
Ideals of regular functions of a quaternionic

variable

Graziano Gentili ∗

Dipartimento di Matematica e Informatica “U. Dini”, Università di Firenze
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Abstract

In this paper we prove that, for any n ∈ N, the ideal generated by n slice regular functions
f1, . . . , fn having no common zeros concides with the entire ring of slice regular functions.
The proof required the study of the non-commutative syzygies of a vector of regular functions,
that manifest a different character when compared with their complex counterparts.
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1 Introduction

The theory of slice regular functions of a quaternionic variable (often simply called regular func-
tions) has been introduced in [13], [14], and further developed in a series of papers, including in
particular [2], where most of the recent developments are discussed. The full theory is presented
in the monograph [12], while an extension of the theory to the case of real alternative algebras
is discussed in [16], [17] and [18]. The theory of regular functions has been applied to the study
of a non-commutative functional calculus, (see for example the monograph [5] and the references
therein) and to address the problem of the construction and classification of orthogonal complex
structures in open subsets of the space H of quaternions (see [8]). In many cases, the results one
obtains in the theory of regular functions are inspired by complex analysis, though they often
require essential modifications, due to the different nature of zeroes and singularities of regular

∗The first two authors acknowledge the support of G.N.S.A.G.A. of INdAM and MIUR (Research Project “Varietà
reali e complesse: geometria, topologia e analisi armonica”).
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functions. Examples of these results, including those on power and Laurent series expansions, can
be found in [1], [4], [10], [11], [15], [21], [23], [24]. Recent results of geometric theory of regular
functions appear in [6], [7], [9].

In this paper we study the ideals in the (non-commutative) ring of regular functions, and we
prove an analogue of a classical result for one (and several) complex variables, namely the fact that
if a family of holomorphic functions has no common zeroes, then it generates the entire ring of
holomorphic functions. In her doctoral dissertation [22], the author proved that this was the case
for regular functions as well (in fact, she showed that this was true for bounded regular functions,
an analogue of the corona theorem), under the strong hypothesis that not only the functions could
not have common zeroes, but also that the functions could not have zeroes on the same spheres.

Here we show that such a request is not necessary, at least for the case of regular functions (we
do not consider the bounded case), by employing some delicate local properties of such functions.
We show how to reduce the study of the problem to the case of holomorphic functions, and we
then use the coherence of the sheaf of holomorphic functions to show that the local solution to the
problem extends to a global one.

Acknowledgments. The first two authors express their gratitude to Chapman University, where
a portion of this work was carried out.

2 Preliminary Results

Let H denote the non commutative real algebra of quaternions with standard basis {1, i, j, k}. The
elements of the basis satisfy the multiplication rules

i2 = j2 = k2 = −1, ij = k = −ji, jk = i = −kj, ki = j = −ik,

which, if we set 1 as the neutral element, extend by distributivity to all q = x0 + x1i+ x2j + x3k
in H. Every element of this form is composed by the real part Re(q) = x0 and the imaginary part
Im(q) = x1i + x2j + x3k. The conjugate of q ∈ H is then q̄ = Re(q) − Im(q) and its modulus
is defined as |q|2 = qq̄. We can therefore calculate the multiplicative inverse of each q 6= 0 as

q−1 = q̄
|q|2 . Notice that for all non real q ∈ H, the quantity Im(q)

| Im(q)| is an imaginary unit, that is

a quaternion whose square equals −1. Then we can express every q ∈ H as q = x + yI, where
x, y are real (if q ∈ R, then y = 0) and I is an element of the unit 2-dimensional sphere of purely
imaginary quaternions,

S = {q ∈ H | q2 = −1}.

In the sequel, for every I ∈ S we will denote by LI the plane R+RI, isomorphic to C and, if Ω is a
subset of H, by ΩI the intersection Ω∩LI . As explained in [12], the natural domains of definition
for slice regular functions are the symmetric slice domains. These domains actually play the role
played by domains of holomorphy in the complex case:

Definition 2.1. Let Ω be a domain in H that intersects the real axis. Then:

1. Ω is called a slice domain if, for all I ∈ S, the intersection ΩI with the complex plane LI is
a domain of LI ;

2. Ω is called a symmetric domain if for all x, y ∈ R, x+ yI ∈ Ω implies x+ yS ⊂ Ω.
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We can now recall the definition of slice regularity. From now on, Ω will always be a symmetric
slice domain in H, unless differently stated.

Definition 2.2. A function f : Ω→ H is said to be (slice) regular if, for all I ∈ S, its restriction
fI to ΩI has continuous partial derivatives and satisfies

∂If(x+ yI) :=
1

2

( ∂
∂x

+ I
∂

∂y

)
fI(x+ yI) = 0

for all x+ yI ∈ ΩI .

