n. compito 1

N. matricola

C.d.L

<u>cognome</u> nome

Risposte											
Domande	1	2	3	4	5	6	7	8	9	10	11

Scrivere il numero della risposta sopra alla corrispondente domanda

Domanda n.1) Rispetto a una fissata base v_1, v_2, v_3 dei vettori liberi, consideriamo i tre vettori v = (3, 2, 5), w = (7, 4, 1), t = (0, 0, 1). Per quali valori reali $\lambda_1, \lambda_2, \lambda_3 \in \mathbf{R}$ si ha $\lambda_1 v + \lambda_2 w + \lambda_3 t = (-1, 0, 15)$?

R.1)
$$\lambda_1 = 2, \lambda_2 = -1, \lambda_3 = -6$$

R.2)
$$\lambda_1 = 2, \lambda_2 = -1, \lambda_3 = 6$$

R.3)
$$\lambda_1 = 1, \lambda_2 = -1, \lambda_3 = 6$$

R.4)
$$\lambda_1 = 2, \lambda_2 = 1, \lambda_1 = 6$$

R.5)
$$\lambda_1 = 2, \lambda_2 = -1, \lambda_3 = 0$$

Domanda n.2) Sia (0, i, j, k) un sistema di riferimento ortonormale rispetto a cui v = (3, 2, 5) e w = (1, 1, 1). Allora quanto $[(v \cdot w)v] \cdot w$?

- R.1) 100
- R.2) 1
- R.3) 10
- R.4) 1000
- R.5) nessuna delle altre risposte

Domanda n.3) Siano $v, w, t \in \mathcal{V}$ tre vettori liberi linearmente indipendenti; allora per quali valori di $\alpha \in \mathbf{R}$ i due vettori $v + \alpha t$ e $v + \alpha w$ sono linearmente indipendenti?

- R.1) Per tutti i valori tranne lo zero e l'uno
- R.2) Per nessun valore
- R.3) Per tutti i valori tranne lo zero
- R.4) Per tutti i valori
- R.5) Solo per il valore zero

Domanda n.4) Sia $v \in \mathcal{V}$ un generico vettore libero. Quanto vale il modulo del vettore $(v \cdot v)v$?

- R.1) il cubo del modulo di v
- R.2) il quadrato del modulo di v
- R.3) zero
- R.4) equivale al modulo di v
- R.5) uno
- R.6) nessuna delle altre risposte

Domanda n.5) Siano $v, w, t \in \mathcal{V}$ tre vettori liberi linearmente indipendenti; allora per quali valori di $\alpha \in \mathbf{R}$ i due vettori $v \in w + \alpha t$ sono linearmente dipendenti?

- R.1) Per tutti i valori tranne lo zero e l'uno
- R.2) Per nessun valore
- R.3) Per tutti i valori tranne lo zero
- R.4) Per tutti i valori
- R.5) Solo per il valore zero

Domanda n.6) Sia (0, i, j, k) un sistema di riferimento ortonormale; quanto vale il prodotto scalare dei vettori v = 3i - 2j e w = i + 7k?

- R.1) 3
- R.2)2
- R.3) 1
- R.4) 0
- R.5)7

Domanda n.7) Siano $v, w \in \mathcal{V}$ due vettori liberi linearmente indipendenti; allora per quali valori di $\alpha \in \mathbf{R}$ i vettori $\alpha v + w$ e $v + \alpha w$ sono linearmente dipendenti?

- R.1) Per i valori uno e meno uno
- R.2) Per i valori meno uno, zero e uno
- R.3) Per nessun valore
- R.4) Per tutti i valori

R.5) Per il valore uno

Domanda n.8) Siano $v, w \in \mathcal{V}$ due vettori liberi linearmente indipendenti; allora per quali valori di $\alpha \in \mathbf{R}$ i vettori $v + \alpha w$ e $v - \alpha w$ sono linearmente indipendenti?

- R.1) Per tutti i valori tranne lo zero e l'uno
- R.2) Per nessun valore
- R.3) Per tutti i valori tranne lo zero
- R.4) Per tutti i valori
- R.5) Solo per il valore zero

Domanda n.9) Siano $v, w, t \in \mathcal{V}$ tre vettori liberi linearmente indipendenti; allora per quali valori dei parametri $\alpha, \beta, \mu, \nu \in \mathbf{R}$ i quattro vettori $w, \alpha v + \beta^2 t, \nu w + \mu t, \beta + (\alpha + 1)t$ sono linearmente dipendenti?

- R.1) Per i valori $\alpha = 0, \beta = 0, \mu = 3, \nu = 0$
- R.2) Per i valori $\alpha = 1$, $\beta = 0$, $\mu = 0$, $\nu = 0$
- R.3) Per tutti i valori dei quattro parametri
- R.4) Per nessun valore dei quattro parametri
- R.5) Per i valori $\alpha = 1, \beta = 0, \mu = 3, \nu = 0$

Domanda n.10) Sia (0, i, j, k) un sistema di riferimento ortonormale rispetto a cui v = (a, 1, 0) e w = (0, b, 0). Quanto vale $(3v + w) \cdot (v - 2w)$?

- R.1) $3a^2 2b^2 5b + 1$
- R.2) $4a^2 2b^2 5b + 1$
- R.3) $3a^2 2b^2 5b$
- R.4) $3a^2 2b^2 + 1$
- R.5) $3a^2 7b + 1$

Domanda n.11) Rispetto a una fissata base v_1, v_2, v_3 dei vettori liberi consideriamo i due vettori v = (2,0,1) e w = (1,0,0). Possiamo, con una combinazione lineare dei vettori v e w, ottenere il vettore (13,0,6)?

- R.1) Sì, con 6v + w
- R.2) Sì, con 6v + 2w
- R.3) Sì, con 6v w
- R.4) Sì, con -6v w
- R.5) No, mai

RISPOSTE CORRETTE: 21312113211