Una raccolta di testi di compiti di Istituzioni di Matematiche II

L. Serena

Istituzioni II 25.1.07

1. Data la funzione

$$z = f(x,y) = -\frac{1}{\sqrt{2}}\sqrt{x^2 + y^2 - 6xy - 2}$$

- $\bullet\,$ Determinare il tipo di quadrica di cui z=f(x,y) è una porzione.
- \bullet Detta $\mathcal D$ la frontiera del dominio della funzione, determinare il tipo di conica che rappresenta.
- Determinare, se esistono, gli eventuali punti di massimo e minimo relativi.
- 2. Data l'equazione differenziale y'' + 2y' + 3y = x determinare la soluzione che soddisfa le condizioni y(0) = 0, y'(0) = 0.
- 3. Calcolare il seguente integrale doppio

$$\int \int_{D} \frac{y}{1-x^2} \, dx \, dy$$

dove
$$D=\{(x,y): 2\leq x\leq 3;\; x\leq y\leq x^2\}$$

Istituzioni II 13.4.07

1. Sia data la funzione

$$f(x,y) = \frac{3}{2}x^2 + 3xy - \frac{1}{2}y^2 - 1$$

• Ridurre la quadrica d'equazione z = f(x, y) in forma canonica e determinarne il tipo.

• Sia T il triangolo in \mathbb{R}^2 di vertici $P_1 \equiv (1,1), P_2 \equiv (2,1)$ e $P_3 \equiv (2,2)$. Provare che la funzione z = f(x,y) è positiva in T.

• Calcolare il volume del cilindroide relativo alla funzione z = f(x, y) con base T.

2. Data l'equazione differenziale $y''-y'+2y=x+e^x$ determinare la soluzione che soddisfa le condizioni y(0)=0, e y'(0)=0

Istituzioni II 8.6.07

1. Data la funzione

$$f(x,y) = \sqrt{4 + 2y^2 - x^2} - 1$$

determinare il tipo di quadrica di cui z=f(x,y) è una porzione. Detto $M=\{(x,y):|x|\leq 1,\;|y|\leq 4\}$ provare che M è contenuto nel dominio D di z=f(x,y) e fornire una rappresentazione grafica di D. Provare inoltre che la funzione z=f(x,y) è positiva in M.

2. Integrare la seguente equazione differenziale

$$y'e^{\sqrt{y}}(\sqrt{x-2}-1) = \sqrt[4]{x-2} + 2$$

- 3. Svolgere uno dei seguenti due esercizi
 - Calcolare il seguente integrale doppio:

$$\int \int_D x^2 dx dy$$

dove $D = \{(x, y) : 1 \le x^2 + y^2 \le 4, x \le 0, y \ge 0\}.$

• Data la conica d'equazione $2x^2 + 6y^2 - 4\sqrt{3}xy - \sqrt{3}x - y = 0$ determinarne il tipo, utilizzando i metodi della geometria proiettiva. Determinarne quindi l'equazione dell'asse (o degli assi) di simmetria.

Istituzioni II 3.7.07

1. Data la funzione

$$f(x,y) = -3 + \frac{1}{\sqrt{2}}\sqrt{2 + 5y^2 + 10xy + x^2}$$

determinare il tipo di quadrica di cui z = f(x,y) è una porzione. Detto D il dominio della funzione z = f(x,y) determinare il tipo di conica rappresentata dalla frontiera di D. Determinare inoltre gli eventuali punti di massimo e minimo relativi.

2. Data la curva

$$\gamma(t): \left\{ \begin{array}{ll} x = & e^t \\ y = & 2t \end{array} \right. t \in [0, 2]$$

provare che $\gamma(t)$ è semplice e regolare in [0,2]. Determinare quindi la lunghezza di $\gamma(t)$ in [0,2].

3. Risolvere uno dei seguenti due esercizi

• Calcolare il seguente integrale doppio

$$\int \int_D e^{x^2+y^2} x \ dxdy$$

dove $1 \le x^2 + y^2 \le 4$, $x \ge 0$, $y \le 0$.

• Data la conica d'equazione

$$x^2 + 4xy + 4y^2 + 2x = 0$$

determinarne il tipo, l'equazione della tangente nel punto $P \equiv (0,0)$ e l'equazione degli eventuali assi (o asse) di simmetria, utilizzando i metodi della geometria proiettiva.

Istituzioni II 12.11.07

1. Data la funzione

$$f(x,y) = \frac{3}{2}x^2 - xy + \frac{3}{2}y^2 + 1$$

determinare i punti di massimo assoluto che la funzione assume nel dominio $D=\{(x,y)=:|x|\leq 1,\;|y|\leq 1\}$. Determinare inoltre il tipo di quadrica rappresentato da z=f(x,y).

