
� �

Minicourse in Industrial Mathematics
Segundo Enquentro Italo–Argentino

Third lecture: Dynamics of liquid–liquid
dispersions

F. Rosso

www.math.unifi.it/˜ rosso/RICERCA/MinicorsoBA/minicorso-2.pdf

fabio.rosso@math.unifi.it

Math. Dept. “U.Dini” Univ. of Firenze – 13th December 2002



�
�

�
�

�
�

�
�

�
�

�
�

� �

2/40

Industrial interest of dispersions

Many processes in nature are described in terms of particle systems governed by

coagulation fragmentation interaction. Among them
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Industrial interest of dispersions

Many processes in nature are described in terms of particle systems governed by

coagulation fragmentation interaction. Among them

oil pipelining (oil/water or water/oil emulsions)
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Industrial interest of dispersions

Many processes in nature are described in terms of particle systems governed by

coagulation fragmentation interaction. Among them

oil pipelining (oil/water or water/oil emulsions)

food industry (suspensions, emulsions of various type)
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Industrial interest of dispersions

Many processes in nature are described in terms of particle systems governed by

coagulation fragmentation interaction. Among them

oil pipelining (oil/water or water/oil emulsions)

food industry (suspensions, emulsions of various type)

photography (emulsions involving chemical reactions)
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Industrial interest of dispersions

Many processes in nature are described in terms of particle systems governed by

coagulation fragmentation interaction. Among them

oil pipelining (oil/water or water/oil emulsions)

food industry (suspensions, emulsions of various type)

photography (emulsions involving chemical reactions)

painting (suspensions with chemical additives)
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Industrial interest of dispersions

Many processes in nature are described in terms of particle systems governed by

coagulation fragmentation interaction. Among them

oil pipelining (oil/water or water/oil emulsions)

food industry (suspensions, emulsions of various type)

photography (emulsions involving chemical reactions)

painting (suspensions with chemical additives)

hematology (coagulation of cells)
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Industrial interest of dispersions

Many processes in nature are described in terms of particle systems governed by

coagulation fragmentation interaction. Among them

oil pipelining (oil/water or water/oil emulsions)

food industry (suspensions, emulsions of various type)

photography (emulsions involving chemical reactions)

painting (suspensions with chemical additives)

hematology (coagulation of cells)

atmospheric physics (clouds and fog formation)
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Industrial interest of dispersions

Many processes in nature are described in terms of particle systems governed by

coagulation fragmentation interaction. Among them

oil pipelining (oil/water or water/oil emulsions)

food industry (suspensions, emulsions of various type)

photography (emulsions involving chemical reactions)

painting (suspensions with chemical additives)

hematology (coagulation of cells)

atmospheric physics (clouds and fog formation)

polymers (break-up and recombination of long chains)
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Industrial interest of dispersions

Many processes in nature are described in terms of particle systems governed by

coagulation fragmentation interaction. Among them

oil pipelining (oil/water or water/oil emulsions)

food industry (suspensions, emulsions of various type)

photography (emulsions involving chemical reactions)

painting (suspensions with chemical additives)

hematology (coagulation of cells)

atmospheric physics (clouds and fog formation)

polymers (break-up and recombination of long chains)

astrophysics (simulation of star and galaxy formation)
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Industrial interest of dispersions

Many processes in nature are described in terms of particle systems governed by

coagulation fragmentation interaction. Among them

oil pipelining (oil/water or water/oil emulsions)

food industry (suspensions, emulsions of various type)

photography (emulsions involving chemical reactions)

painting (suspensions with chemical additives)

hematology (coagulation of cells)

atmospheric physics (clouds and fog formation)

polymers (break-up and recombination of long chains)

astrophysics (simulation of star and galaxy formation)

aerosol (liquid or solid particles suspended in a gas)
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The apparatus

Baffle

impeller
Blade

Costant temperature bath

Sampling Injection

Geometry of a batch reactor with blade impeller
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Motion pictures
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Discrete and continuous models

where

is a convection–diffusion operator

r describes the kinetic behaviour of the process

f is the particle–size distribution function

v is the volume (of the cluster)
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Discrete and continuous models

