Analytic and discrete aspects of the covariogram problem

Gennadiy Averkov
Magdeburg

June 13, 2011

Cortona 2011
Workshop on Convex Geometry: Analytic Aspects.
Outline

- Introduction to the covariogram problems.
- Detection of central symmetry.
- Reconstruction of lattice-convex sets.
Outline

- Introduction to the covariogram problems.
- Detection of central symmetry.
- Reconstruction of lattice-convex sets.
Outline

- Introduction to the covariogram problems.
- Detection of central symmetry.
- Reconstruction of lattice-convex sets.
The phase retrieval problem (informal description)

- We are given an (unknown) object A located in space.
- The diffraction information of A is available.
- How do we reconstruct A?
- This is a common reconstruction problem in physics.
We are given an (unknown) object A located in space.

The diffraction information of A is available.

How do we reconstruct A?

This is a common reconstruction problem in physics.
The phase retrieval problem (informal description)

- We are given an (unknown) object A located in space.
- The diffraction information of A is available.
- How do we reconstruct A?
- This is a common reconstruction problem in physics.
The phase retrieval problem (informal description)

- We are given an (unknown) object A located in space.
- The diffraction information of A is available.
- How do we reconstruct A?
- This is a common reconstruction problem in physics.
A general analytic formulation

Let f be a distribution on \mathbb{R}^d (with compact support).

How do we reconstruct f from $|\hat{f}|$?

This is not possible in general, since the phase information can be prescribed ‘arbitrarily’.

\Rightarrow Further assumptions on f are necessary.
A general analytic formulation

- Let f be a distribution on \mathbb{R}^d (with compact support).
- How do we reconstruct f from $|\hat{f}|$?
 - This is not possible in general, since the phase information can be prescribed ‘arbitrarily’.
 - \Rightarrow Further assumptions on f are necessary.
A general analytic formulation

Let f be a distribution on \mathbb{R}^d (with compact support).
How do we reconstruct f from $|\hat{f}|$?
This is not possible in general, since the phase information can be prescribed ‘arbitrarily’.
\Rightarrow Further assumptions on f are necessary.
Let f be a distribution on \mathbb{R}^d (with compact support).

How do we reconstruct f from $|\hat{f}|$?

This is not possible in general, since the phase information can be prescribed ‘arbitrarily’.

\Rightarrow Further assumptions on f are necessary.
Let $K \subseteq \mathbb{R}^d$ be nonempty and compact with $K = \text{cl}(\text{int}(K))$. Then the function $x \mapsto g_K(x)$ on \mathbb{R}^d defined by

$$g_K(x) = \text{vol}(K \cap (K + x))$$

is said to be the covariogram of K.

The function g_K provides the same data as $|\hat{1}_K|$.

Thus, reconstruction of K from g_K is a special case of the phase retrieval problem.

The reconstruction is not unique, since $g_K(x)$ does not change
- with respect to translations of K and
- with respect to reflections of K in a point.

These are the trivial ambiguities.

In general, there are other reasons of non-uniqueness.

So, one needs further assumptions on K.

Let $K \subseteq \mathbb{R}^d$ be nonempty and compact with $K = \text{cl}(\text{int}(K))$.

Then the function $x \mapsto g_K(x)$ on \mathbb{R}^d defined by

$$g_K(x) = \text{vol}(K \cap (K + x))$$

is said to be the **covariogram** of K.

The function g_K provides the same data as $|\widehat{1}_K|$.

Thus, reconstruction of K from g_K is a special case of the phase retrieval problem.

The reconstruction is not unique, since $g_K(x)$ does not change

- with respect to translations of K and
- with respect to reflections of K in a point.

These are the trivial ambiguities.

In general, there are other reasons of non-uniqueness.

So, one needs further assumptions on K.
Let \(K \subseteq \mathbb{R}^d \) be nonempty and compact with \(K = \text{cl}(\text{int}(K)) \).

