Minkowski geometric algebra of complex sets - theory, algorithms, applications

Rida T. Farouki
Department of Mechanical and Aerospace Engineering,
University of California, Davis

synopsis

- introduction, motivation, historical background
- Minkowski sums, products, roots, implicitly-defined sets
- connections 1. complex interval arithmetic, planar shape operators
- bipolar coordinates and geometry of Cartesian ovals
- connections 2. anticaustics in geometrical optics
- Minkowski products - logarithmic Gauss map, curvature, convexity
- implicitly-defined sets (inclusion relations) \& solution of equations
- connections 3 . stability of linear dynamic systems Hurwitz \& Kharitonov theorems, Γ-stability

geometric algebras in \mathbb{R}^{N}

algebras of points

- $N=1$: real numbers $\quad N=2$: complex numbers
- $N \geq 4$: quaternions, octonions, Grassmann \& Clifford algebras
- elements are finitely-describable, closed under arithmetic operations
algebras of point sets
- real interval arithmetic (finite descriptions, exhibit closure)
- Minkowski algebra of complex sets (closure impossible for any family of finitely-describable sets)
- must relinquish distributive law for algebra of sets

bibliography

Schwerdtfeger: Geometry of Complex Numbers, Needham: Visual Complex Analysis

- Farouki, Moon, Ravani: Algorithms for Minkowski products and implicitly-defined complex sets, Advances in Computational Mathematics 13, 199-229 (2000)
- Farouki, Gu, Moon: Minkowski roots of complex sets, Geometric Modeling \& Processing 2000, IEEE Computer Society Press, 287-300 (2000)
- Farouki, Moon, Ravani: Minkowski geometric algebra of complex sets, Geometriae Dedicata 85, 283-315 (2001)
- Farouki \& Pottmann: Exact Minkowski products of N complex disks, Reliable Computing 8, 43-66 (2002)
- Farouki \& Moon: Minkowski geometric algebra and the stability of characteristic polynomials, Visualization and Mathematics III, Springer, 163-188 (2003)
- Farouki \& Han: Computation of Minkowski values of polynomials over complex sets, Numerical Algorithms 36, 13-29 (2004)
- Farouki \& Han: Solution of elementary equations in the Minkowski geometric algebra of complex sets, Advances in Computational Mathematics 22, 301-323 (2005)
- Farouki, Han, Hass: Boundary evaluation algorithms for Minkowski combinations of complex sets using topological analysis of implicit curves, Journal of Computational and Applied Mathematics 209, 246-266 (2007)
- Farouki \& Han: Root neighborhoods, generalized lemniscates, and robust stability of dynamic systems, Applicable Algebra in Engineering, Communication, and Computing 18, 169-189 (2007)

selection of PH quintic Hermite interpolants

$$
\mathcal{D}=\{\mathbf{z}|\operatorname{Re}(\mathbf{z})>|\operatorname{lm}(\mathbf{z})| \&| \mathbf{z} \mid<\sqrt{3}\}
$$

show that $\mathcal{D} \oplus \mathcal{D}=\left\{\mathbf{f}\left(\mathbf{z}_{0}, \mathbf{z}_{2}\right) \mid \mathbf{z}_{0}, \mathbf{z}_{2} \in \mathcal{D}\right\} \subset \mathcal{D}$
where $\mathbf{f}\left(\mathbf{z}_{0}, \mathbf{z}_{2}\right)=\frac{1}{4}\left[\mathbf{z}_{0}-3 \mathbf{z}_{2}+\sqrt{120-15\left(\mathbf{z}_{0}^{2}+\mathbf{z}_{2}^{2}\right)+10 \mathbf{z}_{0} \mathbf{z}_{2}}\right]$

Caspar Wessel 1745-1818, Norwegian surveyor

DM
Sirectioneng alalytife setegning,
et $\mathfrak{F o r f a g}$,
anvenot fornemmelig
til
plane og fpyatife Polygonerg Dplobning.

थf

$$
\begin{aligned}
& \text { Eanomaarer. }
\end{aligned}
$$

Riobentavn 1798.
Sroft bos Toban rusolph Thtile.

