On characterizations of Euclidean spaces

Nico Düvelmeyer
Nico.Duevelmeyer@Mathematik.TU-Chemnitz.de

Fakultät für Mathematik
TU Chemnitz
Germany

Educational Workshop on Geometric Inequalities
Firenze (Italy), May 2005, 16th-20th
Outline

1. Introduction
 - Geometric Background (Banach)-Minkowski Geometry.
 - Well Known Characterization: Parallelogram Equality
 - Well Known Characterization: Symmetry of Orthogonality

2. Area and Arc Length Measure of Angles
 - Defining Measures and Bisectors of Angles
 - Relation Between Area and Arc Length Measure
 - Characterization Generalizing the Symmetry of Orthogonality

3. Further Angular Bisectors
 - Definitions
 - Characterizations
Outline

1 Introduction
 - Geometric Background (Banach)-Minkowski Geometry.
 - Well Known Characterization: Parallelogram Equality
 - Well Known Characterization: Symmetry of Orthogonality

2 Area and Arc Length Measure of Angles
 - Defining Measures and Bisectors of Angles
 - Relation Between Area and Arc Length Measure
 - Characterization Generalizing the Symmetry of Orthogonality

3 Further Angular Bisectors
 - Definitions
 - Characterizations
Minkowski Space finite dimensional real linear normed space (finite dimensional Banach space) \mathbb{M}^d with unit ball B
Minkowski Space finite dimensional real linear normed space (finite dimensional Banach space) \mathbb{M}^d with unit ball B

\mathbb{M}^d is Euclidean iff B is an ellipsoid (ellipse).
Birkhoff's Orthogonality Relation.

\[|x|B \]

\[x + Ry \]

\[x \perp y \]
Parallelogram Equality.

\[\|x + y\|^2 + \|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2 \]

for all \(x, y \in \mathbb{M}^d \).
\(\mathbb{M}^d \) is Euclidean if
- dimension \(d \) is at least 3, and
- \(x \nmid y \) always implies \(y \nmid x \) (\(x, y \in \mathbb{M}^d \)).
\mathbb{M}^d is Euclidean if
- dimension d is at least 3, and
- $x \perp y$ always implies $y \perp x$ ($x, y \in \mathbb{M}^d$).

For $d = 2$ this property characterizes Radon planes, whose unit circles are Radon curves.
1 Introduction
 - Geometric Background (Banach)-Minkowski Geometry.
 - Well Known Characterization: Parallelogram Equality
 - Well Known Characterization: Symmetry of Orthogonality

2 Area and Arc Length Measure of Angles
 - Defining Measures and Bisectors of Angles
 - Relation Between Area and Arc Length Measure
 - Characterization Generalizing the Symmetry of Orthogonality

3 Further Angular Bisectors
 - Definitions
 - Characterizations
Define measure μ_l of an angle proportional to the length (measured in \mathbb{M}^d) of the corresponding arc of the unit circle (normalized to 2π).
Define measure μ_l of an angle proportional to the length (measured in \mathbb{M}^d) of the corresponding arc of the unit circle (normalized to 2π).
This also defines an angular bisector.
Define measure μ_a of an angle proportional to the area (with arbitrarily chosen unit) of the corresponding sector of the unit circle (normalized to 2π).
Define measure μ_a of an angle proportional to the area (with arbitrarily chosen unit) of the corresponding sector of the unit circle (normalized to 2π).

This also defines an angular bisector.
The two measures μ_a and μ_l are identical for all angles of some Minkowski plane \mathbb{M}^2 iff its unit ball is equiframed, i.e., if each point of the unit circle belongs to the boundary of some circumscribed parallelogram of minimal area.
The two measures μ_a and μ_l are identical for all angles of some Minkowski plane \mathbb{M}^2 iff its unit ball is equiframed, i.e., if each point of the unit circle belongs to the boundary of some circumscribed parallelogram of minimal area.
The two measures μ_a and μ_l are identical for all angles of some Minkowski plane \mathbb{M}^2 iff its unit ball is equiframed, i.e., if each point of the unit circle belongs to the boundary of some circumscribed parallelogram of minimal area.
When Are these Two Measures (Length and Area) Identical?

Theorem

The two measures μ_a and μ_l are identical for all angles of some Minkowski plane \mathbb{M}^2 iff its unit ball is equiframed, i.e., if each point of the unit circle belongs to the boundary of some circumscribed parallelogram of minimal area.

Especially, this holds for all planes with symmetric orthogonality (Radon planes).
Theorem

A Minkowski space \mathbb{M}^d ($d \geq 3$) is Euclidean iff for each two-dimensional subspace the unit disc is equiframed.
reduce to the case of symmetric orthogonality

uses *reductio ad absurdum*

local difference with adjacent straight segments in the unit circle

extends to planar part in three-dimensional unit ball

this subconfiguration has no end (unbounded cylinder)
Outline

1 Introduction
 - Geometric Background (Banach)-Minkowski Geometry.
 - Well Known Characterization: Parallelogram Equality
 - Well Known Characterization: Symmetry of Orthogonality

2 Area and Arc Length Measure of Angles
 - Defining Measures and Bisectors of Angles
 - Relation Between Area and Arc Length Measure
 - Characterization Generalizing the Symmetry of Orthogonality