Then the function \(x \mapsto g_K(x) \) on \(\mathbb{R}^d \) defined by

\[
g_K(x) = \text{vol}(K \cap (K + x))
\]

is said to be the \textit{covariogram} of \(K \).

The function \(g_K \) provides the same data as \(|\hat{1}_K| \).

Thus, reconstruction of \(K \) from \(g_K \) is a special case of the phase retrieval problem.

The reconstruction is not unique, since \(g_K(x) \) does not change

- with respect to translations of \(K \) and
- with respect to reflections of \(K \) in a point.

These are the trivial ambiguities.

In general, there are other reasons of non-uniqueness.

So, one needs further assumptions on \(K \).
Analytic geometric version

Let $K \subseteq \mathbb{R}^d$ be nonempty and compact with $K = \text{cl}(\text{int}(K))$.

Then the function $x \mapsto g_K(x)$ on \mathbb{R}^d defined by

$$g_K(x) = \text{vol}(K \cap (K + x))$$

is said to be the covariogram of K.

The function g_K provides the same data as $|1_K|$.

Thus, reconstruction of K from g_K is a special case of the phase retrieval problem.

The reconstruction is not unique, since $g_K(x)$ does not change

- with respect to translations of K and
- with respect to reflections of K in a point.

These are the trivial ambiguities.

In general, there are other reasons of non-uniqueness.

So, one needs further assumptions on K.
Let $K \subseteq \mathbb{R}^d$ be nonempty and compact with $K = \text{cl}(\text{int}(K))$.

Then the function $x \mapsto g_K(x)$ on \mathbb{R}^d defined by

$$g_K(x) = \text{vol}(K \cap (K + x))$$

is said to be the covariogram of K.

The function g_K provides the same data as $|1_K|$. Thus, reconstruction of K from g_K is a special case of the phase retrieval problem.

The reconstruction is not unique, since $g_K(x)$ does not change with respect to translations of K and with respect to reflections of K in a point.

These are the trivial ambiguities.

In general, there are other reasons of non-uniqueness.

So, one needs further assumptions on K.

Let $K \subseteq \mathbb{R}^d$ be nonempty and compact with $K = \text{cl}(\text{int}(K))$.

Then the function \(x \mapsto g_K(x) \) on \mathbb{R}^d defined by
\[
g_K(x) = \text{vol}(K \cap (K + x))
\]
is said to be the \textit{covariogram} of K.

The function g_K provides the same data as $|\widehat{1}_K|$.

Thus, reconstruction of K from g_K is a special case of the phase retrieval problem.

The reconstruction is not unique, since $g_K(x)$ does not change
- with respect to translations of K and
- with respect to reflections of K in a point.

These are the trivial ambiguities.

In general, there are other reasons of non-uniqueness.

So, one needs further assumptions on K.
Let $K \subseteq \mathbb{R}^d$ be nonempty and compact with $K = \text{cl}(\text{int}(K))$.

Then the function $x \mapsto g_K(x)$ on \mathbb{R}^d defined by

$$g_K(x) = \text{vol}(K \cap (K + x))$$

is said to be the covariogram of K.

The function g_K provides the same data as $|\widehat{1_K}|$.

Thus, reconstruction of K from g_K is a special case of the phase retrieval problem.

The reconstruction is not unique, since $g_K(x)$ does not change

- with respect to translations of K and
- with respect to reflections of K in a point.

These are the trivial ambiguities.

In general, there are other reasons of non-uniqueness.

So, one needs further assumptions on K.

Let $K \subseteq \mathbb{R}^d$ be nonempty and compact with $K = \text{cl}(\text{int}(K))$.

Then the function $x \mapsto g_K(x)$ on \mathbb{R}^d defined by

$$g_K(x) = \text{vol}(K \cap (K + x))$$

is said to be the covariogram of K.

The function g_K provides the same data as $|1_K|$.

Thus, reconstruction of K from g_K is a special case of the phase retrieval problem.