— CHARACTERISTIC VARIABLE: cluster size (or volume or number of particles) which

may be either a positive real number (continuous models) or a positive integer

(discrete models) depending on the physical context

where

is a convection–diffusion operator

r describes the kinetic behaviour of the process

f is the particle–size distribution function

v is the volume (of the cluster)
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Discrete and continuous models

— CHARACTERISTIC VARIABLE: cluster size (or volume or number of particles) which

may be either a positive real number (continuous models) or a positive integer

(discrete models) depending on the physical context

— AIM OF THE THEORY: to describe the particle size distribution as a function of time

and space as the system undergoes changes due to various physical influences

where

is a convection–diffusion operator

r describes the kinetic behaviour of the process

f is the particle–size distribution function

v is the volume (of the cluster)
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Discrete and continuous models

— CHARACTERISTIC VARIABLE: cluster size (or volume or number of particles) which

may be either a positive real number (continuous models) or a positive integer

(discrete models) depending on the physical context

— AIM OF THE THEORY: to describe the particle size distribution as a function of time

and space as the system undergoes changes due to various physical influences

— CHARACTERISTIC EVOLUTION EQUATION: formally

∂t f

� � �

x � t � v

�

f � r

�

x � t � v � f
�

� x � IRn � t � 0

f

�

x � 0 � v

� � f0

�

x � v

�
� x � IRn

where

is a convection–diffusion operator

r describes the kinetic behaviour of the process

f is the particle–size distribution function

v is the volume (of the cluster)
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Discrete and continuous models

Moreover
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Discrete and continuous models

Moreover

f

�

x � t � v

��

0 (to be proved for every model for consistency)
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Discrete and continuous models

Moreover

f

�

x � t � v

��

0 (to be proved for every model for consistency)

X

v1

v0

f

�

x � t � v

�

dv dx is the total number of particles with volume belonging to the

interval

�

v0

� v1

� � IR

�

and being at time t contained in the space region X � IRn
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Discrete and continuous models

Moreover

f

�

x � t � v

��

0 (to be proved for every model for consistency)

X

v1

v0

f

�

x � t � v

�

dv dx is the total number of particles with volume belonging to the

interval

�

v0

� v1

� � IR

�

and being at time t contained in the space region X � IRn

The measure dv is either the Lebesgue on IR
�

(continuous models) or the

counting measure on ˙IN : � �

1 � 2 � 3 �� � �

�

(discrete models). In the latter case the

integrals with respect to dv reduce to sums
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The diffusive–convection term

� �

x � t � v

�

f : � � div

�

A

�

x � t � v

�

grad f

� �

a

�

x � t � v

�

f

�

� �

b

�

x � t � v

��
� grad f

�

a0

�

x � t � v

�

f

Symbols:

A x t v —- diffusion matrix (depends in a known way by the temperature field

T x t which may be unknown so it needs to be determined by coupling to the

heat equation.)

a —- describes the particle transport due to gravitational, electrical or thermal

fields (determined by a set of pde coupled to the main reaction–diffusion system)

b —- is the velocity of the fluid (if particles are being suspended in a flowing fluid).

The whole systems needs to be also coupled to the Navier-Stokes equations

a0 —- adsorption rate
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Interesting problems

The whole system appears exceedingly complicated! However in many cases of physical

interest T ,

�

a, and

�

b can be thought of as given.

For example if we assume that the suspended particles have no effect on the velocity dis-

tribution (as in low aerosol concentration) then we can solve the Navier–Stokes equation

for

�

b independently of the other equations.
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Problems to be studied

to prove the well–posedness of the initial value problem both in absence and in

presence of diffusion

to see if the continuous models are the limit (in some sense) of discrete ones

to identify the asymptotic size distribution function via the steady state equation

in case of instability of the asymptotic configuration, to have a model for phase

separation against gravity at rest (when the final product is stored for long time)

or against the combined action of gravity and shear

to check the physical consistency of the model
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State of the art I

Most of the mathematical research focuses on discrete models (basically without diffu-

sion) (many papers since von Smoluchowski [1917], Chandrasekhar[1943],. . . , Ball &Carr

