Serrin type overdetermined problems for Hessian equations via Isoperimetric inequality

Paolo Salani
Università di Firenze

Cortona, June 4th – 8th 2007

Joint work with B. Brandolini, C. Nitsch, C. Trombetti
Let Ω be a C^2 domain and $u \in C^2(\overline{\Omega})$

Let Ω be a C^2 domain and $u \in C^2(\Omega)$.

\[
\begin{align*}
\Delta u &= \text{constant} \quad \text{in } \Omega \\
u &= 0 \quad \text{on } \partial \Omega \\
\frac{\partial u}{\partial \nu} &= \text{constant} \quad \text{on } \partial \Omega.
\end{align*}
\]
Let Ω be a C^2 domain and $u \in C^2(\overline{\Omega})$

\[
\begin{cases}
\Delta u = \text{constant} & \text{in } \Omega \\
 u = 0 & \text{on } \partial \Omega \\
 \frac{\partial u}{\partial \nu} = \text{constant} & \text{on } \partial \Omega.
\end{cases}
\]

Ω is a ball and $u = \frac{|x|^2 - r^2}{2}$ up to a translation.
Let Ω be a C^2 domain and $u \in C^2(\overline{\Omega})$.

\[
\begin{align*}
\Delta u &= \text{constant} \quad \text{in } \Omega \\
u &= 0 \quad \text{on } \partial \Omega \\
\frac{\partial u}{\partial \nu} &= \text{constant} \quad \text{on } \partial \Omega.
\end{align*}
\Rightarrow \quad \Omega \text{ is a ball and } u = \frac{|x|^2 - r^2}{2}
\text{ up to a translation.}
\]

One physical interpretation: Consider a viscous incompressible fluid moving in straight parallel streamlines through a straight pipe of cross section Ω. Fix coordinates with the z axis directed along the pipe (i.e. parallel to the flow), then the flow velocity v is a function of (x, y) only: $\Delta v = -c$. $v = 0$ on $\partial \Omega$ is the adherence condition at pipe wall, while the tangential stress per unit area on the pipe wall is proportional to $\partial v / \partial \nu$.
Let Ω be a C^2 domain and $u \in C^2(\overline{\Omega})$

\[
\begin{cases}
\Delta u = \text{constant} & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega \\
\frac{\partial u}{\partial \nu} = \text{constant} & \text{on } \partial\Omega.
\end{cases}
\]

\[\Rightarrow \quad \Omega \text{ is a ball and } u = \frac{|x|^2 - r^2}{2}\]

One physical interpretation: Consider a viscous incompressible fluid moving in straight parallel streamlines through a straight pipe of cross section Ω. Fix coordinates with the z axis directed along the pipe (i.e. parallel to the flow), then the flow velocity v is a function of (x, y) only: $\Delta v = -c$. $v = 0$ on $\partial\Omega$ is the adherence condition at pipe wall, while the tangential stress per unit area on the pipe wall is proportional to $\partial v/\partial \nu$.

Serrin’s result states that **the tangential stress on the pipe wall is the same at all points if an only if the pipe has circular cross section.**
Let Ω be a C^2 domain and $u \in C^2(\overline{\Omega})$

$$\begin{cases}
S_k(D^2u) = \text{constant} & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega \\
\frac{\partial u}{\partial \nu} = \text{constant} & \text{on } \partial\Omega.
\end{cases}$$

Ω is a ball & $u = \frac{|x|^2 - r^2}{2}$ up to a translation.

$S_k(A)$ is the k-th elementary symmetric function of the eigenvalues of the matrix A. In particular:

$$S_1(D^2u) = \Delta u \text{ Poisson eq.}, \quad S_n(D^2u) = \det D^2u \text{ Monge-Ampère eq.}$$
Let Ω be a C^2 domain and $u \in C^2(\overline{\Omega})$

\[
\begin{cases}
S_k(D^2u) = \text{constant} & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega \\
\frac{\partial u}{\partial \nu} = \text{constant} & \text{on } \partial\Omega.
\end{cases}
\]

Ω is a ball & $u = \frac{|x|^2 - r^2}{2}$

up to a translation

\[\Rightarrow \]