The reconstruction is not unique, since $g_K(x)$ does not change

- with respect to translations of K and
- with respect to reflections of K in a point.

These are the trivial ambiguities.

In general, there are other reasons of non-uniqueness.

So, one needs further assumptions on K.

20 / 66
Let $K \subseteq \mathbb{R}^d$ be nonempty and compact with $K = \text{cl}(\text{int}(K))$.

Then the function $x \mapsto g_K(x)$ on \mathbb{R}^d defined by

$$g_K(x) = \text{vol}(K \cap (K + x))$$

is said to be the covariogram of K.

The function g_K provides the same data as $|\hat{1}_K|$.

Thus, reconstruction of K from g_K is a special case of the phase retrieval problem.

The reconstruction is not unique, since $g_K(x)$ does not change

- with respect to translations of K and
- with respect to reflections of K in a point.

These are the trivial ambiguities.

In general, there are other reasons of non-uniqueness.

So, one needs further assumptions on K.
Let $K \subseteq \mathbb{R}^d$ be nonempty and compact with $K = \text{cl}(\text{int}(K))$.

Then the function $x \mapsto g_K(x)$ on \mathbb{R}^d defined by

$$g_K(x) = \text{vol}(K \cap (K + x))$$

is said to be the covariogram of K.

The function g_K provides the same data as $|\hat{1}_K|$.

Thus, reconstruction of K from g_K is a special case of the phase retrieval problem.

The reconstruction is not unique, since $g_K(x)$ does not change

with respect to translations of K and

with respect to reflections of K in a point.

These are the trivial ambiguities.

In general, there are other reasons of non-uniqueness.

So, one needs further assumptions on K.
Let $A \subseteq \mathbb{R}^d$ be nonempty and finite. Then the function $x \mapsto g_A(x)$ on \mathbb{R}^d defined by

$$g_A(x) := \#(A \cap (A + x))$$

is said to be the (discrete) covariogram of K.

The function g_A provides the same data as $|\hat{\delta}_A|$, where $\delta_A := \sum_{a \in A} \delta_a$.

Again, g_A does not change with respect to translations and point reflections of A.

There are other reasons for non-uniqueness.

E.g., considers finite sets $S, T \subseteq \mathbb{R}^d$ such that the sum of S and T is direct. Then the sum of S and $-T$ is also direct and...

the sets $S \oplus T, S \oplus (-T)$ have the same covariogram.

There are still other reasons of non-uniqueness.
Let $A \subseteq \mathbb{R}^d$ be nonempty and finite.

Then the function $x \mapsto g_A(x)$ on \mathbb{R}^d defined by

$$g_A(x) := \#(A \cap (A + x))$$

is said to be the (discrete) covariogram of K.

The function g_A provides the same data as $|\hat{\delta}_A|$, where $\delta_A := \sum_{a \in A} \delta_a$.

Again, g_A does not change with respect to translations and point reflections of A.

There are other reasons for non-uniqueness.

E.g., considers finite sets $S, T \subseteq \mathbb{R}^d$ such that the sum of S and T is direct. Then the sum of S and $-T$ is also direct and...

the sets $S \oplus T, S \oplus (-T)$ have the same covariogram.

There are still other reasons of non-uniqueness.
Let $A \subseteq \mathbb{R}^d$ be nonempty and finite.

Then the function $x \mapsto g_A(x)$ on \mathbb{R}^d defined by

$$g_A(x) := \#(A \cap (A + x))$$

is said to be the (discrete) covariogram of K.

The function g_A provides the same data as $|\hat{\delta}_A|$, where $\delta_A := \sum_{a \in A} \delta_a$.

Again, g_A does not change with respect to translations and point reflections of A.

There are other reasons for non-uniqueness.

E.g., considers finite sets $S, T \subseteq \mathbb{R}^d$ such that the sum of S and T is direct. Then the sum of S and $-T$ is also direct and...

the sets $S \oplus T, S \oplus (-T)$ have the same covariogram.