Wessel's algebra of line segments

sums of directed line segments

Two right lines are added if we unite them in such a way that the second line begins where the first one ends, and then pass a right line from the first to the last point of the united lines.

products of directed line segments

As regards length, the product shall be to one factor as the other factor is to the unit. As regards direction, it shall diverge from the one factor as many degrees, and on the same side, as the other factor diverges from the unit, so that the direction angle of the product is the sum of the direction angles of the factors.
\Rightarrow directed line segments identified with complex numbers

sad fate of Caspar Wessel, Norwegian surveyor

moral \#1: don't expect mathematicians to pay any attention to your work if you're just a humble surveyor
moral \#2: don't expect anyone to read your scientific papers if you publish in Norwegian (Danish, actually)

basic operations

$a, b=$ reals $\quad \mathbf{a}, \mathbf{b}=$ complex numbers $\mathcal{A}, \mathcal{B}=$ subsets of \mathbb{C}

Minkowski sum : $\mathcal{A} \oplus \mathcal{B}=\{\mathbf{a}+\mathbf{b} \mid \mathbf{a} \in \mathcal{A}$ and $\mathbf{b} \in \mathcal{B}\}$
Minkowski product: $\mathcal{A} \otimes \mathcal{B}=\{\mathbf{a} \times \mathbf{b} \mid \mathbf{a} \in \mathcal{A}$ and $\mathbf{b} \in \mathcal{B}\}$ subdistributive law : $\quad(\mathcal{A} \oplus \mathcal{B}) \otimes \mathcal{C} \subset(\mathcal{A} \otimes \mathcal{C}) \oplus(\mathcal{B} \otimes \mathcal{C})$
negation and reciprocal of a set:

$$
-\mathcal{B}=\{-\mathbf{b} \mid \mathbf{b} \in \mathcal{B}\}, \quad \mathcal{B}^{-1}=\left\{\mathbf{b}^{-1} \mid \mathbf{b} \in \mathcal{B}\right\}
$$

Minkowski difference and division:

$$
\mathcal{A} \ominus \mathcal{B}=\mathcal{A} \oplus(-\mathcal{B}), \quad \mathcal{A} \oslash \mathcal{B}=\mathcal{A} \otimes \mathcal{B}^{-1}
$$

\oplus, \ominus and \otimes, \oslash not inverses $-(\mathcal{A} \oplus \mathcal{B}) \ominus \mathcal{B} \neq \mathcal{A},(\mathcal{A} \otimes \mathcal{B}) \oslash \mathcal{B} \neq \mathcal{A}$

"implicitly-defined" complex sets

$$
\begin{gathered}
\mathcal{A} \oplus \mathcal{B}=\{\mathbf{f}(\mathbf{a}, \mathbf{b}) \mid \mathbf{a} \in \mathcal{A}, \mathbf{b} \in \mathcal{B}\} \\
\mathcal{A} \oplus \mathcal{B}=\bigcup_{\mathbf{a} \in \mathcal{A}} \text { translations of } \mathcal{B} \text { by } \mathbf{a} \\
\mathcal{A} \otimes \mathcal{B}=\bigcup_{\mathbf{a} \in \mathcal{A}} \text { scalings/rotations of } \mathcal{B} \text { by } \mathbf{a} \\
\mathcal{A} \oplus \mathcal{B}=\bigcup_{\mathbf{a} \in \mathcal{A}} \text { conformal mappings of } \mathcal{B} \text { by } \mathbf{f}(\mathbf{a}, \cdot)
\end{gathered}
$$

$\mathcal{A} \oplus \mathcal{B}$ can be difficult to evaluate - sometimes use bounding Minkowski combination, e.g., for $\mathbf{f}(\mathbf{a}, \mathbf{b})=\mathbf{a}^{2}+\mathbf{a b}$

$$
\mathcal{A} \oplus \mathcal{B} \subset \mathcal{A} \otimes(\mathcal{A} \oplus \mathcal{B}) \subset(\mathcal{A} \otimes \mathcal{A}) \oplus(\mathcal{A} \otimes \mathcal{B})
$$

Minkowski powers and roots

\otimes commutative, associative \Rightarrow define Minkowski power by

$$
\begin{aligned}
\otimes^{n} \mathcal{A} & =\overbrace{\mathcal{A} \otimes \mathcal{A} \otimes \cdots \otimes \mathcal{A}}^{n \text { times }} \\
& =\left\{\mathbf{z}_{1} \mathbf{z}_{2} \cdots \mathbf{z}_{n} \mid \mathbf{z}_{i} \in \mathcal{A} \text { for } i=1, \ldots, n\right\}
\end{aligned}
$$

correspondingly, define Minkowski root by $\quad \otimes^{n}\left(\otimes^{1 / n} \mathcal{A}\right)=\mathcal{A}$

$$
\left\{\mathbf{z}_{1} \mathbf{z}_{2} \cdots \mathbf{z}_{n} \mid \mathbf{z}_{i} \in \otimes^{1 / n} \mathcal{A} \text { for } i=1, \ldots, n\right\}=\mathcal{A}
$$

do not confuse with "ordinary" powers \& roots

$$
\mathcal{A}^{n}=\left\{\mathbf{z}^{n} \mid \mathbf{z} \in \mathcal{A}\right\}, \quad \mathcal{A}^{1 / n}=\left\{\mathbf{z} \mid \mathbf{z}^{n} \in \mathcal{A}\right\}
$$

inclusion relations: $\quad \mathcal{A}^{n} \subseteq \otimes^{n} \mathcal{A}, \quad \otimes^{1 / n} \mathcal{A} \subseteq \mathcal{A}^{1 / n}$