In the sequel we may refer to the vanishing of ∂If saying that the restriction fI is holomorphic on
ΩI .
A basic result in the theory of regular functions, that relates slice regularity and classical holomor-
phy, is the following, [12, 14]:

Lemma 2.3 (Splitting Lemma). If f is a regular function on Ω, then for every I ∈ S and for
every J ∈ S, J orthogonal to I, there exist two holomorphic functions F,G : ΩI → LI , such that
for every z = x+ yI ∈ ΩI , it holds

fI(z) = F (z) +G(z)J.

One of the first consequences of the previous result is the following version of the Identity Principle,
[14]:

Theorem 2.1 (Identity Principle). Let f be a regular function on Ω. Denote by Zf the zero set
of f , Zf = {q ∈ Ω| f(q) = 0}. If there exists I ∈ S such that ΩI ∩ Zf has an accumulation point
in ΩI , then f vanishes identically on Ω.

In the sequel we will use an important extension result (see [1, 2]) that we will present in the
following special formulation:

Lemma 2.4 (Extension Lemma). Let Ω be a symmetric slice domain and choose I ∈ S. If
fI : ΩI → H is holomorphic, then setting

f(x+ yJ) =
1

2
[fI(x+ yI) + fI(x− yI)] + J

I

2
[fI(x− yI)− fI(x+ yI)]

extends fI to a regular function f : Ω→ H. Moreover f is the unique extension and it is denoted
by ext(fI).

The product of two regular functions is not, in general, regular. To guarantee the regularity we
have to use a different multiplication operation, the ∗-product. From now on, if F is a holomorphic
function, we will use the notation:

F̂ (z) := F (z̄).

Definition 2.5. Let f, g be regular functions on a symmetric slice domain Ω. Choose I, J ∈ S
with I ⊥ J and let F,G,H,K be holomorphic functions from ΩI to LI such that fI = F +GJ, gI =
H +KJ . Consider the holomorphic function defined on ΩI by

fI ∗ gI(z) =
[
F (z)H(z)−G(z)K̂(z)

]
+
[
F (z)K(z) +G(z)Ĥ(z)

]
J. (1)

Its regular extension ext(fI ∗ gI) is called the regular product (or ∗-product) of f and g and it is
denoted by f ∗ g.
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Notice that the ∗-product is associative but generally is not commutative. Its connection with the
usual pointwise product is stated by the following result.

Proposition 2.6. Let f(q) and g(q) be regular functions on Ω. Then, for all q ∈ Ω,

f ∗ g(q) =

{
f(q)g(f(q)−1qf(q)) if f(q) 6= 0
0 if f(q) = 0

(2)

Corollary 2.7. If f, g are regular functions on a symmetric slice domain Ω and q ∈ Ω, then
f ∗ g(q) = 0 if and only if f(q) = 0 or f(q) 6= 0 and g(f(q)−1qf(q)) = 0.

The regular product coincides with the pointwise product for the special class of regular functions
defined as follows.

Definition 2.8. A regular function f : Ω→ H such that f(ΩI) ⊆ LI for all I ∈ S is called a slice
preserving regular function.

Lemma 2.9. Let f, g be regular functions on a symmetric slice domain Ω. If f is slice preserving,
then fg is a regular function on Ω and f ∗ g = fg = g ∗ f .

The following operations are naturally defined in order to study the zero set of regular functions.

Definition 2.10. Let f be a regular function on a symmetric slice domain Ω. Choose I, J ∈ S
with I ⊥ J and let F,G be holomorphic functions from ΩI to LI such that fI = F +GJ . If f cI is
the holomorphic function defined on ΩI by

f cI (z) = F̂ (z)−G(z)J. (3)

Then the regular conjugate of f is the regular function defined on Ω by f c = ext(f cI ), and the
symmetrization of f is the regular function defined on Ω by fs = f ∗ f c = f c ∗ f .

If the regular function f : Ω → H is such that fI(z) = F (z) + G(z)J, with F,G : ΩI → LI
holomorphic functions, then it easy to see that (see, e.g., [12])

fsI = fI ∗ f cI = f cI ∗ fI = F (z)F̂ (z) +G(z)Ĝ(z). (4)

Hence fs(ΩI) ⊆ LI for every I ∈ S, i.e., fs is slice preserving. Moreover if g is a regular function
on Ω, then

(f ∗ g)c = gc ∗ f c and (f ∗ g)s = fsgs = gsfs. (5)

Zeroes of regular functions have a nice geometric property:

Theorem 2.2. Let f be a regular function on a symmetric slice domain Ω. If f does not vanish
identically, then its zero set consists of isolated points or isolated 2-spheres of the form x+ yS with
x, y ∈ R, y 6= 0.

Notice that f(q)−1qf(q) belongs to the same sphere x+ yS as q. Hence each zero of f ∗ g in x+ yS
corresponds to a zero of f or to a zero of g in the same sphere.