+ \text{STABILITY: } \frac{\partial u}{\partial \nu} \simeq \text{const. } \Rightarrow \Omega \simeq \text{a ball} \]

$S_k(A)$ is the k-th elementary symmetric function of the eigenvalues of the matrix A. In particular:

\[S_1(D^2u) = \Delta u \text{ Poisson eq. , } \quad S_n(D^2u) = \det D^2u \text{ Monge-Ampère eq.} \]
Serrin’s proof relies on the *Moving Planes method* and requires a refined version of the *Hopf Lemma* at corners.
Serrin’s proof relies on the *Moving Planes method* and requires a refined version of the *Hopf Lemma* at corners.

After Serrin, this method has become very popular and it has been successfully refined and applied to many situations by many authors.
Serrin’s proof relies on the *Moving Planes method* and requires a refined version of the *Hopf Lemma* at corners.

After Serrin, this method has become very popular and it has been successfully refined and applied to many situations by many authors.

Selected famous papers:

Serrin’s proof relies on the *Moving Planes method* and requires a refined version of the *Hopf Lemma* at corners.

After Serrin, this method has become very popular and it has been successfully refined and applied to many situations by many authors.

Selected famous papers:

For more references:

Very short proof:

Weinberger’s proof strongly relies on linearity and still maximum principle is involved. Serrin’s proof is much more general and it can be adapted also to nonlinear equations, but it needs that $u_{\nu\nu}$ can be determined in terms of the remaining second partial derivatives.

Very short proof:

- auxiliary function $f = |Du|^2 - 2u = 1$ in $\partial \Omega$
- $f = 1$ on $\partial \Omega$ and $\Delta f \geq 0$ in Ω
- then either $f < 1$ in Ω either $f \equiv 1$ in Ω, by maximum principle
- $f < 1$ contradicts Pohožaev Identity
- then $f \equiv 1$ in $\Omega \Rightarrow \Delta f = 0$ in Ω
- then $D^2u = I$ in $\Omega \Rightarrow u$ is radial

Weinberger’s proof strongly relies on linearity and still maximum principle is involved.

Very short proof:

- auxiliary function \(f = |Du|^2 - 2u = 1 \) in \(\partial \Omega \)

- \(f = 1 \) on \(\partial \Omega \) and \(\Delta f \geq 0 \) in \(\Omega \)

- then either \(f < 1 \) in \(\Omega \) either \(f \equiv 1 \) in \(\Omega \), by maximum principle

- \(f < 1 \) contradicts Pohožaev Identity

- then \(f \equiv 1 \) in \(\Omega \) \(\Rightarrow \) \(\Delta f = 0 \) in \(\Omega \)

- then \(D^2 u = I \) in \(\Omega \) \(\Rightarrow \) \(u \) is radial

Weinberger’s proof strongly relies on linearity and still maximum principle is involved.

Serrin’s proof is much more general and it can be adapted also to nonlinear equations, but it needs that \(u_{\nu\nu} \) can be determined in terms of the remaining second partial derivatives.
Serrin’s problem for Hessian equations

Let Ω be a C^2 domain and $u \in C^2(\Omega)$

\[
\begin{align*}
S_k(D^2 u) &= \left(n^k \right) \\
u &= 0 \\
\partial u / \partial \nu &= 1
\end{align*}
\]

$\Rightarrow u = |x|^2 - \frac{1}{2}$ & $\Omega \equiv B(0,1)$

up to a translation

$S_k(A)$ is the k-th elementary symmetric function of the eigenvalues of the matrix A, i.e.

\[
S_k(A) = S_k(\lambda_1, \ldots, \lambda_n) = \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq n} \lambda_{i_1} \lambda_{i_2} \cdots \lambda_{i_k}
\]

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of $D^2 u$.