[1990], Bénilan & Wrzosek [1997]). The main system reduces to an infinite system of or-

dinary integro–differential equations. Works with diffusion taken into account are very re-

cent (Laurençot & Wrzosek [1998], Amann [2000]). In these papers

� �

x � t � v

�

f � �a

�

v

�

∇2 f

with a

�

v

�

being non–negative constants for v � ˙IN. Main interests are existence, unique-

ness, asymptotic behaviour under various functional hypotheses
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State of the art II

Much less seems to be known for the case of continuous models (i.e. dv is the Lebesgue

measure) without diffusion. Global existence and uniqueness proved by Melzak [1957]

with kernels supposed to be symmetric, positive and bounded. Other results (with differ-

ent methods) obtained by Aizenman & Bak [1979], McLaughlin, Lamb & McBride [1997–

1998] Dubowski & Stewart [1996]
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State of the art III

All these papers allow v to run from 0 to

�∞ and claims that this — which is clearly a

mathematical abstraction — is made for convenience and does not influence physical

models since it can be always assumed that all the relevant kernels and coefficients

vanish identically for sufficiently large or small values of v

Unbounded kernels and infinite domains of integration enhance the mathematical

difficulties considerably

In all these models — unless suitable ad–hoc assumptions are made on the kernels and

the asymptotic decay of solutions — the conservation of volume may be violated, even for

isolated systems (Simons [1983])!
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State of the art IV

The failure of the volume conservation law does not occur if v is allowed to ran in a finite

interval

To keep v in a finite interval we should need some new physical mechanism able to control

the growth of large particles. One could say (as Amann [2000]) that the coalescence ker-

nel cuts off to zero at a critical upper bound or that the breakage kernel becomes singular

there. However he former approach is quite unphysical, the latter destroys particles close

to criticality but it doesn’t affect at all the coalescence of small drops leading to droplets

above criticality
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What the physics says?

The two key processes are coalescence and breakage

COALESCENCE

a) collision does not imply coalescence

b) usually binary

c) evidence of a critical size vmax for merging droplets (droplets with v vmax are

unstable at any time)

BREAKAGE

a) several different mechanisms (by elongation, pressure fluctuation, drop–eddy

collision, erosion)

b) usually multiple

c) experimental evidence of a critical size vmin for breaking droplets (droplets

with 0 v vmin are stable at any time)
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Facts about coalescence

Coalescence modes:

— by embedding and squeezing in one eddy

— drops drawn together by asymmetric bombardment by small eddies

— by shear coalescence (relatively slow motion)

Kumar, Kumar, Ghandi [1993]
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Coalescence rate

� Tsouris and Tavlarides [1994]

Coalescence rate � nmn jR

�

dm � d j

�

λ

�

dm � d j

�

R � collision frequency

� κ1
ε1

�

3

1

� ϕ

�

dm

�

d j

� 2

�

d2

�

3
m

�

d2

�

3
j

� 1

�

2

λ � coalescence efficiency

� exp

�
� �κ2

µcρcε
σ 2

�

1

� ϕ
�

3

dmd j

dm

�

d j

4

�
�

Remark. Even if λ � 0 as
dmd j

dm

�

d j

� � ∞, we can fix the product dmd j letting dm become

large and d j become small (large droplets can grow at the expense of small ones).
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Some Remarks About Breakage

� Tsouris and Tavlarides [1994]

Possible breakage mechanisms:

Elongation in a shear flow field (Taylor [1934])

Pressure fluctuations in turbulence (Hinze [1955])

Drop–Eddy collisions (Coulaloglou and Tavlarides [1977])

Erosive Breakage (stripping by turbulence)

MOVIE 1 MOVIE 2 MOVIE 3

Breakage can be either binary or multiple. Erosive breakage generates a large number

of very small droplets. Breakage rate is always an average.
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Some breakage rate formulas

� Coulaloglou and Tavlarides 1977

break. rate � κ1
ε1

�

3

�

1

� ϕd

�

d2

�

3
exp

�

�κ2
σ

�

1

� ϕ

� 2

ρdε2

�

3d5

�

3

�
(independent of the breakage mode) where d � drop diameter σ � inter-facial tension

ρd

� density of dispersed phase ε � energy dissipation rate ϕd
� volume fraction of

dispersed phase (hold–up) κ1

� κ2

� constants

PSfrag replacements

break. rate

drop diameter
very flat

Breakage rate vs. drop size according Coulaloglou and Tavlarides

Disadvantages: existence of a maximum, positive for all d (even very small drops could

break against experimental evidence)

