function of

� �

x

�

� ζ
16

�

log

�

x
ζ

�
�

4

�

x

� 4 � ζ � 4 �
	

for x 
 �

ζ � ∞

�

(recall that ζ � 2

�

and
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Generalized Buckingham equation

�

1

�

G �

�

G

� �

u

�

� 1
2

so

s

�

u

� r
4e

� rF

�

u �to

�

r

� � �

G

�

u

�

erF

�

u

�

�

2
r

erF

�

to

�

r

� �

�

2
ζ

u

to

�

r

� rG2 �

s

�

erF
�

s
�

ds

�

dr �

�

2

�

G

� �

u

�

� G

�

u

�
�

1 � s5
o

�

10
�

1

s0

r3e

� rF

�

u

�

dr

�

1
ζ

u

0

1

so

r5G2 �

s

�

e

� r

�

F

�

u

�
� F

�

s

� �

dr ds �
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Solving the Buckingham equation
Let Ck � �

0 � T

� �

denote the Banach space of functions continuous up to their k-th derivative

over

�

0 � T

�

, for a fixed finite T � 0, equipped with the usual norm

	 	
�

	 	

k. For given

M1

� M2

� 0 and K � 0 such that

K � g

�

ζ

�

where

g

�

ζ

�

�

4

�
� 2

� ζ

� �

4

�

4ζ �

3ζ 2 �

2ζ 3
�

5

�

2

� ζ

� �

4

� ζ 2

�

� 0 �

ζ � M1,

It is easy to check that Ġ

�

0

�

� g

�

ζ

�

for all ζ � 2. We define

�
�

�

f 
 C1 � �

0 � T

� � �

	 	

f

	 	

0

�

M1

�
	 	

ḟ
	 	

0

�

M2

� ḟ

�

K � f

�

0

�

� ζ � ḟ

�

0

�

� g

�

ζ

� �

It is evident that

�

is a closed convex subset of C1 � �

0 � T

� �

.
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Main result

Theorem For a sufficiently small T

�

M1

� M2

� K � ζ

�

, there exists one and only one solution

G

�

t

�

of the generalized Buckingham equation in

�

.

The proof is based on a fixed point argument applied to

�

: we first prove that

�

maps

�

into itself and then that

�

is a contraction mapping provided that T is sufficiently small.
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Lower estimate of the critical time

A numerical algorithm to calculate the solution G

�

t

�

predicted by Theorem 2 is not easy,

due mainly to the complicated structure of the term

�

1 which involves
�

G in a nasty way.

Here we confine ourselves to determine a supersolution G

� �

t

�

, that is a function which

bounds from above the unique solution of the original integral equation. This

supersolution does not exists for all times either but the upper bound T

�

of its interval of

existence gives an estimate from below of the analogous value of T relatively to the true

solution G

�

t

�

. We shall find out that the dimensional value of T

�

is of order 2 days and this

is greatly significant from a physical point of view, particularly, when compared with some

field data. Indeed in a commercial pipeline, the mean velocity is usually of order 1 m

�

sec ;

therefore the fluid can be pumped for more than 150 Km before reaching a critical value

of the pumping apparatus.
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Lower estimate of the critical time
First of all notice that

	 �

1

� �

2

	 � �

1

�

10

�

G

�

t

� �

1

�

s5
o

�

esoF

�

t

�

� 1

� �

: �

� �

G

�

t

�
� F

�

t

� �
�

Moreover we have

��� �

���† � where we defined

�† � ζ
16

�

log

� x
ζ

�

�

4
ζ 4

�
�

Consider now the equation

G

�

�

���†

�

t

0

� �

G

� �

u

�
� F

� �

u
� �

du
�

�

where F

� �

t

�

�
�

2

�

ζ

� t

0
G

� �

u

�

du. Since

��† �

x
�

� ζ exp

� �

4

�

ζ 4 � � �

16x

�

ζ

� �
�

we immediately get that the functions G

�
� F

�
obey the following initial value problem

��
�����������

��������� �

Ġ

�

� 8soG

� � �

G

�
� F

� �
�

Ḟ
�

� soG

�
�

G

� �

0

�

� ζ exp

� 4
ζ 4

�
�

F

� �

0

�

� 0 �
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Numerics
We solved the differential system numerically for various values of so

� 2
ζ . The table

below shows some values of the critical time of existence of G

�

. Numerical calculations

show clearly that the critical time of existence T

�

of G

�

increases with ζ ; there is also a

robust evidence that a finite limit T̂ � lim
ζ �� ∞

T

� �

ζ

�

exists. The asymptotic value of T̂

appears to be �
� 625.