P. Salani (Università di Firenze)

Overdetermined problems via Isoperimetric Inequality

Cortona, June 2007
Let Ω be a C^2 domain and $u \in C^2(\overline{\Omega})$
Serrin’s problem for Hessian equations

Let Ω be a C^2 domain and $u \in C^2(\overline{\Omega})$

\[
\begin{cases}
 S_k(D^2 u) = \binom{n}{k} & \text{in } \Omega \\
 u = 0 & \text{on } \partial \Omega \\
 \frac{\partial u}{\partial \nu} = 1 & \text{on } \partial \Omega.
\end{cases}
\]
Serrin’s problem for Hessian equations

Let Ω be a C^2 domain and $u \in C^2(\overline{\Omega})$

\[
\begin{cases}
 S_k(D^2 u) = \binom{n}{k} & \text{in } \Omega \\
 u = 0 & \text{on } \partial \Omega \Rightarrow
\end{cases}
\]

\[
\frac{\partial u}{\partial \nu} = 1 & \text{on } \partial \Omega.
\]

\[
\frac{|x|^2 - 1}{2} & \text{ and } \Omega \equiv B(0, 1)
\]

up to a translation
Serrin’s problem for Hessian equations

Let Ω be a C^2 domain and $u \in C^2(\overline{\Omega})$

\[\begin{cases}
 S_k(D^2 u) = \binom{n}{k} & \text{in } \Omega \\
 u = 0 & \text{on } \partial \Omega \\
 \frac{\partial u}{\partial \nu} = 1 & \text{on } \partial \Omega.
\end{cases} \]

\[
\Rightarrow
\frac{u}{2} = \frac{|x|^2 - 1}{2} & \text{ and } \Omega \equiv B(0, 1)
\]

up to a translation

$S_k(A)$ is the k-th elementary symmetric function of the eigenvalues of the matrix A, i.e.

\[
S_k(D^2 u) = S_k(\lambda_1 \ldots, \lambda_n) = \sum_{1 \leq i_1 < i_2 < \ldots < i_k \leq n} \lambda_{i_1} \lambda_{i_2} \cdots \lambda_{i_k}
\]

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of $D^2 u$.
Features of the proof

No explicit use of the maximum principle

Elementary proof based on the arithmetic-geometric mean inequality

Link with Isoperimetric inequality

The proof involves:

\[W_k(D) = \frac{1}{n} \left(n - 1 \right) \int_{\partial D} C^{k-1}(\partial D). \]

Notice that \(W_1(D) = |\partial D|^n \), while, for \(k = 0 \), we set \(W_0(D) = |D| \).

A Pohožaev type identity for Hessian equation (see also K. Tso, 1990)

Many integrations by part

Newton's inequalities (the key ingredient)

Notice that we don't assume \(\Omega \) or \(u \) to be \(k \)-convex: hence we are not, by assumption, in the elliptic realm and we make no use of Maximum principle.
Features of the proof

- No explicit use of the maximum principle
Features of the proof

- No explicit use of the maximum principle
- Elementary proof based on the *arithmetic-geometric mean inequality*

\[W_k(D) = \frac{1}{n(n-1)^{k-1}} \int_{\partial D} C^{k-1}(\partial D). \]

Notice that \(W_1(D) = |\partial D|^n \), while, for \(k = 0 \), we set \(W_0(D) = |D| \).

A Pohožaev type identity for Hessian equation (see also K. Tso, 1990)

Many integrations by part

Newton's inequalities (the key ingredient)

Notice that we don't assume \(\Omega \) or \(u \) to be \(k \)-convex: hence we are not, by assumption, in the elliptic realm and we make no use of Maximum principle.
Features of the proof

- No explicit use of the maximum principle
- Elementary proof based on the arithmetic-geometric mean inequality
- Link with Isoperimetric inequality
Features of the proof

- No explicit use of the maximum principle
- Elementary proof based on the arithmetic-geometric mean inequality
- Link with Isoperimetric inequality

The proof involves:
- Quermassintegrals (or intrinsic volumes)

\[W_k(D) = \frac{1}{n^{(n-1)\choose k-1}} \int_{\partial D} C_{k-1}(\partial D). \]

Notice that \(W_1(D) = \frac{\lvert \partial D \rvert}{n}, \) while, for \(k = 0, \) we set \(W_0(D) = \lvert D \rvert. \)
- A Pohožaev type identity for Hessian equation (see also K. Tso, 1990)
- Many integrations by part
- Newton’s inequalities (the key ingredient)
Features of the proof

- No explicit use of the maximum principle
- Elementary proof based on the *arithmetic-geometric mean inequality*
- Link with Isoperimetric inequality

The proof involves:

- Quermassintegrals (or intrinsic volumes)

\[W_k(D) = \frac{1}{n \binom{n-1}{k-1}} \int_{\partial D} C_{k-1}(\partial D). \]

Notice that \(W_1(D) = \frac{|\partial D|}{n} \), while, for \(k = 0 \), we set \(W_0(D) = |D| \).