Lemma 2.11. Let f be a regular function on a symmetric slice domain Ω and let fs be its
symmetrization. Then for each S = x + yS ⊂ Ω either fs vanishes identically on S or it has no
zeroes in S.
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The regular reciprocal f−∗ of a regular function f defined on a symmetric slice domain Ω can now
be defined in Ω \ Zfs as

f−∗ = (fs)−1f c, (6)

where Zfs denotes the zero set of the symmetrization fs.

Remark 2.12. If f is a regular function defined on a slice symmetric domain of H, then its regular
reciprocal f−∗ = (fs)−1f c has a sphere of poles at Zfs and is a quasi regular function in the sense
of [24].

3 Ideals generated by two regular functions

In this section we will prove that if f1 and f2 are two regular functions with no common zeroes
on a symmetric slice domain Ω, then they generate the entire ring of regular functions on Ω, i.e.
there are two regular functions h1 and h2 on Ω such that f1 ∗ h1 + f2 ∗ h2 = 1.

We begin with a simple application of the Borsuk-Ulam Theorem.

Lemma 3.1. Let f be a regular function on a symmetric slice domain Ω, let q = x+ yL ∈ Ω be a
point which is not a spherical zero for f , and for every I ∈ S let f(x+yI) = F I(x+yI)+GI(x+yI)J,
for some J orthogonal to I. Then there exists at least one imaginary unit I ∈ S such that either
F I(x+ yI)F I(x− yI) 6= 0 or GI(x+ yI)GI(x− yI) 6= 0.

Proof. Denote by 〈 , 〉 the scalar product in R4, and note that we can write F I(x+yI) = Re(f(x+
yI)) + 〈f(x+ yI), I〉I. The function ψ : S→ R2 defined by ψ(I) = (Re(f(x+ yI)), 〈f(x+ yI), I〉)
is a continuous function from the 2-dimensional sphere S to R2. Thus, by the Borsuk-Ulam
Theorem, we know that there is at least one choice of I for which ψ(I) = ψ(−I), that implies
F I(x+ yI) = F I(x− yI). If for this value of I it is F I(x+ yI) 6= 0 the lemma is proved. If, on the
other hand, F I(x+ yI) = F I(x− yI) = 0, then either GI(x+ yI) or GI(x− yI) does not vanish
(since f does not have a spherical zero in q). If both GI(x+yI) 6= 0 and GI(x−yI) 6= 0 we obtain
the thesis. Otherwise suppose, for instance, GI(x + yI) = 0 and GI(x − yI) 6= 0. To find M ∈ S
such that GM (x+ yM)GM (x− yM) 6= 0, we will use the Representation Formula to write, for any
M ∈ S, M ⊥ J

f(x+ yM) =
1

2
(f(x+ yI) + f(x− yI)) +

MI

2
(f(x− yI)− f(x+ yI))

=
1 +MI

2
GI(x− yI)J

=
1− 〈M, I〉+M × I

2

(
Re(GI(x− yI)) + Im(GI(x− yI))

)
J.

Since, by the Splitting Lemma,

f(x+ yM) = FM (x+ yM) +GM (x+ yM)J

then

Re(GM (x+ yM)) =
1− 〈M, I〉

2
Re(GI(x− yI)).
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Now, if Re(GI(x− yI)) 6= 0, we get that for any M ∈ S, M ⊥ J , M 6= ±I,

Re(GM (x± yM)) 6= 0

and hence
GM (x+ yM)GM (x− yM) 6= 0.

In the case Re(GI(x− yI)) = 0, then Re(GI(x− yI)I) 6= 0 since GI(x− yI) 6= 0. Performing the
same computation for the regular function f̃(x+ yM) = f(x+ yM)I we get that, with the usual
splitting

f̃(x+ yM) = F̃M (x+ yM) + G̃M (x+ yM)J,

the following inequalities hold

G̃M (x+ yM) 6= 0 and G̃M (x− yM) 6= 0,

for any M ∈ S, M ⊥ J , M 6= ±I. If we choose M = ±IJ , and take into account that

f̃(x+ yM) = FM (x+ yM)I +GM (x+ yM)JI

we reach the conclusion

FM (x+ yM)I = G̃M (x+ yM)J 6= 0 and FM (x− yM)I = G̃M (x− yM)J 6= 0.

In the final part of this section we will prove that two regular functions having no common
zeroes locally generate the entire ring of regular functions.

Theorem 3.2. Let q = x + yL ∈ H and let f1, f2 be two functions, regular in a symmetric slice
neighborhood Ω of q and not simultaneously vanishing at q. Then it is possible to find I ∈ S and a
symmetric domain W in ΩI containing x+ yI and x− yI, such that the equation

f1 ∗ h1 + f2 ∗ h2 = 1. (7)

restricted to W has local holomorphic solutions h1, h2 : W → H at any point of W .