2. Sia D una lamina piana con dendità $\rho(x,y)=x$ tale che

$$D = \{(x, y) : 0 \le x \le 1, \quad \frac{1}{x^2 - 2x - 3} \le y \le \sqrt{1 - x^2}\}.$$

Determinare la massa di D.

3. Data l'equazione differenziale

$$y'' + y' + 5y = x$$

determinare la soluzione che soddisfa le condizioni y(0) = 0, y'(0) = 0. La funzione $y = e^{2x}$ è soluzione della suddetta equazione differenziale?

Istituzioni di Matematiche II, 15.2.08

1. Data la quadrica Q d'equazione

$$x^2 + y^2 + 6z^2 + 6xy + 6x + 2y + 12z + 7 = 0$$

ridurla in forma canonica e determinarne il tipo. Determinare quindi il tipo della conica ottenuta intersecando \mathcal{Q} col piano d'equazione z=1.

- 2. Sia data una lamina piana \mathcal{M} avente la forma del triangolo di vertici $A \equiv (1,0)$ $B \equiv (2,0)$ e $C \equiv (1,1)$. Supposto che la densità $\rho = \frac{y}{x^2 x 6}$ determinare la massa di \mathcal{M} .
- 3. Integrare la seguente equazione differenziale

$$y' - xy = x\sqrt[3]{y}$$

Istituzioni di Matematiche II 26.3.08

1. Dati la funzione

$$z = f(x,y) = -\frac{1}{2}(x^2 + 10xy + 5y^2) + 10$$

ed il triangolo \mathcal{T} di vertici $A \equiv (0,0), B \equiv (2,0)$ e $C \equiv (1,1)$

- provare che z = f(x, y) non assume valori negativi in \mathcal{T} .
- Calcolare il volume del cilindroide di base \mathcal{T} e relativo alla funzione z = f(x, y).
- Determinare il tipo della quadrica rappresentata da z = f(x, y).
- 2. Integrare la seguente equazione differenziale

$$y' \ln \sqrt{3y} = \frac{e^{2x} + e^x}{e^{2x} + 2e^x + 1}$$

3. Data la curva

$$\gamma(t): \begin{cases} x = \cos t \\ y = \sin t \\ z = e^t \end{cases}$$

con $t \in [1,3]$ provare che $\gamma(t)$ è regolare e determinarne la lunghezza.

Istituzioni di Matematiche II 9.6.08

- 1. Sia D una lamina piana avente la forma di un triangolo di vertici $A\equiv (0,0)\,,\,\,B\equiv (1,0)$ e $C\equiv (0,1)\,.$ Supposta la densitá $\rho=\frac{y(x-2)}{x^2-5x+6}\,,$ calcolare la massa di D.
- 2. Sia data la funzione

$$f(x,y) = \sqrt{4 + 2xy}.$$

Determinare i punti di massimo assoluti nel dominio D costituito dal triangolo di vertici $A \equiv (0,0)$, $B \equiv (1,0)$ e $C \equiv (0,1)$. Determinare inoltre il tipo di quadrica di cui z = f(x,y) è una porzione.

- 3. Svolgere uno dei seguenti due esercizi:
 - a) Sia data la curva

$$\gamma(t) = \begin{cases} x = e^t \\ y = e^t \\ z = t \end{cases} \quad t \in [0, 1].$$

Provare che $\gamma(t)$ è regolare e determinarne la lunghezza.

b) Utilizzando gli strumenti della geometria proiettiva determinare il tipo ed il centro della conica rappresentata dall'equazione

$$x^2 + y^2 + 6xy + 2x + 6y + 2 = 0$$

Istituzioni di Matematiche II 3.7.08

1. Sia data la funzione

$$f(x,y) = -\frac{1}{\sqrt{2}}\sqrt{x^2 - 6xy + y^2 + 4}$$

Determinare la natura dei punti critici di z=f(x,y) ed il tipo della conica che rappresenta la frontiera del dominio di detta funzione. Determinare inoltre il tipo della quadrica di cui z=f(x,y) rappresenta una porzione.

2. Risolvere uno dei seguenti due esercizi

- Data la conica C d'equazione $x^2 xy + y^2 x 1 = 0$, facendo uso degli strumenti della geometria proiettiva, determinarne il tipo e la retta tangente nel punto $P \equiv (0, -1)$.
- Sia dato un filo rappresentato dalla curva $\gamma(t) = \begin{cases} x = \cos t \\ y = \sin t \end{cases}$, $t \in [0, \frac{\pi}{2}]$ Provare che $\gamma(t)$ è una curva regolare e supposto che il filo abbia densità $\rho = \frac{y^2}{x^2 + y^2}$ determinarne la massa.