- A Pohožaev type identity for Hessian equation (see also K. Tso, 1990)
- Many integrations by part
- Newton’s inequalities (the key ingredient)

Notice that we don’t assume \(\Omega \) or \(u \) to be \(k \)-convex: hence we are not, by assumption, in the elliptic realm and we make no use of Maximum principle.
Monge-Ampère ($k = n$)

Let $n \geq 2$. Assume that Ω is a C^2 domain such that there exists a function $u \in C^2(\Omega)$ which satisfies

\[
\begin{align*}
\det D^2 u &= 1 \quad \text{in } \Omega \\
u &= 0 \quad \text{on } \partial \Omega \\
\frac{\partial u}{\partial \nu} &= 1 \quad \text{on } \partial \Omega
\end{align*}
\]

then Ω is the unitary ball and $u = \frac{|x|^2 - 1}{2}$ (up to a translation).
Let $n \geq 2$. Assume that Ω is a C^2 domain such that there exists a function $u \in C^2(\overline{\Omega})$ which satisfies

\[
\begin{aligned}
\det D^2 u &= 1 \quad \text{in } \Omega \\
u &= 0 \quad \text{on } \partial \Omega \\
\frac{\partial u}{\partial \nu} &= 1 \quad \text{on } \partial \Omega
\end{aligned}
\]

then Ω is the unitary ball and $u = \frac{|x|^2 - 1}{2}$ (up to a traslation).

Notice that we don’t assume Ω and u to be convex: the first step of our proof consists exactly in proving this.
Let $n \geq 2$. Assume that Ω is a C^2 domain such that there exists a function $u \in C^2(\overline{\Omega})$ which satisfies

\[
\begin{align*}
\text{det} D^2 u &= 1 \quad \text{in } \Omega \\
u &= 0 \quad \text{on } \partial \Omega \\
\frac{\partial u}{\partial \nu} &= 1 \quad \text{on } \partial \Omega
\end{align*}
\]

then Ω is the unitary ball and $u = \frac{|x|^2 - 1}{2}$ (up to a translation).

Notice that we don’t assume Ω and u to be convex: the first step of our proof consists exactly in proving this.

Once proved that u is convex, the overdetermined condition about $\partial u / \partial \nu$ can be read as

\[Du(\Omega) = B\]
Proof for Monge-Ampère

Integrating the equation

$$|\Omega| = \int_{\Omega} \det D^2 u \, dx =$$
Proof for Monge-Ampère

Integrating the equation

\[|Ω| = \int_Ω \det D^2 u \, dx = \int_{Du(Ω)} 1 \, dy = \]

\[\text{change } y = Du(x) \]

Let \(v \) be the conjugate function of \(u \).
Then \(v \) solves the problem

\[
\begin{cases}
\det D^2 v = 1 \\
v(y) = \langle y, Dv(y) \rangle
\end{cases}
\]
on \(\partial B \).

Notice that \(Dv(y) \) is the point on \(\partial Ω \) where the outer normal is \(y \).
Hence the boundary condition for \(v \) can be rewritten also as

\[v(y) = h_{Ω}(y), \quad y \in \partial B, \]

where \(h_{Ω} \) is the support function of \(Ω \).
Proof for Monge-Ampère

Integrating the equation

\[|\Omega| = \int_{\Omega} \det D^2 u \, dx = \int_{Du(\Omega)} 1 \, dy = \int_B 1 \, dy = |B| = \omega_n. \]
Proof for Monge-Ampère

Integrating the equation

\[|\Omega| = \int_{\Omega} \det D^2 u \, dx = \int_{Du(\Omega)} 1 \, dy = \int_B 1 \, dy = |B| = \omega_n. \]