Proof. Let q = x+ yL. Notice that, by hypothesis, x+ yS cannot be a spherical zero for both f1

and f2. By the Splitting Lemma, for any I ∈ S, we can represent, for ` = 1, 2, the functions f` via
functions holomorphic in a domain in LI containing (x+ yS) ∩ LI as

f`(z) = f`|I(z) = F`(z) +G`(z)J,

where J ∈ S is orthogonal to I. Similarly, the functions h` that we are looking for can be written
as

h`(z) = h`|I(z) = H`(z) +K`(z)J,

for suitable holomorphic functions H` and K`. Let us apply Lemma 3.1 to f1, and choose I such
that, without loss of generality, F1(x + yI)F1(x − yI) 6= 0. As a consequence we get that also
F1(x+ yI)F1(x− yI) 6= 0, f1(x + yI)f1(x − yI) 6= 0 and f c1(x + yI)f c1(x − yI) 6= 0. Notice that
the previous inequalities hold outside the discrete subset of ΩI consisting of all zeroes of F1(z) and
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F̂1(z), hence in a symmetric domain U in ΩI containing both x + yI and x − yI. Using (1), it is
immediate to see that (7) can be rewritten as a system of two equations for holomorphic functions
in LI , namely, omitting the variable z,{

F1H1 −G1K̂1 + F2H2 −G2K̂2 = 1

F1K1 +G1Ĥ1 + F2K2 +G2Ĥ2 = 0.
(8)

Since F1 does not vanish on U , there existH1,K1, H2,K2, holomorphic in U , which define a solution
of the first equation of (8). In general, the functions H1,K1, H2,K2 will not satisfy system (8).
However, one can modify the solution to the first equation by adding an element of the syzygies
of (F1, G1, F2, G2) and try to solve the system. Since the latter functions have no common zeroes
on U , their syzygies (see, e.g., [3]) are generated by the columns of the following matrix

A =


G1 F2 G2 0 0 0
−F1 0 0 F2 G2 0

0 −F1 0 −G1 0 G2

0 0 −F1 0 −G1 −F2

 .

Hence the general solution to the first equation of (8) is given by
H1 + β̂1G1 + β̂2F2 + β̂3G2

−K̂1 − β̂1F1 + β̂4F2 + β̂5G2

H2 − β̂2F1 − β̂4G1 + β̂6G2

−K̂2 − β̂3F1 − β̂5G1 − β̂6F2

 (9)

where β1, . . . , β6 are arbitrary holomorphic functions in U . Consider now the matrix B of holo-
morphic functions defined by

B =


F̂1 0 0 −F̂2 −Ĝ2 0

Ĝ1 F̂2 Ĝ2 0 0 0

0 0 F̂1 0 Ĝ1 F̂2

0 −F̂1 0 −Ĝ1 0 Ĝ2

 . (10)

In order to obtain a solution of (8) we now need to request that the vector
K1 + β1F̂1 − β4F̂2 − β5Ĝ2

Ĥ1 + β1Ĝ1 + β2F̂2 + β3Ĝ2

K2 + β3F̂1 + β5Ĝ1 + β6F̂2

Ĥ2 − β2F̂1 − β4Ĝ1 + β6Ĝ2

 (11)

belongs to the syzygies of (F1, G1, F2, G2). That is, setting H = t(K1, Ĥ1,K2, Ĥ2), we need to
find β = t(β1, . . . , β6) and α = t(α1, . . . , α6) vectors of holomorphic functions such that

H +Bβ = Aα,

namely such that (
A, −B

)( α
β

)
= H. (12)
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Our next goal is to establish that the rank of the (4 × 12)-matrix (A,−B) equals 4 on the entire
U . Recalling that F1 and F̂1 do not vanish in U , an easy computation shows that both A and
B have rank 3: in fact in both matrices the first three columns are a maximal subset of linearly
independent columns on U . Denote by A1, . . . , A6 the columns of A and by B1, . . . , B6 the columns
of B. The rank of (A,−B) is not maximum at a point z ∈ U if and only if all the determinants of
the six (4× 4)-matrices

M1 = (A1, A2, A3, B1), . . . , M6 = (A1, A2, A3, B6)

vanish at z. Namely, the rank of (A,−B) is 3 where (in U) the following system is satisfied

F 2
1 (F1F̂1 +G1Ĝ1) = 0

F 2
1 (F1F̂2 +G2Ĝ1) = 0

F 2
1 (F1Ĝ2 − F2Ĝ1) = 0

F 2
1 (G1F̂2 −G2F̂1) = 0

F 2
1 (F2F̂1 +G1Ĝ2) = 0

F 2
1 (F2F̂2 +G2Ĝ2) = 0

(13)