There are still other reasons of non-uniqueness.
Let $A \subseteq \mathbb{R}^d$ be nonempty and finite.

Then the function $x \mapsto g_A(x)$ on \mathbb{R}^d defined by

$$g_A(x) := \#(A \cap (A + x))$$

is said to be the (discrete) **covariogram** of K.

The function g_A provides the same data as $|\delta_A|$, where $\delta_A := \sum_{a \in A} \delta_a$.

Again, g_A does not change with respect to translations and point reflections of A.

There are other reasons for non-uniqueness.

E.g., considers finite sets $S, T \subseteq \mathbb{R}^d$ such that the sum of S and T is direct. Then the sum of S and $-T$ is also direct and...

The sets $S \oplus T, S \oplus (-T)$ have the same covariogram.

There are still other reasons of non-uniqueness.
Let $A \subseteq \mathbb{R}^d$ be nonempty and finite.

Then the function $x \mapsto g_A(x)$ on \mathbb{R}^d defined by

$$g_A(x) := \#(A \cap (A + x))$$

is said to be the (discrete) covariogram of K.

The function g_A provides the same data as $|\hat{\delta}_A|$, where $\delta_A := \sum_{a \in A} \delta_a$.

Again, g_A does not change with respect to translations and point reflections of A.

There are other reasons for non-uniqueness.

E.g., considers finite sets $S, T \subseteq \mathbb{R}^d$ such that the sum of S and T is direct. Then the sum of S and $-T$ is also direct and...

the sets $S \oplus T, S \oplus (-T)$ have the same covariogram.

There are still other reasons of non-uniqueness.
Let $A \subseteq \mathbb{R}^d$ be nonempty and finite.

Then the function $x \mapsto g_A(x)$ on \mathbb{R}^d defined by
\[
g_A(x) := \#(A \cap (A + x))
\]
is said to be the (discrete) covariogram of K.

The function g_A provides the same data as $|\hat{\delta}_A|$, where $\delta_A := \sum_{a \in A} \delta_a$.

Again, g_A does not change with respect to translations and point reflections of A.

There are other reasons for non-uniqueness.

E.g., considers finite sets $S, T \subseteq \mathbb{R}^d$ such that the sum of S and T is direct. Then the sum of S and $-T$ is also direct and...

the sets $S \oplus T, S \oplus (-T)$ have the same covariogram.

There are still other reasons of non-uniqueness.
Let $A \subseteq \mathbb{R}^d$ be nonempty and finite.

Then the function $x \mapsto g_A(x)$ on \mathbb{R}^d defined by

$$g_A(x) := \#(A \cap (A + x))$$

is said to be the (discrete) covariogram of K.

The function g_A provides the same data as $|\hat{\delta}_A|$, where $\delta_A := \sum_{a \in A} \delta_a$.

Again, g_A does not change with respect to translations and point reflections of A.

There are other reasons for non-uniqueness.

E.g., considers finite sets $S, T \subseteq \mathbb{R}^d$ such that the sum of S and T is direct. Then the sum of S and $-T$ is also direct and...

the sets $S \oplus T, S \oplus (-T)$ have the same covariogram.

There are still other reasons of non-uniqueness.
Let $A \subseteq \mathbb{R}^d$ be nonempty and finite.

Then the function $x \mapsto g_A(x)$ on \mathbb{R}^d defined by

$$g_A(x) := \#(A \cap (A + x))$$

is said to be the (discrete) covariogram of K.

The function g_A provides the same data as $|\hat{\delta}_A|$, where $\delta_A := \sum_{a \in A} \delta_a$.

Again, g_A does not change with respect to translations and point reflections of A.

There are other reasons for non-uniqueness.

E.g., considers finite sets S, $T \subseteq \mathbb{R}^d$ such that the sum of S and T is direct. Then the sum of S and $-T$ is also direct and...

the sets $S \oplus T$, $S \oplus (-T)$ have the same covariogram.