Next we will prove that \(W_{n-1}(\Omega) = \omega_n \), hence \(\Omega \) realizes the equality in the isoperimetric inequality between \(W_0 \) and \(W_{n-1} \) and it is forced to be a ball.
Proof for Monge-Ampère

Integrating the equation

\[|\Omega| = \int_{\Omega} \det D^2 u \, dx = \int_{Du(\Omega)} 1 \, dy = \int_B 1 \, dy = |B| = \omega_n. \]

Let \(v \) be the conjugate function of \(u \).

\[v(y) = \max \{ \langle y, x \rangle - u(x) : x \in \Omega \} \quad \text{for } y \in \mathbb{R}^n \]
Proof for Monge-Ampère

Integrating the equation

\[|\Omega| = \int_\Omega \det D^2 u \, dx = \int_{Du(\Omega)} 1 \, dy = \int_B 1 \, dy = |B| = \omega_n. \]

Let \(v \) be the conjugate function of \(u \).

\[v(y) = \max\{\langle y, x \rangle - u(x) : x \in \overline{\Omega}\} \quad \text{for} \quad y \in \mathbb{R}^n \]

Then

\[Dv = (Du)^{-1} \quad \text{in} \quad Du(\Omega), \]

and

\[\begin{cases} D^2 v(y) = D^2 u(x)^{-1} \\ v(y) + u(x) = \langle y, x \rangle \end{cases} \quad \text{where} \quad x = Dv(y) \quad \text{and} \quad y = Du(x) \]
Integrating the equation

\[|\Omega| = \int_{\Omega} \det D^2 u \, dx = \int_{Du(\Omega)} 1 \, dy = \int_B 1 \, dy = |B| = \omega_n. \]

Let \(\nu \) be the conjugate function of \(u \). Then \(\nu \) solves the problem

\[
\begin{cases}
\det D^2 \nu = 1 & \text{in } B \\
\nu(y) = \langle y, D\nu(y) \rangle & \text{on } \partial B.
\end{cases}
\]
Proof for Monge-Ampère

Integrating the equation

$$|\Omega| = \int_\Omega \det D^2u \, dx = \int_{Du(\Omega)} 1 \, dy = \int_B 1 \, dy = |B| = \omega_n.$$

Let v be the conjugate function of u. Then v solves the problem

$$\begin{cases}
\det D^2v = 1 & \text{in } B \\
v(y) = \langle y, Dv(y) \rangle & \text{on } \partial B.
\end{cases}$$

Notice that

$$Dv(y) = the \ point \ on \ \partial \Omega \ where \ the \ outer \ normal \ is \ y.$$

Hence the boundary condition for v can be rewritten also as

$$v(y) = h_\Omega(y) \quad y \in \partial B,$$

where h_Ω is the support function of Ω.
Proof for Monge-Ampère

Then we have

\[W_{n-1}(\Omega) = \frac{1}{n} \int_{\partial B} h_{\Omega}(y) = \frac{1}{n} \int_{\partial B} v(y) = \]

integration by parts

+ geometric-arithmetic mean ineq.

\[\geq \int_{B} \Delta v \, dy \]

\[= \int_{B} \left(\det D^2 v \right)^{1/n} \, dy \]

\[= \int_{B} 1 \, dy = \omega_n \]

Moreover, with some other integrations by parts, we obtain

\[(n+2) \int_{\Omega} (-u) \, dx = \frac{1}{n} \int_{\partial B} v = W_{n-1}(\Omega). \]