3. Data l'equazione differenziale $y'' + y' + 3y = \cos x$ determinare la soluzione che soddisfa le condizioni y(0) = 0, y'(0) = 0.

Istituzioni di Matematiche II 22.9.08

1. Sia data la funzione

$$f(x,y) = xy + y - x + 1$$

Determinare il tipo di superficie rappresentata dalla funzione z=f(x,y). Determinare inoltre il tipo di conica ottenuta sezionando la superficie suddetta col piano z=2. Provare che z=f(x,y) è positiva nel triangolo $\mathcal T$ di vertici $A\equiv (0,0),\ B\equiv (-2,0),\ C\equiv (0,2)$ e determinare il volume del cilindroide delimitato dalla funzione z=f(x,y) con base $\mathcal T$.

2. Data l'equazione differenziale

$$y'' + y' + 3y = x$$

determinare la soluzione che soddisfa le condizioni y(0) = 0, y'(0) = 0.

3. Integrare la seguente equazione differenziale

$$y'e^x = (e^y + 1)x\ln(x^2 - 5x + 6)$$

Istituzioni di Matematiche II 10.11.08

1. Sia data la superficie d'equazione

$$z = f(x, y) = y(x - 2) + 2.$$

- Determinare il tipo di quadrica rappresentata da z = f(x, y).
- Provare che la funzione suddetta è positiva nel triangolo \mathcal{T} di vertici $O \equiv (0,0), A \equiv (1,0), e B \equiv (0,1).$
- Calcolare il volume del cilindroide di base \mathcal{T} e relativo a z=f(x,y)
- 2. Data l'equazione differenziale y'' + 2y' + 2y = x determinare la soluzione che soddisfa le condizioni y(0) = 0 e y'(0) = 0.
- 3. Risolvere uno dei seguenti due esercizi:
 - Sia data la conica d'equazione $x^2 xy + 1 = 0$. Facendo uso degli strumenti della geometria proiettiva, determinarne il tipo e gli asintoti.
 - \bullet Sia dato un filo metallico \mathcal{L} rappresentato dalla curva

$$\gamma(t) = \left\{ \begin{array}{ll} x = sen \, t \\ y = cos \, t \end{array} \right. \ t \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right]$$

Supposto che la densità di \mathcal{L} sia $\rho = \frac{1}{x}$, determinare la massa di \mathcal{L} .

Istituzioni di Matematiche II 11.2.09

- 1. Data la funzione $z=f(x,y)=-\frac{1}{2}x^2+3xy-\frac{1}{2}y^2+2$ determinare il tipo di quadrica che rappresenta riducendola in forma canonica. Provare che la funzione suddetta è positiva nel dominio $D=\{(x,y):x\geq 0,\,y\geq ,\,x^2+y^2\leq 1\}$. Determinare quindi il volume del cilindroide con base D e delimitato da z=f(x,y).
- 2. Integrare la seguente equazione differenziale

$$1 = ye^{y+1}(1 + sen x cos x)$$

3. Sia \mathcal{L} una lamina piana avente la forma di un triangolo di vertici $A \equiv (0,0), \ B \equiv (2,0) \ C \equiv (0,1)$. Supposta la densità $\rho = \frac{xy}{x^2+2}$ determinare il centro di massa di \mathcal{L} .

Istituzioni di Matematiche II 10.6.09

- 1. Detta \mathcal{Q} la quadrica d'equazione $4xy + z^2 + 4y 1 = 0$, ridurla in forma canonica e determinarne il tipo. Sia \mathcal{C} la conica intersezione di \mathcal{Q} col piano z=1. Utilizzando i metodi della geometria proiettiva determinare il tipo della conica \mathcal{C} .
- 2. Data l'equazione differenziale

$$y' + \frac{1}{x}y = \frac{x^2}{x^2 - 4}$$

determinarne l'integrale generale.

3. Data la funzione

$$z = \sqrt{2 - x^2 + 3y^2}$$

determinare gli eventuali punti di massimo o minimo relativi. La suddetta funzione è differenziabile in $P \equiv (1,1)$?

Istituzioni di Matematiche II 1.7.09

1. Data la seguente curva

$$\gamma(t): \left\{ \begin{array}{l} x=1\\ y=t\\ z=2e^{\frac{t}{2}} \end{array} \right. t \in [0,1]$$

provare che è semplice e regolare. Determinarne quindi la lunghezza.