There are still other reasons of non-uniqueness.
Results on uniqueness

- Within centrally symmetric objects the reconstruction is unique up to translations (no additional assumptions are required).
- Within planar convex bodies $K \subseteq \mathbb{R}^2$ the reconstruction of K from g_K is unique, up to translations and reflections (A. & Bianchi, 2009).
- Within three-dimensional convex polytopes the reconstruction from the covariogram is unique, up to translations and reflections (Bianchi, 2009).
Results on uniqueness

- Within centrally symmetric objects the reconstruction is unique up to translations (no additional assumptions are required).
- Within planar convex bodies $K \subseteq \mathbb{R}^2$ the reconstruction of K from g_K is unique, up to translations and reflections (A. & Bianchi, 2009).
- Within three-dimensional convex polytopes the reconstruction from the covariogram is unique, up to translations and reflections (Bianchi, 2009).
Results on uniqueness

- Within centrally symmetric objects the reconstruction is unique up to translations (no additional assumptions are required).
- Within planar convex bodies $K \subseteq \mathbb{R}^2$ the reconstruction of K from g_K is unique, up to translations and reflections (A. & Bianchi, 2009).
- Within three-dimensional convex polytopes the reconstruction from the covariogram is unique, up to translations and reflections (Bianchi, 2009).
Detecting central symmetry

- Can we detect from the diffraction data that the underlying object is centrally symmetric?
 - In certain cases, yes.
 - E.g., if K, H are convex bodies in \mathbb{R}^d, K is centrally symmetric and $g_K = g_H$. Then H is a translate of K. (Consequence of the Brunn-Minkowski inequality).
- Other cases?
Detecting central symmetry

- Can we detect from the diffraction data that the underlying object is centrally symmetric?
- In certain cases, yes.
 - E.g., if K, H are convex bodies in \mathbb{R}^d, K is centrally symmetric and $g_K = g_H$. Then H is a translate of K. (Consequence of the Brunn-Minkowski inequality).
- Other cases?
Detecting central symmetry

- Can we detect from the diffraction data that the underlying object is centrally symmetric?
- In certain cases, yes.
- E.g., if K, H are convex bodies in \mathbb{R}^d, K is centrally symmetric and $g_K = g_H$. Then H is a translate of K. (Consequence of the Brunn-Minkowski inequality).

- Other cases?
Detecting central symmetry

- Can we detect from the diffraction data that the underlying object is centrally symmetric?
- In certain cases, yes.
- E.g., if K, H are convex bodies in \mathbb{R}^d, K is centrally symmetric and $g_K = g_H$. Then H is a translate of K. (Consequence of the Brunn-Minkowski inequality).
- Other cases?
Theorem 1 (A. 2009)

Let \(A, B \subseteq \mathbb{R}^d \) be finite, let \(A \) be centrally symmetric and \(g_A = g_B \). Then \(B \) is a translate of \(A \).

Proof idea:
- The case \(d = 1 \) is settled by induction.
- The case of general \(d \) is reduced to the case \(d = 1 \) by inductive argument...
- using some folklore results due to Renyi, Heppes et al.
Theorem 1 (A. 2009)

Let $A, B \subseteq \mathbb{R}^d$ be finite, let A be centrally symmetric and $g_A = g_B$. Then B is a translate of A.

▶ Proof idea:

▶ The case $d = 1$ is settled by induction.

▶ The case of general d is reduced to the case $d = 1$ by inductive argument...

▶ using some folklore results due to Renyi, Heppes et al.
Detecting central symmetry for finite sets

Theorem 1 (A. 2009)

Let $A, B \subseteq \mathbb{R}^d$ be finite, let A be centrally symmetric and $g_A = g_B$. Then B is a translate of A.

- Proof idea:
 - The case $d = 1$ is settled by induction.
 - The case of general d is reduced to the case $d = 1$ by inductive argument...
 - using some folklore results due to Renyi, Heppes et al.
Theorem 1 (A. 2009)

Let $A, B \subseteq \mathbb{R}^d$ be finite, let A be centrally symmetric and $g_A = g_B$. Then B is a translate of A.