Finally

\[\omega_n \leq W_{n-1}(\Omega) = (n+2) \int_{\Omega} (-u). \]

\[= (n+2) \int_{\Omega} \left(-u \right) \left(\det D^2 u \right)^{1/n} \leq n+2 \int_{B} |Dv|^2 \]

\[= n+2 \int_{B} |y|^2 = \omega_n. \]
Then we have

\[W_{n-1}(\Omega) = \frac{1}{n} \int_{\partial B} h_{\Omega}(y) = \frac{1}{n} \int_{\partial B} v(y) = \int_{\partial B} < Dv(y), y > \]
Then we have

\[
W_{n-1}(\Omega) = \frac{1}{n} \int_{\partial B} h_\Omega(y) = \frac{1}{n} \int_{\partial B} v(y) = \int_{\partial B} <Dv(y), y>
\]

integration by parts

\[
= \int_B \frac{\Delta v}{n} dy
\]
Then we have

\[W_{n-1}(\Omega) = \frac{1}{n} \int_{\partial B} h_\Omega(y) = \frac{1}{n} \int_{\partial B} v(y) = \int_{\partial B} < Dv(y), y > \]

integration by parts + geometric-arithmetic mean ineq.

\[= \int_B \frac{\Delta v}{n} dy \geq \int_B (\det D^2 v)^{1/n} dy \]
Proof for Monge-Ampère

Then we have

\[W_{n-1}(\Omega) = \frac{1}{n} \int_{\partial B} h_\Omega(y) = \frac{1}{n} \int_{\partial B} v(y) = \int_{\partial B} < Dv(y), y > \]

integration by parts + geometric-arithmetic mean ineq.

\[= \int_B \frac{\Delta v}{n} \, dy \geq \int_B (\det D^2 v)^{1/n} \, dy = \int_B 1 \, dy = \omega_n \]
Then we have

\[W_{n-1}(\Omega) = \frac{1}{n} \int_{\partial B} h_\Omega(y) = \frac{1}{n} \int_{\partial B} v(y) = \int_{\partial B} < Dv(y), y > \]

integration by parts + geometric-arithmetic mean ineq.

\[= \int_B \frac{\Delta v}{n} \, dy \geq \int_B (\det D^2 v)^{1/n} \, dy = \int_B 1 \, dy = \omega_n \]

Moreover, with some other integrations by parts, we obtain

\[(n+2) \int_\Omega (-u) \, dx = \frac{1}{n} \int_{\partial B} v = W_{n-1}(\Omega). \]
Proof for Monge-Ampère

Then we have

\[W_{n-1}(\Omega) = \frac{1}{n} \int_{\partial B} h_\Omega(y) = \frac{1}{n} \int_{\partial B} v(y) = \int_{\partial B} \langle Dv(y), y \rangle \]

integration by parts + geometric-arithmetic mean ineq.

\[= \int_B \frac{\Delta v}{n} \, dy \geq \int_B (\det D^2 v)^{1/n} \, dy = \int_B 1 \, dy = \omega_n \]

Moreover, with some other integrations by parts, we obtain

\[(n + 2) \int_{\Omega} (-u) \, dx = \frac{1}{n} \int_{\partial B} v = W_{n-1}(\Omega). \]

Finally

\[\omega_n \leq W_{n-1}(\Omega) = (n + 2) \int_{\Omega} (-u) \]
Proof for Monge-Ampère

Then we have

\[W_{n-1}(\Omega) = \frac{1}{n} \int_{\partial B} h_\Omega(y) = \frac{1}{n} \int_{\partial B} v(y) = \int_{\partial B} \langle Dv(y), y \rangle \]

integration by parts + geometric-arithmetic mean ineq.

\[= \int_B \frac{\Delta v}{n} dy \geq \int_B (\det D^2 v)^{1/n} dy = \int_B 1 dy = \omega_n \]

Moreover, with some other integrations by parts, we obtain

\[(n + 2) \int_{\Omega} (-u) dx = \frac{1}{n} \int_{\partial B} v = W_{n-1}(\Omega). \]

Finally

\[\omega_n \leq W_{n-1}(\Omega) = (n + 2) \int_{\Omega} (-u) = (n + 2) \int_{\Omega} (-u)(\det D^2 u)^{1/n} \]
Then we have

\[W_{n-1}(\Omega) = \frac{1}{n} \int_{\partial B} h_{\Omega}(y) = \frac{1}{n} \int_{\partial B} v(y) = \int_{\partial B} < Dv(y), y > \]

integration by parts + geometric-arithmetic mean ineq.

\[= \int_B \frac{\Delta v}{n} dy \geq \int_B (\det D^2 v)^{1/n} dy = \int_B 1 dy = \omega_n \]