Narsimhan et al. (1980,1984)
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We3 2 v
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i

1 78

where v drop volume Di impeller diameter We Θ2ρD3
i σ 1 Weber number Θ

agitation speed

Disadvantage: not easy to define the size of the largest stable drop (that we called vmin)

Diameter of the largest stable drop (Shinnar [1961])

dstable cWe 0 6Di
µ
µc

where µ µc 1 2 5ϕ
µd 0 4µc

µd µc
(Taylor [1932]) ( c continuous phase,

d dispersed phase dispersion
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drop volume

v1 28

Breakage rate vs. drop size according to Narsimhan et al. [1980,1984]
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dstable
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� �
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Heuristic conclusions

In any case we have to answer the question:

what is the maximum size of the drops in a dispersion?

Experimental evidence: there is a maximum size depending on the agitation speed

Not much attention has been devoted to explaining the maximum size (the practical

relevant quantity is dstable, that is the size of unbreakable drops)

Conjecture: reduced coalescence efficiency for large drops is not enough to account for

the existence of a maximum drop size.

Thus we need one more mechanism (in addition to coalescence and breakage)

This leads naturally to a new mechanism that we called volume scattering (Fasano &

Rosso [1998,2000,2001,2002], Mancini & Rosso (num. simulations) [2002], Borsi (gen-

eralizes our model [2000]), Walker (generalizes our model [2001]))
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Mathematical set–up

� THE KINETIC TERM ACCORDING WITH THE CLASSICAL
THEORY

We neglect — for simplicity — diffusion and refer directly to continuous models for

liquid–liquid dispersions in a batch reactor so the basic reactions (classically) are

“coalescence” and “breakage”

We assume

— droplets uniformly distributed in the reactor (thus f
�

v � t

�

does not depend on

spatial coordinates) (thus no diffusion!).

— whole system isolated (thus no heat or mass exchange!).

Classical model for the distribution function f
�

v � t
�

(per unit volume), with no diffusion and

mass or heat exchange

∂ f
∂ t

� Lcoal f

�

Lbreak f (0)

where
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Mathematical set–up
— coagulation (or coalescence) operator (τc coal. kernel, symmetric:

τc

�
� � a � b

� � τc

�
� � b � a

�

)

Lcoal f : � 1
2

v

0
τc

�

t � w � v � w

�

f

�

w � t

�

f

�

v � w � t

�

dw

� �� �

gain

� f

�

v � t

�

� ∞

0
τc

�

t � v � w

�

f

�

w � t

�

dw

� �� �
loss

— fragmentation (or breakage) operator (α breakage frequency, β probability density

of splitting w � �

v � w � v

�

)

Lbreak f : �

�∞

v
α

�
t � w

�
β

�

t � w � v

�

f

�

w � t

�

dw

� �� �

gain

� α

�

t � v

�

f

�

v � t

�

� �� �

loss

— notice: v � �

0 � � ∞

�

!
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Drawbacks of the classical model

— In a practical experiment we deal with systems of finite volume. Thus drops with

arbitrarily large size are physically meaningless!

— THUS WHY v 0 ∞ ? Simply because the total volume of the dispersed phase

is so much greater that the average size of droplets that the definition of f is

usually extended to the whole IR since it is expected that even if the support of f

— as predicted by the main balance equation equation — is not bounded, the

contribution of f for large values of v will be totally negligible

— This point of view looks reasonable within the mathematical community and

commonly accepted
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— as predicted by the main balance equation equation — is not bounded, the

contribution of f for large values of v will be totally negligible

— This point of view looks reasonable within the mathematical community and

commonly accepted
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Drawbacks of the classical model

— However the above picture misses one fundamental feature of the process:

EXPERIMENTS show there exists a small upper bound vmax for v (depending on

the agitation speed) beyond which no drop is observed!

— THUS WHAT HAVE WE TO DO?

— For example we can allow the breakage kernel to become singular at a given

critical volume

— BUT THIS DOES NOT SOLVE THE PROBLEM!