- Proof idea:
- The case $d = 1$ is settled by induction.
- The case of general d is reduced to the case $d = 1$ by inductive argument...
- using some folklore results due to Renyi, Heppes et al.
Detecting central symmetry for finite sets

Theorem 1 (A. 2009)

Let $A, B \subseteq \mathbb{R}^d$ be finite, let A be centrally symmetric and $g_A = g_B$. Then B is a translate of A.

- Proof idea:
- The case $d = 1$ is settled by induction.
- The case of general d is reduced to the case $d = 1$ by inductive argument...
- using some folklore results due to Renyi, Heppes et al.
Corollary 2

Let $K = A + [0, 1]^d$ and $H = B + [0, 1]^d$ where $A, B \subseteq \mathbb{Z}^d$ are finite. Let K be centrally symmetric and $g_K = g_H$. Then H is a translate of K.

- Proof idea (borrowed from Gardner, Gronchi and Zong):
 - $1_K = \delta_A * 1_{-[0,1]^d}$.
 - Fourier transforms of distributions with compact support are analytic functions.
Corollary 2

Let $K = A + [0, 1]^d$ and $H = B + [0, 1]^d$ where $A, B \subseteq \mathbb{Z}^d$ are finite. Let K be centrally symmetric and $g_K = g_H$. Then H is a translate of K.

- Proof idea (borrowed from Gardner, Gronchi and Zong):
 - $1_K = \delta_A * 1_{[0,1]^d}$.
 - Fourier transforms of distributions with compact support are analytic functions.
Corollary 2

Let $K = A + [0, 1]^d$ and $H = B + [0, 1]^d$ where $A, B \subseteq \mathbb{Z}^d$ are finite. Let K be centrally symmetric and $g_K = g_H$. Then H is a translate of K.

- Proof idea (borrowed from Gardner, Gronchi and Zong):
- $1_K = \delta_A \ast 1_{[0,1]^d}$.
- Fourier transforms of distributions with compact support are analytic functions.
Corollary 2

Let $K = A + [0, 1]^d$ and $H = B + [0, 1]^d$ where $A, B \subseteq \mathbb{Z}^d$ are finite. Let K be centrally symmetric and $g_K = g_H$. Then H is a translate of K.

- Proof idea (borrowed from Gardner, Gronchi and Zong):
 - $1_K = \delta_A \ast 1_{-\lfloor 0, 1 \rfloor^d}$.
 - Fourier transforms of distributions with compact support are analytic functions.
Detecting central symmetry in further cases

- Assume $K \subseteq \mathbb{R}^d$ is nonempty, compact and $K = \text{cl}(\text{int}(K))$.
- Can the central symmetry of K be detected from g_K?
Detecting central symmetry in further cases

- Assume $K \subseteq \mathbb{R}^d$ is nonempty, compact and $K = \text{cl}(\text{int}(K))$.
- Can the central symmetry of K be detected from g_K?
A finite subset K of \mathbb{Z}^d is said to be *lattice-convex* if K is the intersection of \mathbb{Z}^d with a convex set.

Problem: reconstruction of K from g_K in the class of lattice-convex sets.

The problem was posed by Daurat, Gérard, Nivat (2005) and Gardner, Gronchi, Zong (2005).
Covariogram problem for lattice convex sets

- A finite subset K of \mathbb{Z}^d is said to be \textit{lattice-convex} if K is the intersection of \mathbb{Z}^d with a convex set.

- Problem: reconstruction of K from g_K in the class of lattice-convex sets.

- The problem was posed by Daurat, Gérard, Nivat (2005) and Gardner, Gronchi, Zong (2005).
A finite subset K of \mathbb{Z}^d is said to be \textit{lattice-convex} if K is the intersection of \mathbb{Z}^d with a convex set.

Problem: reconstruction of K from g_K in the class of lattice-convex sets.