Nickel (1980): no closure under both + and \times for sets specified by finite number of parameters

complex interval arithmetic

$$
\begin{aligned}
{[a, b]+[c, d] } & =[a+c, b+d] \\
{[a, b]-[c, d] } & =[a-d, b-c] \\
{[a, b] \times[c, d] } & =[\min (a c, a d, b c, b d), \max (a c, a d, b c, b d)] \\
{[a, b] \div[c, d] } & =[a, b] \times[1 / d, 1 / c]
\end{aligned}
$$

extend to "complex intervals" (rectangles, disks, ...)
disk \otimes disk \neq disk $\rightarrow\left(\mathbf{c}_{1}, R_{1}\right) \otimes\left(\mathbf{c}_{2}, R_{2}\right) "="\left(\mathbf{c}_{1} \mathbf{c}_{2},\left|\mathbf{c}_{1}\right| R_{2}+\left|\mathbf{c}_{2}\right| R_{1}+R_{1} R_{2}\right)$

exact complex interval arithmetic \equiv Minkowski geometric algbera

geometrical applications: 2D shape operators

$$
\mathcal{S}_{d}=\text { complex disk of radius } d
$$

offset at distance $d>0$ of planar domain $\mathcal{A}: \quad \mathcal{A}_{d}=\mathcal{A} \oplus \mathcal{S}_{d}$ for negative offset, use set complementation: $\quad \mathcal{A}_{-d}=\left(\mathcal{A}^{c} \oplus \mathcal{S}_{d}\right)^{c}$
dilation \& erosion operators in mathematical morphology (image processing)
scaled Minkowski sum ($f=$ real function on \mathcal{A}):

$$
\mathcal{A} \oplus_{f} \mathcal{B}=\{\mathbf{a}+f(\mathbf{a}) \mathbf{b} \mid \mathbf{a} \in \mathcal{A}, \mathbf{b} \in \mathcal{B}\}
$$

recover domain \mathcal{D} from medial-axis transform:
$\mathcal{D}=\mathcal{M} \oplus_{r} \mathcal{S}_{1}=\left\{\mathbf{m}+r(\mathbf{m}) \mathbf{s} \mid \mathbf{m} \in \mathcal{M}, \mathbf{s} \in \mathcal{S}_{1}\right\}$
$\mathcal{M}=$ medial axis, $r=$ radius function on \mathcal{M}
offset curves \& medial axis transform

Monte Carlo experiment - product of two circles

bipolar coordinates

$$
\begin{aligned}
\text { ellipse \& hyperbola : } & r_{1} \pm r_{2}=k \\
\text { the ovals of Cassini : } & r_{1} r_{2}=k \\
\text { the Cartesian oval(s) : } & m r_{1} \pm n r_{2}= \pm 1
\end{aligned}
$$

generalize to (redundant) multipolar coordinates

Cartesian oval $\mathcal{C}_{1} \otimes \mathcal{C}_{2}$

$\mathcal{C}_{1}, \mathcal{C}_{2}$ have center (1,0) and radii R_{1}, R_{2}
poles $(0,0),\left(a_{1}, 0\right),\left(a_{2}, 0\right)$ where $a_{1}=1-R_{1}^{2}, a_{2}=1-R_{2}^{2}$
($a_{1}, a_{2}=$ images of 0 under inversion in $\mathcal{C}_{1}, \mathcal{C}_{2}$)
three different representations in bipolar coordinates:

$$
\begin{aligned}
R_{1} \rho_{0} \pm \rho_{1} & = \pm a_{1} R_{2} \\
R_{2} \rho_{0} \pm \rho_{2} & = \pm a_{2} R_{1} \\
R_{2} \rho_{1} \pm R_{1} \rho_{2} & = \pm\left(a_{2}-a_{1}\right)
\end{aligned}
$$

degenerate cases - limacon of Pascal \& cardioid
Cartesian oval is an anallagmatic curve (maps into itself under inversion in a circle)

Cartesian ovals

"''enveloppe d'un cercle variable dont le centre parcourt la circonférence d'un autre cercle donné et dont le rayon varie proportionnellement à la distance de son centre à un point fixe est un couple d'ovales de Descartes."
F. Gomes Teixiera (1905)