— WHY? Because it is unphysical, it is only a “mathematical trick” and finally – more

significantly – because the coalescence kernel is not touched by this procedure

and droplets are not smart enough to stop their coalescence if the resulting drop

would turn out to be above the admissible volume

— Also recall that Simons’ counterexample works only if v 0 ∞ and if this is the

case also the steady–state equations leads to unacceptable conclusions!
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Our suggestion

It seems more physical to admit that when two droplets coalesce to form a drop above

the critical size, the result is a virtual drop that is totally unstable and breaks immediately

into two or more daughters, each with volume within the admissible range. The

stabilizing interaction must be a combination of the two well established mechanisms

(coalescence+breakage). By analogy with kinetic theory we called this phenomenon

volume scattering. This is meant as a third mechanism regulating the evolution of f

∂
∂ t

f � Lcoal f

�

Lbreak f
�

Lscatt f (1)
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It seems more physical to admit that when two droplets coalesce to form a drop above

the critical size, the result is a virtual drop that is totally unstable and breaks immediately

into two or more daughters, each with volume within the admissible range. The

stabilizing interaction must be a combination of the two well established mechanisms

(coalescence+breakage). By analogy with kinetic theory we called this phenomenon
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∂
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f � Lcoal f
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Lbreak f
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where Lscatt f also consists of one production and one loss term.

Consistently with this picture, in equation (1) v varies in a bounded interval.
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A general comment
The many models proposed (all based on (??) but with different choices of breakage and

coalescence kernels) have all been claimed to be consistent with experimental data

So what is the need of one more model?

The answer is simple: Lcoal Lbreak contain so many parameters that it is not surprising

that one can manage to fit experimental data

However equation (1), including volume scattering, is much closer to physics and can fit

the data too

Moreover – as we shall see – this new model DOES NOT INTRODUCE ANY NEW

PARAMETER

Indeed the scattering operator is formed with a suitable combination of coalescence and

breakage, just following its physical interpretation
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Volume scattering (a necessary interaction!)

s

PSfrag replacements

u

w

s u1

u2

un

Scattering mechanism: droplet s � u

�

w � vmax (resulting from coalescence of u and w)

is unstable and decays immediately into n “daughters” with volume � vmax

Notice: without volume scattering there is no natural mechanism in the classical model to

prevent the appearance of “large droplets”!
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Our model

— balance population equation (for binary breakage, but we recently extended that to

include multiple breakage) with an “efficiency” factor

∂
∂ t

f � ϕ

�

t

� �

Lcoal f

�

Lbreak f

�

Lscatt f
�

with

ϕ

�

t

� � ϕ

� � �

t

�
�

� �

t

� �
�

�

efficiency factor

�

� �

t

� �

vmax

0
f

�

v � t

�

dv �

�

# of drops p.u.v.

�

� �

t

� �

vmax

0
v

�

2

�

3
�

f
�

v � t

�

dv �

�

interfacial area p.u.v.

�

— coalescence operator

Lcoal f :
v 2

0
τc w v w f w t f v w t dw

f v t
vmax v

0
τc v w f w t dw

— breakage operator

Lbreak f :
vmax

v
α w β w v f w t dw α v f v t

— scattering operator

Lscatt f :
vmax

vmax v
dw

v w 2

v w vmax

τc u v w u β v w v f u t

f v w u t du f v t
vmax

vmax v
τc v w f w t dw

gain scatt. kernel

u v w u w v v w τs gain : τc u v w u β v w v

loss scatt. kernel

v w w v u v w u τs loss : τc v w β v w u

— NOTICE: in this model v 0 vmax (physically meaningful). A lower critical size vmin can

be easily included
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∂
∂ t
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t
vmax

0
f v t dv # of drops p.u.v.

t
vmax

0
v 2 3 f v t dv interfacial area p.u.v.
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v

