

One-parameter families of spatial PH quintic interpolants, of identical arc length, defined by keeping $\phi_2 - \phi_0$ constant, and varying only $\frac{1}{2}(\phi_0 + \phi_2)$

rational rotation-minimizing frame (RRMF) curves

rational frames $(\mathbf{t}, \mathbf{u}, \mathbf{v})$ with angular velocity satisfying $\boldsymbol{\omega} \cdot \mathbf{t} \equiv 0$

Frenet

Frenet frame (center) & rotation-minimizing frame (right) on space curve

motion of an ellipsoid oriented by Frenet & rotation-minimizing frames

sudden reversal of Frenet frame through an inflection point

surface constructed by sweeping an ellipse along a space curve using Frenet frame (center) & rotation-minimizing frame (right)

Hermite interpolation by quintic RRMF curves

given initial, final positions & frames \mathbf{p}_i & $(\mathbf{t}_i, \mathbf{u}_i, \mathbf{v}_i)$ and \mathbf{p}_f & $(\mathbf{t}_f, \mathbf{u}_f, \mathbf{v}_f)$ compute RRMF quintic $\mathbf{r}(\xi)$ & frame $(\mathbf{t}(\xi), \mathbf{u}(\xi), \mathbf{v}(\xi))$ interpolating data

two distinct rational rotation-minimizing motions interpolating given data

Hermite interpolation by degree 7 RRMF curves

given initial, final positions & frames \mathbf{p}_i & $(\mathbf{t}_i, \mathbf{u}_i, \mathbf{v}_i)$ and \mathbf{p}_f & $(\mathbf{t}_f, \mathbf{u}_f, \mathbf{v}_f)$ find degree 7 RRMF curve $\mathbf{r}(\xi)$ & frame $(\mathbf{t}(\xi), \mathbf{u}(\xi), \mathbf{v}(\xi))$ matching data

two distinct degree 7 PH curves with ERF = RMF interpolating given data

further example with degree 7 RRMF curves

two distinct degree 7 PH curves with ERF = RMF interpolating given data

shapes optimized with respect to two residual free parameters w_i, w_f