Taking into account that F1 is nonvanishing in U , the rank equals 3 if and only if the following six
equations are contemporarily satisfied:

F1F̂1 +G1Ĝ1 = 0 (14)

F1F̂2 +G2Ĝ1 = 0 (15)

F1Ĝ2 − F2Ĝ1 = 0 (16)

G1F̂2 −G2F̂1 = 0 (17)

F2F̂1 +G1Ĝ2 = 0 (18)

F2F̂2 +G2Ĝ2 = 0 (19)

Equation (14) and (19) can be written in U as the quaternionic equations fs1 (z) = 0 and fs2 (z) = 0.
We will now investigate the meaning of the other terms. Using (1) and the fact that U is symmetric,
we get

(f c1 ∗ f2)I(z) = (F2(z)F̂1(z) +G1(z)Ĝ2(z))− (G1(z)F̂2(z)−G2(z)F̂1(z))J

(f c2 ∗ f1)I(z) = (F1(z)F̂2(z) +G2(z)Ĝ1(z)) + (G1(z)F̂2(z)−G2(z)F̂1(z))J

(f c1 ∗ f2)I(z̄) = (F1(z)F̂2(z) +G2(z)Ĝ1(z)) + (F1(z)Ĝ2(z)− F2(z)Ĝ1(z))J

(f c2 ∗ f1)I(z̄) = (F2(z)F̂1(z) +G1(z)Ĝ2(z)) + (F1(z)Ĝ2(z)− F2(z)Ĝ1(z))J.

Hence if the matrix (A,−B) has rank 3 at z ∈ U , then equations (15)-(18) imply that (f c1∗f2)I(z) =
(f c2 ∗ f1)I(z) = (f c1 ∗ f2)I(z̄) = (f c2 ∗ f1)I(z̄) = 0. Consequently if (A,−B) has rank 3 at z ∈ U ,
then we have 

fs1 (z) = 0
f c1 ∗ f2(z) = 0
f c2 ∗ f1(z) = 0
f c1 ∗ f2(z̄) = 0
f c2 ∗ f1(z̄) = 0
fs2 (z) = 0

(20)
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Consider at first the case in which f1 has a zero in x+yS. If q = x+yL, let Z = {xn+ynS}n∈N ⊂ Ω
be the set of spheres, different from x + yS, containing zeroes of f c1 ∗ f2. Then V = U \ Z is a
symmetric domain in LI containing x+ yI (and x− yI) on which f c1 ∗ f2 never vanishes. To prove
this fact, thanks to Lemma 2.11 and to (2.6), we obtain

0 = fs(x+ yI) = f c1 ∗ f1(x+ yI) = f c1(x+ yI)f1(f c1(x+ yI)−1(x+ yI)f c1(x+ yI)).

As we pointed out f c1(x+ yI) 6= 0, and therefore

f1(f c1(x+ yI)−1(x+ yI)f c1(x+ yI)) = 0.

Since, by hypothesis, f2 cannot vanish at a zero of f1, we get

f c1 ∗ f2(x+ yI) = f c1(x+ yI)f2(f c1(x+ yI)−1(x+ yI)f c1(x+ yI)) 6= 0.

An analogous computation shows that f c1 ∗ f2(x− yI) 6= 0, thus proving our assertion concerning
V . As a consequence one of the holomorphic determinants appearing in (13) (namely one of those
related to (17) or (18)) cannot vanish at x + yI and one cannot vanish at x − yI: let us call this
functions N1 and N2. Let ZN ⊂ ΩI be the set of common zeroes of N1 and N2. Then W = V \ZN
is a symmetric domain in ΩI containing (and hence a neighborhood of) x+yI and x−yI. Since for
every point p of W one of the holomorphic determinants N1(z), N2(z) is non vanishing at p ∈W ,
using the classical Rouché - Capelli method it is now possible to find a local holomorphic solution
H = t(K1, Ĥ1,K2, Ĥ2) of the system (12) in a neighborhood Ap ⊆ W ⊆ ΩI of p. This solution
is such that the holomorphic functions h1(z) = H1(z) +K1(z)J and h2(z) = H2(z) +K2(z)J are
local holomorphic solutions of the restriction of equation (7) to Ap, i.e., it is such that

f1 ∗ h1(z) + f2 ∗ h2(z) = 1

for all z ∈ Ap. In the remaining case in which f1 has no zeroes in x+yS, then fs1 = F1F̂1+G1Ĝ1 6= 0

at both x + yI and x − yI ∈ x + yS. Setting N = F 2
1 f

s
1 = F 2

1 (F1F̂1 + G1Ĝ1) we proceed exactly
as in the previous case and conclude.