�

2

0
τc

�

w � v � w

�

f

�

w � t

�

f

�

v � w � t

�

dw

� f

�

v � t

� vmax

� v

0
τc

�

v � w

�

f

�

w � t

�

dw

— breakage operator

Lbreak f : �

vmax

v
α

�

w

�

β

�

w � v
�

f
�

w � t

�

dw � α

�

v

�

f

�

v � t

�

— scattering operator
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�

v

�

w

� �

2

v

�
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τc

�

u � v

�

w � u

�

β

�

v

�

w � v

�

f

�

u � t
�

� f

�

v

�

w � u � t

�

du � f

�
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� vmax
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�
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�
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�
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�
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�

v
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� �

2

v

�

w � vmax
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�

u � v

�

w � u

�

β

�

v

�

w � v

�

f

�

u � t
�

� f

�

v

�

w � u � t

�

du � f

�

v � t

� vmax

vmax � v
τc

�

v � w

�

f

�

w � t

�

dw �

gain scatt. kernel

�

u � v

�

w � u

� � w

�

v � �

v � w

�

τs � gain : � τc

�

u � v
�

w � u

�

β

�

v

�

w � v

�
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— NOTICE: in this model v 0 vmax (physically meaningful). A lower critical size vmin can

be easily included
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Our model

— balance population equation (for binary breakage, but we recently extended that to

include multiple breakage) with an “efficiency” factor

∂
∂ t

f ϕ t Lcoal f Lbreak f Lscatt f

with

ϕ t ϕ t t efficiency factor

t
vmax

0
f v t dv # of drops p.u.v.

t
vmax

0
v 2 3 f v t dv interfacial area p.u.v.

— coalescence operator

Lcoal f :
v 2

0
τc w v w f w t f v w t dw

f v t
vmax v

0
τc v w f w t dw

— breakage operator

Lbreak f :
vmax

v
α w β w v f w t dw α v f v t

— scattering operator

Lscatt f : �

vmax

vmax

� v
dw

�

v

�

w

� �

2

v

�

w � vmax

τc

�

u � v

�

w � u

�

β

�

v

�

w � v

�

f

�

u � t
�

� f

�

v

�

w � u � t

�

du � f

�

v � t

� vmax

vmax � v
τc

�

v � w

�

f

�

w � t

�

dw �

gain scatt. kernel

�

u � v

�

w � u

� � w

�

v � �

v � w

�

τs � gain : � τc

�

u � v
�

w � u

�

β

�

v

�

w � v

�

loss scatt. kernel

�

v � w

� � w

�

v

u v w u τs loss : τc v w β v w u

— NOTICE: in this model v 0 vmax (physically meaningful). A lower critical size vmin can

be easily included
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Our model

— balance population equation (for binary breakage, but we recently extended that to

include multiple breakage) with an “efficiency” factor

∂
∂ t

f ϕ t Lcoal f Lbreak f Lscatt f

with

ϕ t ϕ t t efficiency factor

t
vmax

0
f v t dv # of drops p.u.v.

t
vmax

0
v 2 3 f v t dv interfacial area p.u.v.

— coalescence operator

Lcoal f :
v 2

0
τc w v w f w t f v w t dw

f v t
vmax v

0
τc v w f w t dw

— breakage operator

Lbreak f :
vmax

v
α w β w v f w t dw α v f v t

— scattering operator

Lscatt f : �

vmax

vmax

� v
dw

�

v

�

w

� �

2

v

�

w � vmax

τc

�

u � v

�

w � u

�

β

�

v

�

w � v

�

f

�

u � t
�

� f

�

v

�

w � u � t

�

du � f

�

v � t

� vmax

vmax � v
τc

�

v � w

�

f

�

w � t

�

dw �

gain scatt. kernel

�

u � v

�

w � u

� � w

�

v � �

v � w

�

τs � gain : � τc

�

u � v
�

w � u

�

β

�

v

�

w � v

�

loss scatt. kernel

�

v � w

� � w

�

v � �

u � v

�

w � u

�

τs � loss : � τc
�

v � w

�

β

�

v

�

w � u

�

— NOTICE: in this model v 0 vmax (physically meaningful). A lower critical size vmin can

be easily included
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Our model

— balance population equation (for binary breakage, but we recently extended that to

include multiple breakage) with an “efficiency” factor

∂
∂ t

f ϕ t Lcoal f Lbreak f Lscatt f

with

ϕ t ϕ t t efficiency factor

t
vmax

0
f v t dv # of drops p.u.v.

t
vmax

0
v 2 3 f v t dv interfacial area p.u.v.