The problem was posed by Daurat, Gérard, Nivat (2005) and Gardner, Gronchi, Zong (2005).
Reconstruction is not unique

- One cannot hope for a unique reconstruction, up to translations and reflections. Examples were given by Daurat, Gérard, Nivat (2005) and Gardner, Gronchi, Zong (2005).

- Covariograms are the same.
Reconstruction is not unique

- One cannot hope for a unique reconstruction, up to translations and reflections. Examples were given by Daurat, Gérard, Nivat (2005) and Gardner, Gronchi, Zong (2005).

- This is the reason!
An infinite family of counterexamples
Direct sums are rarely lattice-convex

Theorem 3 (A. & Langfeld, 2011)

Let k, ℓ be integers with $k > \ell \geq 0$. We define

- $T := (\{0, \ldots, k\} \times \{0\}) \cup (\{0, \ldots, \ell\} \times \{1\})$ (a set of lattice width one),
- $w_1 := (-k - 1, 1), w_2 := (\ell + 1, 1)$,
- the lattice $\mathbb{L} := \mathbb{Z}w_1 + \mathbb{Z}w_2$.

Let S be a set with $o \in S \subseteq \mathbb{Z}^2$. Then the following conditions are equivalent:

(i) The sum of S and T is direct and lattice-convex.

(ii) S is lattice-convex with respect to \mathbb{L} and $\text{conv} S$ is a polygon in \mathbb{R}^2 such that

- every edge of $\text{conv} S$ is parallel to w_1 or w_2 (in the case $k > \ell + 1$),
- every edge of $\text{conv} S$ is parallel to $w_1, w_2, \text{ or } w_1 + w_2$ (in the case $k = \ell + 1$).
Direct lattice-convex summands of lattice-convex sets

- The situation that a lattice-convex set has a direct lattice-convex summand is very uncommon (work in progress).
Notation for the discrete uniqueness result

Let K be a finite lattice-convex set in \mathbb{R}^2 such that $\text{conv} K$ is two-dimensional.

The support set of K in direction $u \in \mathbb{R}^d$ is defined by

$$F(K, u) := \{ x \in K : \langle x, u \rangle = h(K, u) \}.$$

The set of outer edge normals:

$$U(K) := \{ u \in \mathbb{Z}^2 \setminus \{0\} : u \text{ is an outer normal to an edge of } \text{conv} K \text{ and } \gcd(u)=1 \}.$$

To measure the number of lattice points on the edges and the difference of parallel edges of K we introduce

$$m'(K) := \min \{ \#F(K, u) : u \in U(K) \} ,$$
$$m''(K) := \min \{ \#F(K, u) - \#F(K, -u) + 1 : u \in \mathbb{Z}^2 \setminus \{0\} \wedge \#F(K, u) > \#F(K, -u) > 1 \}$$
$$m(K) := \min \{ m'(K), m''(K) \}.$$
Notation for the discrete uniqueness result

- Let K be a finite lattice-convex set in \mathbb{R}^2 such that $\text{conv } K$ is two-dimensional.
- The support set of K in direction $u \in \mathbb{R}^d$ is defined by
 \[F(K, u) := \{ x \in K : \langle x, u \rangle = h(K, u) \} . \]
- The set of outer edge normals:
 \[U(K) := \{ u \in \mathbb{Z}^2 \setminus \{0\} : u \text{ is an outer normal to an edge of } \text{conv} K \text{ and } \gcd(u)=1 \}. \]
- To measure the number of lattice points on the edges and the difference of parallel edges of K we introduce
 \[m'(K) := \min \{ \#F(K, u) : u \in U(K) \} , \]
 \[m''(K) := \min \{ \#F(K, u) - \#F(K, -u) + 1 : \]
 \[u \in \mathbb{Z}^2 \setminus \{0\} \land \#F(K, u) > \#F(K, -u) > 1 \} \]
 \[m(K) := \min \{ m'(K), m''(K) \} , \]
Notation for the discrete uniqueness result