To extend the local result of Theorem 3.2 to Ω, and then to state it in a global version identifying
a solution of (7) in the entire domain Ω ⊆ H, we will apply results from the theory of sheaves of
germs of holomorphic functions in one complex variable. As a first step we prove a preliminary
lemma to study the structure of the sheaf of the syzygies of a pair of regular functions (f1, f2)
restricted to a suitable complex plane LI .

Lemma 3.3. Let f1, f2 : Ω → H, I ∈ S and W ⊆ ΩI be as in Theorem 3.2. If O is the sheaf of
germs of holomorphic functions on W and if K is the sheaf of germs of solutions of equation

f1 ∗ h1 + f2 ∗ h2 = 0 (21)

restricted to W , then
K ∼= O8/O6.

Proof. As it appears in the proof (and using the same notations) of Theorem 3.2, K corresponds
to the sheaf of germs of the local solutions of the system(

A, −B
)( α

β

)
= 0. (22)
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It easy to see that the matrix (A,−B) has rank 4, both matrices A and B have rank 3, and
A1, A2, A3 and B1, B2, B3 are maximal sets of linearly independent columns of A and B respec-
tively. Therefore each element of K can be written in terms of 8 (germs of) holomorphic functions.
Since with our choice of I, the matrix (A1, A2, A3, B`) is invertible for some ` ∈ {1, 2, 3}, say ` = 1,
we can write for arbitrary germs of holomorphic functions α4, α5, α6, β2, β3, β4, β5, β6,

α1 = α1(α4, α5, α6, β2, β3, β4, β5, β6)
α2 = α2(α4, α5, α6, β2, β3, β4, β5, β6)
α3 = α3(α4, α5, α6, β2, β3, β4, β5, β6)
β1 = β1(α4, α5, α6, β2, β3, β4, β5, β6).

(23)

We therefore have a surjective map
ϕ : O8 → K.

The germ in O8 associated to the solution of (22) corresponding to the vector t(α, β) belongs to
kerϕ if and only if

Aα = Bβ = 0,

which, in view of the rank of A and B, implies

α1 = α1(α4, α5, α6)
α2 = α2(α4, α5, α6)
α3 = α3(α4, α5, α6)
β1 = β1(β4, β5, β6)
β2 = β2(β4, β5, β6)
β3 = β3(β4, β5, β6).

(24)

As a consequence, the kernel of ϕ is isomorphic to O6 and K is isomorphic to O8/O6.

Theorem 3.4. Let q ∈ H and let f1, f2 be two functions, regular in a symmetric slice neighbor-
hood Ω of q and not simultaneously vanishing at q. Then it is possible to find a symmetric slice
neighborhood Σ of q and functions h1, h2 regular on Σ such that, on Σ,

f1 ∗ h1 + f2 ∗ h2 = 1. (25)

Proof. By Theorem 3.2 there exist I ∈ S, a symmetric domain W in ΩI and an an open covering
A = {At}t∈T of W whose elements At are such that the equation

f1 ∗ h1 + f2 ∗ h2 = 1 (26)

restricted to W ⊆ ΩI has a solution on each of them. With the same notation used in the proof
of Theorem 3.2, equation (26) induces by restriction a local holomorphic solution to the complex
system {

F1H1 −G1K̂1 + F2H2 −G2K̂2 = 1

F1K1 +G1Ĥ1 + F2K2 +G2Ĥ2 = 0.
(27)

on W . Since the sheaf K of solutions to equation (21) is a coherent sheaf in view of Lemma 3.3 (see
[19]), classical arguments show that system (27) has a global holomorphic solution on W . This is
equivalent to the existence of globally defined holomorphic functions h1, h2 on W such that

f1 ∗ h1 + f2 ∗ h2 = 1
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on W . Thanks to the Extension Lemma 2.4 the functions h1, h2 uniquely extend to the symmetric
slice domain

Σ =
⋃

u+vI∈W
(u+ vS)

as regular functions that satisfy
f1 ∗ h1 + f2 ∗ h2 = 1

everywhere in Σ.

We are now ready to prove

Theorem 3.5. Let f1, f2 be regular functions on a symmetric slice domain Ω ⊆ H, with no
common zeroes in Ω. Then there exist h1 and h2 regular functions on Ω such that

f1 ∗ h1 + f2 ∗ h2 = 1

on Ω.