Moreover, with some other integrations by parts, we obtain

\[(n + 2) \int_{\Omega} (-u) \, dx = \frac{1}{n} \int_{\partial B} v = W_{n-1}(\Omega). \]

Finally

\[\omega_n \leq W_{n-1}(\Omega) = (n + 2) \int_{\Omega} (-u) = (n + 2) \int_{\Omega} (-u)(\det D^2 u)^{1/n} \leq \frac{n + 2}{n} \int_{\Omega} (-u)\Delta u \]
Proof for Monge-Ampère

Then we have

\[
W_{n-1}(\Omega) = \frac{1}{n} \int_{\partial B} h_\Omega(y) = \frac{1}{n} \int_{\partial B} v(y) = \int_{\partial B} < Dv(y), y >
\]

integration by parts + geometric-arithmetic mean ineq.

\[
= \int_B \frac{\Delta v}{n} dy \geq \int_B (\det D^2 v)^{1/n} dy = \int_B 1 dy = \omega_n
\]

Moreover, with some other integrations by parts, we obtain

\[
(n + 2) \int_\Omega (-u) dx = \frac{1}{n} \int_{\partial B} v = W_{n-1}(\Omega).
\]

Finally

\[
\omega_n \leq W_{n-1}(\Omega) = (n + 2) \int_\Omega (-u) = (n + 2) \int_\Omega (-u)(\det D^2 u)^{1/n}
\leq \frac{n+2}{n} \int_\Omega (-u)\Delta u = \frac{n+2}{n} \int_\Omega |Du|^2
\]
Then we have

\[W_{n-1}(\Omega) = \frac{1}{n} \int_{\partial B} h_\Omega(y) = \frac{1}{n} \int_{\partial B} v(y) = \int_{\partial B} < Dv(y), y > \]

integration by parts + geometric-arithmetic mean ineq.

\[= \int_B \frac{\Delta v}{n} dy \geq \int_B (\det D^2 v)^{1/n} dy = \int_B 1 dy = \omega_n \]

Moreover, with some other integrations by parts, we obtain

\[(n + 2) \int_\Omega (-u) dx = \frac{1}{n} \int_{\partial B} v = W_{n-1}(\Omega). \]

Finally

\[\omega_n \leq W_{n-1}(\Omega) = (n + 2) \int_\Omega (-u) = (n + 2) \int_\Omega (-u)(\det D^2 u)^{1/n} \]

\[\leq \frac{n + 2}{n} \int_\Omega (-u) \Delta u = \frac{n + 2}{n} \int_\Omega |Du|^2 = \frac{n + 2}{n} \int_B |y|^2 = \omega_n. \]
Let Ω be a C^2 domain and $u \in C^2(\overline{\Omega})$

\[
\begin{align*}
S_k(D^2 u) &= \text{constant} \quad \text{in } \Omega \\
u &= 0 \quad \text{on } \partial \Omega
\end{align*}
\]

Assume that $\partial u / \partial \nu$ is close to a constant in some norm on $\partial \Omega$.

Question: is it Ω close in some sense to a ball and is it possible to control the distance of Ω from a ball, in some suitable norm, in terms of the distance of $\partial u / \partial \nu$ from the constant?
Let Ω be a C^2 domain and $u \in C^2(\overline{\Omega})$

\[
\begin{cases}
S_k(D^2u) = \text{constant} & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega
\end{cases}
\]

Assume that $\partial u/\partial \nu$ is close to a constant in some norm on $\partial \Omega$.

Question: is it Ω close in some sense to a ball and is it possible to control the distance of Ω from a ball, in some suitable norm, in terms of the distance of $\partial u/\partial \nu$ from the constant?