- Let K be a finite lattice-convex set in \mathbb{R}^2 such that $\text{conv } K$ is two-dimensional.
- The support set of K in direction $u \in \mathbb{R}^d$ is defined by
 \[F(K, u) := \{ x \in K : \langle x, u \rangle = h(K, u) \}. \]
- The set of outer edge normals:
 \[U(K) := \{ u \in \mathbb{Z}^2 \setminus \{0\} : u \text{ is an outer normal to an edge of } \text{conv } K \text{ and } \gcd(u) = 1 \}. \]
- To measure the number of lattice points on the edges and the difference of parallel edges of K we introduce
 \[m'(K) := \min \{ \#F(K, u) : u \in U(K) \}, \]
 \[m''(K) := \min \{ \#F(K, u) - \#F(K, -u) + 1 \} : \]
 \[u \in \mathbb{Z}^2 \setminus \{0\} \land \#F(K, u) > \#F(K, -u) > 1 \}
 \[m(K) := \min\{m'(K), m''(K)\}, \]
Notation for the discrete uniqueness result

- Let K be a finite lattice-convex set in \mathbb{R}^2 such that $\text{conv} K$ is two-dimensional.
- The support set of K in direction $u \in \mathbb{R}^d$ is defined by

$$F(K, u) := \{x \in K : \langle x, u \rangle = h(K, u)\}.$$

- The set of outer edge normals:

$$U(K) := \{u \in \mathbb{Z}^2 \setminus \{o\} : u \text{ is an outer normal to an edge of } \text{conv} K \text{ and } \gcd(u) = 1\}.$$

- To measure the number of lattice points on the edges and the difference of parallel edges of K we introduce

$$m'(K) := \min \{\#F(K, u) : u \in U(K)\},$$
$$m''(K) := \min \{\#F(K, u) - \#F(K, -u) + 1 : u \in \mathbb{Z}^2 \setminus \{o\} \wedge \#F(K, u) > \#F(K, -u) > 1\}$$
$$m(K) := \min\{m'(K), m''(K)\},$$
Further notation

For a finite set U of vectors in \mathbb{R}^2 linearly spanning \mathbb{R}^2 let

$$D(U) := \{| \det(u_1, u_2) | : u_1, u_2 \in U \} \setminus \{0\}$$

We call

$$\delta(U) := \frac{\max D(U)}{\min D(U)}$$

the discrepancy of U.

We define $\delta(K) := \delta(U(K))$.
Further notation

- For a finite set U of vectors in \mathbb{R}^2 linearly spanning \mathbb{R}^2 let

$$D(U) := \{|\det(u_1, u_2)| : u_1, u_2 \in U\} \setminus \{0\}$$

- We call

$$\delta(U) := \frac{\max D(U)}{\min D(U)}$$

the discrepancy of U.

- We define $\delta(K) := \delta(U(K))$.
Further notation

- For a finite set U of vectors in \mathbb{R}^2 linearly spanning \mathbb{R}^2 let

 $$D(U) := \{ |\det(u_1, u_2)| : u_1, u_2 \in U \} \setminus \{0\}$$

- We call

 $$\delta(U) := \frac{\max D(U)}{\min D(U)}$$

 the discrepancy of U.

- We define $\delta(K) := \delta(U(K))$.
Theorem 4
Let $K, L \subseteq \mathbb{Z}^2$ be bounded and lattice-convex. Then

I. $m'(K), m''(K), m(K), U(K) \cup U(-K)$ and $\delta(K)$ are determined by g_K.

II. If

$$m(K) \geq \delta(K)^2 + \delta(K) + 1$$

and

$$g_K = g_L,$$

then K and L coincide up to translations and reflections.
Outlook

- How to detect the central symmetry of sets?
- What is the solution of the covariogram problem for lattice-convex sets in the plane?
Outlook

- How to detect the central symmetry of sets?
- What is the solution of the covariogram problem for lattice-convex sets in the plane?