— coalescence operator

Lcoal f :
v 2

0
τc w v w f w t f v w t dw

f v t
vmax v

0
τc v w f w t dw

— breakage operator

Lbreak f :
vmax

v
α w β w v f w t dw α v f v t

— scattering operator

Lscatt f : �

vmax

vmax

� v
dw

�

v

�

w

� �

2

v

�

w � vmax

τc

�

u � v

�

w � u

�

β

�

v

�

w � v

�

f

�

u � t
�

� f

�

v

�

w � u � t

�

du � f

�

v � t

� vmax

vmax � v
τc

�

v � w

�

f

�

w � t

�

dw �

gain scatt. kernel

�

u � v

�

w � u

� � w

�

v � �

v � w

�

τs � gain : � τc

�

u � v
�

w � u

�

β

�

v

�

w � v

�

loss scatt. kernel

�

v � w

� � w

�

v � �

u � v

�

w � u

�

τs � loss : � τc
�

v � w

�

β

�

v

�

w � u

�

— NOTICE: in this model v � �

0 � vmax
�

(physically meaningful). A lower critical size vmin can

be easily included
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Main theorems

Theorem — The scattering operator is volume preserving (The model is consistent!)

Assume reasonable regularity conditions on β α τc (such as continuity,

boundedness,. . . ).

Main Theorem — Let f0 be a Lipschitz continuous initial size distribution on 0 vmax .

Then the Cauchy problem for the mathematical model

∂
∂ t

f ϕ t Lcoal f Lbreak f Lscatt f

(with both binary and multiple modes) is well posed. The unique solution f is

non–negative, exists for all times, continuously differentiable with respect to time and

Lipschitz continuous with respect to v

The extension to higher order modes is only a matter of increasing mathematical compli-

cation but the strategy remains the same.
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Main theorems

Theorem — The scattering operator is volume preserving (The model is consistent!)

Assume reasonable regularity conditions on β � α � τc (such as continuity,

boundedness,. . . ).

Main Theorem — Let f0 be a Lipschitz continuous initial size distribution on

�

0 � vmax

�

.

Then the Cauchy problem for the mathematical model

∂
∂ t
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�
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� �
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�
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�
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�
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non–negative, exists for all times, continuously differentiable with respect to time and

Lipschitz continuous with respect to v

The extension to higher order modes is only a matter of increasing mathematical compli-
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Main theorems

Theorem — The scattering operator is volume preserving (The model is consistent!)

Assume reasonable regularity conditions on β � α � τc (such as continuity,

boundedness,. . . ).

Main Theorem — Let f0 be a Lipschitz continuous initial size distribution on

�

0 � vmax

�

.

Then the Cauchy problem for the mathematical model

∂
∂ t

f � ϕ

�

t

� �

Lcoal f

�

Lbreak f

�

Lscatt f

�

(with both binary and multiple modes) is well posed. The unique solution f is

non–negative, exists for all times, continuously differentiable with respect to time and

Lipschitz continuous with respect to v

The extension to higher order modes is only a matter of increasing mathematical compli-

cation but the strategy remains the same.
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Existence and uniqueness

sketch of the proof
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Numerical simulations

PRELIMINARY REMARKS

— Simulations consider the binary mode only (the addition of the sole ternary mode

increases considerably the computational time!)

— Our model applies to any kind of fluid–fluid dispersion (with no chemical

reactions) since it is just based on the mechanics of breakage and coalescence.

However the selection of the parameters of the model (the coalescence kernel τc,

the breakage-frequency α and the probability distribution β ), able to fit the

effective behavior of a real dispersion, is really a hard problem.

— We used the simplest possible equations for the kernels based just on

geometrical and mechanical considerations (with an eye also towards technical

papers. . . !)
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Remarks about the integration domain

— Mathematically vmax is a fixed upper bound for the volume size of droplets

independent of time.

— In practice characteristic length scales for fo and f

�

v � ∞

�

may differ even by two or

three orders of magnitude. Define v

� �

t

� � sup supp f

�

v � t
�

; clearly v

�

depends,

besides t, on the rotational speed Θ, the geometry of the container and impeller,

the hold-up λ , the temperature and many other rheological parameters

— Mathematically we put the lower bound for the volume of breakable drops vmin

� 0

in all simulations.