3 Further Angular Bisectors
 - Definitions
 - Characterizations
Further properties of angular bisectors in the Euclidean plane can be used to define Angular Bisectors:

set of points equidistant to the sides \((Glogovskij)\)
Further properties of angular bisectors in the Euclidean plane can be used to define Angular Bisectors:

- The set of points equidistant to the sides (Glogovskij).
- The ray dividing each secant in the ratio of the lengths of corresponding segments on the sides. (Busemann)
Characterizations Using Equivalent Systems of Angular Bisectors in the Plane

<table>
<thead>
<tr>
<th>≡</th>
<th>Glogovskij</th>
<th>measure μ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Busemann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>measure μ_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≡</td>
<td>Glogovskij</td>
<td>measure μ_2</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Busemann</td>
<td>iff \mathbb{M}^2 is Radon</td>
<td></td>
</tr>
<tr>
<td>measure μ_1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Characterizations Using Equivalent Systems of Angular Bisectors in the Plane

<table>
<thead>
<tr>
<th>≡</th>
<th>Glogovskij</th>
<th>measure (\mu_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Busemann iff (\mathbb{M}^2) is Radon</td>
<td>iff (\mathbb{M}^2) is Euclidean and (\mu_2 = \mu_a = \mu_1)</td>
<td></td>
</tr>
<tr>
<td>measure (\mu_1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≡</td>
<td>Glogovskij measure μ_2</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Busemann</td>
<td>iff M^2 is Radon</td>
<td></td>
</tr>
<tr>
<td>measure μ_1</td>
<td>iff M^2 is Euclidean and $\mu_2 = \mu_a = \mu_l$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and $\mu_1 = \mu_a = \mu_l$</td>
<td></td>
</tr>
<tr>
<td>\equiv</td>
<td>Glogovskij</td>
<td>measure μ_2</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Busemann</td>
<td>iff \mathbb{M}^2 is Radon</td>
<td>iff \mathbb{M}^2 is Euclidean and $\mu_2 = \mu_a = \mu_l$</td>
</tr>
<tr>
<td>measure μ_1</td>
<td>iff \mathbb{M}^2 is Euclidean and $\mu_1 = \mu_a = \mu_l$</td>
<td>iff $\mu_1 = \mu_2$</td>
</tr>
<tr>
<td>≡</td>
<td>Glogovskij</td>
<td>measure μ_2</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| Busemann | iff \mathbb{M}^2 is Radon | iff \mathbb{M}^2 is Euclidean
and $\mu_2 = \mu_a = \mu_l$ |
| measure μ_1 | iff \mathbb{M}^2 is Euclidean
and $\mu_1 = \mu_a = \mu_l$ | iff $\mu_1 = \mu_2$
for $\mu_l = \mu_a$: iff \mathbb{M}^2 has an equiframed unit circle |
Characterizations Using Equivalent Systems of Angular Bisectors in \mathbb{M}^d, $d \geq 3$.

<table>
<thead>
<tr>
<th>Equivalent</th>
<th>Measure μ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>\equiv</td>
<td>Glogovskij</td>
</tr>
<tr>
<td>Busemann</td>
<td>μ_2 is Euclidean and $\mu_2 = \mu_a = \mu_l$</td>
</tr>
<tr>
<td>Measure μ_1</td>
<td>μ_1 is Euclidean and $\mu_1 = \mu_a = \mu_l$</td>
</tr>
</tbody>
</table>
Characterizations Using Equivalent Systems of Angular Bisectors in \mathbb{M}^d, $d \geq 3$.

<table>
<thead>
<tr>
<th>\equiv</th>
<th>Glogovskij</th>
<th>measure μ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Busemann</td>
<td>iff \mathbb{M}^d is Euclidean</td>
<td>iff \mathbb{M}^d is Euclidean and $\mu_2 = \mu_a = \mu_l$</td>
</tr>
<tr>
<td>measure μ_1</td>
<td>iff \mathbb{M}^d is Euclidean and $\mu_1 = \mu_a = \mu_l$</td>
<td></td>
</tr>
</tbody>
</table>
Characterizations Using Equivalent Systems of Angular Bisectors in \mathbb{M}^d, $d \geq 3$.

<table>
<thead>
<tr>
<th>\equiv</th>
<th>Glogovskij</th>
<th>measure μ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Busemann</td>
<td>iff \mathbb{M}^d is Euclidean</td>
<td>iff \mathbb{M}^d is Euclidean and $\mu_2 = \mu_a = \mu_l$</td>
</tr>
<tr>
<td>measure μ_1</td>
<td>iff \mathbb{M}^d is Euclidean and $\mu_1 = \mu_a = \mu_l$</td>
<td>iff $\mu_1 = \mu_2$ for $\mu_l = \mu_a$: iff \mathbb{M}^d is Euclidean</td>
</tr>
</tbody>
</table>
There are a lot of properties which characterize Euclidean spaces within the family of Minkowski spaces. They can be regarded as proofs that our world is “the best of all possible worlds...” (3-dimensional space)
We have seen four new such characterizations.
For Further Reading

Nico Düvelmeyer.
The new characterization of Radon curves via angular bisectors.

Nico Düvelmeyer.
Angle measures and bisectors in Minkowski planes.

Nico Düvelmeyer.
On convex bodies all whose two-dimensional sections are equiframed.
to be submitted