Proof. By Theorem 3.4 there exists an open covering U = {Ut}t∈T of Ω whose elements Ut are
symmetric slice domains, such that the equation

f1 ∗ h1 + f2 ∗ h2 = 1 (28)

has a solution on each of them. Consider now, for an arbitrary J ∈ S, the slice ΩJ of Ω. With
the same notation used in the proof of Theorem 3.2, equation (28) induces by restriction a local
holomorphic solution to the complex system{

F1H1 −G1K̂1 + F2H2 −G2K̂2 = 1

F1K1 +G1Ĥ1 + F2K2 +G2Ĥ2 = 0.
(29)

on ΩJ . This local solution on ΩJ is generated, via the Extension Lemma (as pointed out in
the proof of Theorem 3.4), by a germ of local solution (locally defined on some slice ΩI) which
belongs to O8. Thanks to the Extension Lemma and Lemma 3.3, the sheaf K of local syzygies of
f1, f2 restricted to ΩJ is coherent, and then classical arguments (see [19]) show that system (29)
has a global holomorphic solution on ΩJ . This is equivalent to the existence of globally defined
holomorphic functions h1, h2 on ΩJ such that

f1 ∗ h1 + f2 ∗ h2 = 1

on ΩJ . Thanks to the Extension Lemma 2.4 the functions h1, h2 uniquely extend to Ω as regular
functions that satisfy

f1 ∗ h1 + f2 ∗ h2 = 1

everywhere on Ω.
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4 Ideals of regular functions

In this section we show how the proof of Theorem 3.5 can be extended to the case of n(≥ 2) regular
functions with no common zeroes.

Lemma 4.1. Let q = x + yL ∈ H and let f1, . . . , fn be n regular functions in a slice symmetric
neighborhood Ω of q and not simultaneously vanishing at q. Then there exist I ∈ S and a symmetric
domain U ⊆ ΩI , containing x + yI, such that, if f` = F` + G`J is the splitting of f` on ΩI , for
` = 1, . . . , n, then:

1. the rank of the
(
2n×

(
2n
2

))
-matrix A whose columns are the standard generators of the syzy-

gies of the vector (F1, G1, . . . , Fn, Gn) equals 2n− 1 on U ;

2. the rank of the
(
2n×

(
2n
2

))
-matrix B whose columns are the standard generators of the syzy-

gies of the vector (−Ĝ1, F̂1, . . . ,−Ĝn, F̂n) equals 2n− 1 on U ;

3. the rank of the
(
2n× 2

(
2n
2

))
-matrix (A,−B) equals 2n on U .

Proof. By hypothesis there exists ` such that f` does not have a spherical zero x+ yS containing
q = x+ yL. We can suppose ` = 1. Thanks to Lemma 3.1, as in the proof of Theorem 3.2, we can
find I ∈ S such that, without loss of generality, F1 6= 0 and F̂1 6= 0 on a symmetric domain U in
ΩI containing x + yI (and x − yI). We can reorder the columns of A in such a way that all the
elements in the subdiagonal are nonzero multiples of F1 and all entries underneath the subdiagonal

vanish. Moreover the matrix
(
A2n, A2n+1, . . . , A(2n

2 )
)

has a row of zeros. This guarantees that A

has rank 2n− 1 on U . The same argument holds for B since F̂1 does not vanish on U .
To prove the third assertion, we will proceed by contradiction. Suppose that the rank of (A,−B)

equals 2n−1 at z ∈ U . Then each column of −B is a linear combination of the first 2n−1 columns
of A, i.e. it belongs to the syzygies of (F1, G1, . . . , Fn, Gn) and analogously each column of A is a
syzygy of (−Ĝ1, F̂1, . . . ,−Ĝn, F̂n). By multiplying each column of B by (F1, G1, . . . , Fn, Gn) and
each column of A by (−Ĝ1, F̂1, . . . ,−Ĝn, F̂n), we get

(
2n
2

)
equations that, as in the case of n = 2,

imply 
fsσ = 0
f cγ ∗ fδ(z) = 0
f cγ ∗ fδ(z̄) = 0

(30)

for any σ, γ, δ ∈ {1, . . . , n}, γ 6= δ. Recall that f c1 is non-vanishing on U ; hence if f1 does not
vanish on the sphere containing z then fs1 (z) 6= 0 and we find a contradiction. The case in which
f1 has a zero on the sphere containing z can be treated following the lines of the proof of Theorem
3.2 and using the hypothesis that f1, . . . , fn do not vanish simultaneously at q.

The previous lemma allows us to prove the following local result, using the same arguments of
the case n = 2.

Theorem 4.2. Let q = x+ yL ∈ H and let f1, . . . , fn be n functions, regular on a symmetric slice
neighborhood Ω of q and not simultaneously vanishing at q. Then it is possible to find I ∈ S and a
symmetric domain W in ΩI containing x+ yI and x− yI, such that the equation

f1 ∗ h1 + · · ·+ fn ∗ hn = 1. (31)
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restricted to W has local holomorphic solutions h1, . . . , hn : W → H at any point of W .

We now need to investigate the structure of the sheaf of local solutions of equation (31) restricted
to a suitable slice LI .

Lemma 4.3. Let f1, . . . , fn : Ω→ H, I ∈ S and W ⊆ ΩI be as in Theorem 4.2. If O is the sheaf
of germs of holomorphic functions on W and if K is the sheaf of germs of solutions of equation

f1 ∗ h1 + · · ·+ fn ∗ hn = 0 (32)

restricted to W , then

K ∼= O4n2−4n/O4n2−6n+2.