ζ T

�

3 � 531998

4 � 600767

5 � 618233

6 � 622724

8 � 624565

10 � 624865

20 � 62499

50 � 624992
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Why T̂ � 625?
The asymptotic value of T is consistent with the limit case in which the fluid is initially

Newtonian, that is the rigid core is absent at t � 0 (i.e. so

� 2

�

ζ � 0) but may develop

later at some t � 0. Indeed the expression of Y

�

r � t

�

is in this case

Y

�

r � t

�

� exp

�

� rFN

�

t

� � r
2

�

t

0
exp

�

rFN

�

θ

� �

Ġ

�

θ

�

dθ �

2
�

�

Hence Y � 0 everywhere if Ġ

�

0. Thus instead of full Buckingham equation we have

now the following

G

�

t

�

� 2

� 4
5

t

0
G2 �

s

�

ds

� 4
t

0
G

�

s

� 1

0
r5

�

s

0
G2 �

u

�

er

�

FN

�

u

�
� FN

�

s

� �

du

�

dr ds

where now

FN

�

t

�

�

t

0
G

�

ξ

�

dξ �
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A remarkable result
Sincd in the initially Newtonian case the generalize Buckingham equation does not

involve

�

G (the inverse of G), a supersolution as well its critical time can be calculated

exactly: indeed the r.h.s. of the integral equation can be estimated by simply canceling

out the second integral term. Thus a supersolution can be obtained from the equation

G

�

� 2

� �

4

�

5

� t

0

�

G

� �

u

� � 2 du

whose solution is G

� �

t

�

� 10

�

5 � 8t

� � 1 with critical time T
�

� 5

�

8 � � 625

All this considered, it is not surprising that T̂ might tend to 5

�

8 as so tends to zero (i.e. as

ζ tends to infinity), for all supersolutions. Indeed we can prove the following

Theorem Let T

� �

ζ

�

be the critical time of existence of a supersolution G

� �

t

�

. Then

lim
ζ � ∞

T
� �

ζ

�

� 5

�

8

and
dT

�

dζ

� 0 �
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Conclusions
The adimensional values of T

�

shown before can be converted in dimensional units.

Typical reference field values are

R � 25cm � Vo

� 80cm � s

� 1 � α � 10

� 6 �

τo

� 5Pa � � Γo
�

� 2Pa � cm

� 1

Using these values we get
G

� �

0

� �

Bar � Km

� 1 �

T

� �

Hour

�

� 5 37 � 6

� 6 44 � 3

� 8 50

� 9 51

1 51 � 5

1 � 2 51 � 9

1 � 6 52 � 04

2 52 � 07

4 52 � 08

10 52 � 08
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Safety operation regime

To make an example let us consider 1 Bar � Km

� 1 to be an industrially significant value

of G

�

0

�

. According to the model, once degradation has begun, a flow velocity of � 8 m �

sec

� 1 can be maintained for other 31 hours (or, equivalently, for � 90 Km of pipeline) by

increasing the pressure gradient up to a value of 2 � 5 Bar � Km

� 1 which is still a reasonable

value of G

�

t

�

. The corresponding flow rate is Qo
� πR2Vo

� 565 m3h

� 1. The values we

found are definitely those of industrial interest. Indeed field data provided by Snamprogetti

and based on the operating pipeline Belovo-Novosibirsk, indicate a flow rate Q � 565 m3 �

h

when the driving pressure gradient G is about 1 Bar

�

km and a Russian CWS with � 62%

of solid concentration is used.
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