- 2. Data la quadrica d'equazione $x^2 + z^2 + 2xz y = 0$ ridurla in forma canonica e determinarne il tipo.
- 3. Data l'equazione differenziale $y'' + y' + 3y = \cos x$, determinare la soluzione che soddisfa le condizioni y(0) = 0, y'(0) = 0.

Istituzioni di Matematiche II 23.9.09

- 1. Sia data la funzione $z = xy + x^2 + 2$. Determinare il tipo di quadrica che rappresenta. Detto \mathcal{T} il triangolo di vertici $A \equiv (0,0)$, $B \equiv (1,0)$ e $C \equiv (1,1)$, determinare i punti di massimo e minimo assoluti assunti dalla funzione in \mathcal{T} . Detta \mathcal{C} la conica ottenuta sezionando la superficie col piano z = 1, determinarne il tipo utilizzando gli strumenti della geometria proiettiva.
- 2. Data l'equazione differenziale y'' + 2y' + 4y = x 1 determinare la soluzione che soddisfa le condizioni y(0) = 0 y'(0) = 1.
- 3. Sia \mathcal{L} una lamina piana rappresentata dal triangolo di vertici $A \equiv (0,0)$, $B \equiv (1,0)$ e $C \equiv (1,1)$. Supposto che la densità puntuale della lamina sia data da $\rho(x,y) = |\frac{2yx-2y}{x^2-9}|$ determinare la massa di \mathcal{L} .

Istituzioni di Matematiche II 9.11.09

- 1. Sia \mathcal{Q} la quadrica rappresentata dalla funzione $z=\frac{5}{4}x^2-\frac{\sqrt{3}}{2}xy+\frac{7}{4}y^2$. Determinarne il tipo riducendola in forma canonica. Verificare quindi se la funzione data assume valori negativi nel dominio $D=\{(x,y):|x|\leq 1,\;|y|\leq 1\}$. Sia \mathcal{C} la conica ottenuta sezionando la quadrica \mathcal{Q} col piano z=1. Determinarne il tipo utilizzando i metodi della geometria proiettiva.
- 2. Sia dato un filo rappresentato dalla curva $\gamma(t): \begin{cases} x=t \\ y=1 \\ z=e^t \end{cases}$ Provare che $\gamma(t)$ è regolare e determinarne la lunghezza.
- 3. Sia data una lamina metallica piana \mathcal{L} avente la forma di un triangolo di vertici $A \equiv (0,0), \ B \equiv (2,0)$ e $C \equiv (0,2)$. Supposto che la densità puntuale sia rappresentata dalla funzione $\rho = |\frac{xy-2x}{y^2-9}|$, determinare la massa di \mathcal{L} .

Istituzioni di Matematiche II 6/9/2010

- 1. Data l'equazione differenziale $y'' 2y' + y = 2x + 3e^x$ determinare la soluzione che soddisfa le condizioni y(0) = 0 e y'(0) = 0.
- 2. Data la funzione $z = \sqrt{2x^2 4y^2 2}$, provare che è definita nel triangolo \mathcal{T} di vertici $A \equiv (2,0)$, $B \equiv (3,0)$, $C \equiv (3,1)$. Calcolare quindi i punti di massimo e minimo assoluti in \mathcal{T} e determinare il tipo di quadrica di cui la funzione è una porzione.
- 3. Sia \mathcal{L} una lamina piana avente la forma del triangolo di vertici $V_1 \equiv (3,0), \ V_2 \equiv (4,7) \ V_3 \equiv (4,0)$. Supposto che la densità ρ sia data da $\rho = |\frac{xy}{x^2-3x+2}|$, determinarne la massa.

Istituzioni di Matematiche II, 25.1.11

1. Sia data la funzione

$$z = f(x, y) = x^2 + y^2 - 4xy + 3$$

• Determinare il tipo di quadrica rappresentata dalla funzione z = f(x, y).

- Sia \mathcal{C} la conica ottenuta intersecando la suddetta funzione col piano z=2. Determinarne il tipo utilizzando i metodi della geometria proiettiva.
- Sia \mathcal{T} il triangolo di vertici $A \equiv (0,1), B \equiv (1,0)$ e $C \equiv (1,1)$. La funzione è positiva in \mathcal{T} ?
- 2. Sia \mathcal{T} una lamina piana avente la forma del triangolo di vertici $A \equiv (0,1), \ B \equiv (1,0)$ e $C \equiv (2,0)$. Supposto che la densità sia data da $\rho = |\frac{2}{x^2-9}|$, determinare la massa di \mathcal{T} .
- 3. Data l'equazione differenziale y'' + y' + y = x 1 determinare la soluzione che soddisfa le condizioni y(0) = 0, y'(0) = 0.