Proof. As for the case n = 2, K corresponds (with the same notation of Lemma 4.1) to the sheaf
of germs of the local solutions of the system of 2n equations in 2

(
2n
2

)
unknowns

(
A, −B

)( α
β

)
= 0. (33)

Lemma 4.1 yields that we can express locally 2n unknowns as holomorphic functions in terms of
2
(

2n
2

)
− 2n = 4n2 − 4n germs of holomorphic functions. We therefore obtain a surjective map

ϕ : O4n2−4n → K.

The germ in O4n2−4n associated to the solution of (33) corresponding to the vector t(α, β) belongs
to kerϕ if and only if

Aα = Bβ = 0,

which, recalling that the rank of A and B equals 2n − 1, implies (analogously to what happens

in the case n = 2) that the kernel of ϕ is isomorphic to O4n2−6n+2. Hence we conclude that K is

isomorphic to O4n2−4n/O4n2−6n+2.

With the same arguments used to prove Theorem 3.4, properties of sheaves of germs of holo-
morphic functions, and the Extension Lemma, lead us to prove the next result.

Theorem 4.4. Let q ∈ H and let f1, . . . , fn be n functions, regular on a symmetric slice neigh-
borhood Ω of q and not simultaneously vanishing at q. Then it is possible to find a symmetric slice
neighborhood Σ of q and functions h1, . . . , hn, regular on Σ, such that, on Σ,

f1 ∗ h1 + · · ·+ fn ∗ hn = 1. (34)

The global results can be proved using the same techniques of the case n = 2.

Theorem 4.5. Let f1, . . . , fn be regular functions on a symmetric slice domain Ω ⊆ H, with no
common zeroes in Ω. Then there exist h1, . . . , hn regular functions on Ω such that

f1 ∗ h1 + · · ·+ fn ∗ hn = 1

on Ω.
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We conclude the paper with a short description of the syzygies of regular functions. In the
complex case, if f1, . . . , fn are holomorphic functions of one complex variable with no common
zeroes, then their syzygies are generated by

(
n
2

)
vectors of holomorphic functions which can be

constructed as follows: let e`, ` = 1, . . . , n, be the standard basis of Rn. The generators of the
syzygies are then

fret − fter = (0, . . . , 0,−ft, 0, . . . , 0, fr, 0, . . . , 0)

for 1 ≤ r < t ≤ n, a fact which we have repeatedly used in the previous section. It is therefore
natural to ask if a similar situation occurs for regular functions without common zeroes. Since the
∗-multiplication is not commutative, the immediate analogue of these syzygies does not work in
this context. Natural syzygies would on the other hand be the vectors

syz(r, t) := (f ct ∗ fsr )et − (f cr ∗ fst )er = (0, . . . , 0,−f cr ∗ fst , 0, . . . , 0, f ct ∗ fsr , 0, . . . , 0)

for 1 ≤ r < t ≤ n. In fact, in view of Lemma 2.9 ,

fr ∗ (−f cr ∗ fst ) + ft ∗ (f ct ∗ fsr ) = 0

for all 1 ≤ r < t ≤ n. In the case of n = 2, this identifies one syzygy, which is consistent with
Lemma 3.3. When n > 2, as in the case of holomorphic functions, there are

(
n
2

)
syzygies, though

Lemma 4.3 immediately implies the following proposition.

Proposition 4.6. Let f1, . . . , fn be regular functions on a slice symmetric domain Ω of H with no
common zeroes. Then their syzygies are locally generated by n− 1 vectors of regular functions.

To understand this phenomenon, we note that for any three indices 1 ≤ p < r < t ≤ n, we have

syz(r, t) ∗ fsp = syz(p, t) ∗ fsr − syz(p, r) ∗ fst . (35)

Let us fix a sphere S = x+ yS ⊆ Ω. If one of the functions fp, fr, ft never vanishes on S, assume
fp, then (35) immediately shows that syz(r, t) is a combination with regular coefficients of syz(p, t)
and syz(p, r)

syz(r, t) = syz(p, t) ∗ fsr ∗ (fsp )−1 − syz(p, r) ∗ fst ∗ (fsp )−1. (36)

If all fp, fr, ft have a zero on S, without loss of generality, we can assume that fp has the lesser
order (for the notion of order of a zero see, e.g., [12]). Then again (36) can be used to represent
syz(r, t) locally.

Remark 4.7. It therefore appears that the reason why we can reduce to n − 1 the number of
syzygies is a consequence of Remark 2.12, namely the fact that a (isolated, non real) zero of a
regular function f generates a sphere of zeroes for fs and a sphere of poles for its reciprocal f−∗.
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