— In practice vmin is given by (Weber relation)

vmin

� 10

� 4πD3We

� 1 � 8 �

�

We : � ΘD3ρc
σ

�

where σ , ρc and D are the surface

tension, the density of the dispersed phase and the impeller diameter

respectively.
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Example of stable diameters

Example: for σ � 29 dyne/cm, ρ � 1 gr

�

cm3 and D � 15 cm

Θ (in r.p.m.) vmin (in cm3)

1000 8� 09410

� 9

2000 6� 67510

� 10

3000 1� 55010
� 10

4000 5� 50510

� 11

5000 2� 46510

� 11

6000 1� 27810

� 11

7000 7� 34210

� 12

8000 4� 54010

� 12
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Consequence

v

� �

∞

� �

vmin

� 104 for Θ � 4000 � 6000 r.p.m. (which is a rather standard rotational speed

in industrial applications). This means that only with a very large sampling in the v axis

(something like 105 or more nodes in the v direction) the numerical code is able to appre-

ciate the effect of vmin

� � 0. Being all the simulations done with nodes on the v axis spaced

not less than � 01 units, we consistently set vmin
� 0.
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Asymptotic diameter

Example: for a water–in–oil dispersion, temperature � 60

�

C, high rotational speeds

( � 4000 � �6000 r.p.m.), hold-up � 60%, and an agitation time of about 15 minutes, the

top size diameter is � 60 � 70 µm. This can be identified with the asymptotic value since

there is practically no change for t � 15 minutes. This means, for this case, that we can

set v

� �

∞

� � 10

� 7 cm3; since typical values of the maximum diameter at the very early

stages of agitation is about ten times larger than the initial ones, we have

v

� �

∞

�

v

� �

0

� � 10
� 3

�
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Further consequence

Thus, in cases like the above, it is quite difficult to show graphically the evolution of f

from fo using the same length scale vmax. In these cases we did not use the effective

initial data but rather an intermediate configuration with a characteristic length much

closer to that of the expected asymptotic distribution. Physically this corresponds to a

pre–mixing period before examining the evolution.
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Initial distribution and kernels

Initial distributions fo

�

v

�

we considered:

a a Gaussian distribution function centered somewhere about the middle of the

normalized droplet size interval

fo

�

v

� � k exp

�
�

�

v � µ

� 2 �

2σ 2 �

a piecewise constant function

fo

�

v

� �
��
�

�

k if v � �

0� 2 � 0� 6

�
�

0 otherwise �

λ �

1

0
v fo

�
v

�

dv � �

0 � 1

� �

given hold-up

�
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Distribution density β
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Comparison with experiments

0.5

0.4

0.3

0.2

0.1

0.7

0.6

o

0

0 v

Evolution from a stepwise initial data (dashed) towards a final distribution (solid lines).

The asymptotic shape fits one of the experimental curves (histogram) and obtained with

a high-speed rotational impeller (ultra-Turrax at 8000 r.p.m.); vmax is about 70 µm
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Model kernel and frequency

Breakage frequency

α

�

w

� � Aminwq � q � 0 � (-8)

Coalescence kernel

τc

�

v � w

� � Ac

�

v
1
3

�

w
1
3

� 2
exp

�

�
�

v1

�

3 �
w1

�

3

v1
�

3w1

�

3

� 4

�

� (-8)

Proportionality factors depend on the rotational speed: we set Amin

�

Θ

� � AminΘ,

Ac

�

Θ

� � Ac

�

Θ � Θ

�

Θ, where Amin, Ac, Θ are constants which typically depend on the

rheology, geometry and the hold-up λ .

The expression for Ac is suggested by the fact that in most cases the coalescence

efficiency increases with Θ up to a maximum and then reduces drastically for high

rotational speeds.
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Mutual importance of all effects
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2

0
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−8
0 0.2 0.4 0.6 0.8 1

(Scattering)

(Breakage) (Coalescence)

Mutual importance at equilibrium (large t) of breakage, coalescence and scattering

terms at low rotational speed; the dashed line represents the loss term, the solid one the

gain term
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Independence of fo

�

v

�

0
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0.8

1

0 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 10

1

0

0.2

0.4

0.6

0.8

Invariance of the asymptotic configuration with respect to fo

�

v

�

: in the two cases

considered the volume of dispersed phase (hold–up) is the same but the shape of the

initial distribution is totally different
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