The question of stability, also for the original Serrin problem, is almost unknown. As far as the authors know, the only work about it is

Stability for the Laplacian \((k = 1)\)

Theorem (Brandolini-Nitsch-Salani-Trombetti 2007)

Let \(\Omega\) be a bounded, connected, open set of class \(C^{2,\alpha}\) in \(\mathbb{R}^n\). Then there exist positive constant \(C\) and \(\delta_0\), depending only on the \(C^{2,\alpha}\)-regularity of \(\Omega\) and dimension \(n\), such that the following holds: if \(u \in C^2(\overline{\Omega})\) is a solution to the problem

\[
\begin{cases}
\Delta u = n & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega
\end{cases}
\]

satisfying the condition

\[
||Du| - 1|| \leq \delta \leq \delta_0 \quad \text{on } \partial\Omega,
\]

then there exist two concentric balls \(B_r\) and \(B_R\) such that

\[
B_r \subset \Omega \subset B_R \quad \text{and} \quad R - r \leq C\delta^{\frac{1}{4n+9}}.
\]
Stability for the Laplacian ($k = 1$)

To prove it, we show that the *isoperimetric deficit* $D(\Omega)$ of Ω is small, precisely

$$0 \leq D(\Omega) = \frac{|\partial \Omega|}{n \omega_n^{1/n} |\Omega|^{(n-1)/n}} - 1 \leq C \frac{\delta^{1/(4n+9)}}{1}$$

where C is a constant depending only on n and the regularity of Ω. Then we can use recent results about stability for isoperimetric inequality.
Stability for the Laplacian \((k = 1)\)

To prove it, we show that the isoperimetric deficit \(D(\Omega)\) of \(\Omega\) is small, precisely

\[
0 \leq D(\Omega) = \frac{|\partial \Omega|}{n \omega_n^{1/n} |\Omega|^{(n-1)/n}} - 1 \leq C \delta^{1/(4n+9)}
\]

where \(C\) is a constant depending only on \(n\) and the regularity of \(\Omega\).

Then we can use recent results about stability for isoperimetric inequality.

Stability of the isoperimetric inequality

They prove that there exist a ball \(B\), with the same volume of \(\Omega\), such that the measure of the symmetric difference between \(\Omega\) and \(B\) is controlled by the square root of the deficit:

\[
|\Omega \triangle B| \leq C(n) \sqrt{D(\Omega)},
\]

where \(\Omega \triangle B = (\Omega \cup B) \setminus (\Omega \cap B)\).
Stability for Monge-Ampère ($k = n$)

Theorem (Brandolini-Nitsch-Salani-Trombetti 2007)

Let $n \geq 2$ and let ϵ and δ be two positive (suitably small) real numbers. Assume that Ω is a C^2 convex domain and $u \in C^2(\overline{\Omega})$ satisfies

\[
\begin{aligned}
(1 - \epsilon) \leq \det D^2 u & \leq (1 + \epsilon) & \text{in } \Omega \\
u = 0 & \quad \text{on } \partial\Omega \\
|\partial u/\partial \nu - 1| & \leq \delta & \text{on } \partial\Omega.
\end{aligned}
\]

Then Ω is a C^2_+ domain, u is strictly convex in $\overline{\Omega}$ and

\[
R - r \leq C_1 (\delta^2 + \epsilon^2)^{\frac{1}{n+3}},
\]

\[
\|u(x) - \frac{|x|^2 - R^2}{2}\|_{L^\infty(\Omega)} \leq C_2 (\delta^2 + \epsilon^2)^{\frac{1}{n+3}} \quad \text{(up to a translation)},
\]

where R and r are the circumradius and the inradius of Ω, respectively, and C_1, C_2 are constants depending only on the dimension n.
Arguing as before, we can prove that both $W_0(\Omega) = |\Omega|$ and $W_{n-1}(\Omega)$ are close to ω_n. Then, we can use stability result for the isoperimetric inequalities for quermassintegrals to get the conclusion.
Arguing as before, we can prove that both $W_0(\Omega) = |\Omega|$ and $W_{n-1}(\Omega)$ are close to ω_n. Then, we can use stability result for the isoperimetric inequalities for quermassintegrals to get the conclusion.

Stability for isoperimetric inequality in the class of convex bodies

Arguing as before, we can prove that both $W_0(\Omega) = |\Omega|$ and $W_{n-1}(\Omega)$ are close to ω_n. Then, we can use stability result for the isoperimetric inequalities for quermassintegrals to get the conclusion.

Stability for isoperimetric inequality in the class of convex bodies