Traité des Courbes Spéciales Remarquables Planes et Gauches

Cartesian oval = boundary of Minkowski product of two circles

anticaustic — Jakob Bernoulli (1692)

anticaustic = involute of caustic (zero optical path length)

geometrical optics

"operator language" for optical constructions
$0=$ light source, $\mathcal{A}=$ smooth refracting surface, $k=$ refractive index ratio
\Rightarrow anticaustic \mathcal{S} for refraction of spherical waves $=\partial(\mathcal{A} \otimes \mathcal{C})$ where $\mathcal{C}=$ circle with center $1 \&$ radius k^{-1}
$0=$ light source, $\mathcal{L}=$ line with $\operatorname{Re}(\mathbf{z})=1, \mathcal{S}=$ desired anticaustic
\Rightarrow mirror \mathcal{M} yielding anticaustic \mathcal{S} by reflection $=\frac{1}{2} \partial(\mathcal{S} \otimes \mathcal{L})$

simple Minkowski product examples

line \otimes circle - ellipse or hyperbola

circle \otimes circle - Cartesian oval ($R_{1}, R_{2} \neq 1$ here)

Minkowski roots - ovals of Cassini

"ordinary": $r_{1} r_{2}=R$ or $r^{4}-2 r^{2} \cos \theta+1=R^{2}$

$n^{\text {th }}$ order: $r_{1} \cdots r_{n}=R$ or $r^{2 n}-2 r^{n} \cos n \theta+1=R^{2}$

$\otimes^{1 / 2}$ circle

circle containing origin is not logarithmically convex - require composite curve as Minkowski root

catalog of Minkowski operations

set operation	set boundary
line \otimes line	parabola
line \otimes circle	ellipse or hyperbola
circle \otimes circle	Cartesian oval
$\otimes^{1 / 2}$ disk	ovals of Cassini
$\otimes^{1 / n}$ disk	$n^{\text {th }}$ order ovals of Cassini
line \otimes curve	negative pedal of curve wrt origin
circle \otimes curve	anticaustic for refraction by curve
circle $\otimes \cdots \otimes$ circle	generalized Cartesian oval
disk $\otimes \mathcal{A}=$ disk	$\partial \mathcal{A}=$ inner loop of Cartesian oval

"theory versus practice"

"In theory, there is no difference between theory and practice. In practice, there is."

Yogi Berra

Yankees baseball player, aspiring philosopher

famous sayings of Yogi Berra, sportsman-philosopher

- Baseball is ninety percent mental, and the other half is physical.
- Always go to other people's funerals
- otherwise they won't come to yours.
- It was impossible to get a conversation going, everyone was talking too much.
- You better cut the pizza into four pieces, because I'm not hungry enough to eat six.
- You got to be very careful if you don't know where you are going, because you might not get there.
- Nobody goes there anymore. It's too crowded.

Minkowski product algorithm

$\mathbf{z} \rightarrow \log \mathbf{z}:$ Minkowski product \rightarrow Minkowski sum
for curves $\gamma(t), \boldsymbol{\delta}(u)$ write $\gamma(t) \otimes \boldsymbol{\delta}(u)=\exp (\log \gamma(t) \oplus \log \boldsymbol{\delta}(u))$ and then invoke Minkowski sum algorithm
problems \Rightarrow work directly with $\gamma(t)$ and $\boldsymbol{\delta}(u)$

1. $\log (\mathbf{z})$ defined on multi-sheet Riemann surface
2. $\exp (\mathbf{z})$ exaggerates any approximation errors
3. $\log \gamma(t) \& \log \boldsymbol{\delta}(u)$ are transcendental curves
logarithmic curvature theory: for curve $\gamma(t)$ define $\kappa_{\log }(t)$
$=$ ordinary curvature of image, $\log \gamma(t)$, under $\mathbf{z} \rightarrow \log \mathbf{z}$
hence ... logarithmic lines, inflections, convexity, Gauss map, etc.

ordinary \& logarithmic curvature of $\gamma(t)$

$$
\begin{gathered}
r(t)=|\gamma(t)|, \quad \theta(t)=\arg \gamma(t), \quad \psi(t)=\arg \gamma^{\prime}(t) \\
\kappa=\frac{\mathrm{d} \psi}{\mathrm{~d} s} \quad \text { invariant under translation, but not scaling } \\
\kappa_{\log }=r \frac{\mathrm{~d}}{\mathrm{~d} s}(\psi-\theta) \quad \text { invariant under scaling, but not translation }
\end{gathered}
$$

1. compute logarithmic Gauss maps of $\gamma(t) \& \boldsymbol{\delta}(u)$
2. subdivide $\gamma(t) \& \boldsymbol{\delta}(u)$ into corresponding log-convex segments
3. simultaneously trace corresponding segments and generate candidate edges for Minkowski product boundary
4. test edges for status (interior/boundary) w.r.t. Minkowski product
5. establish orientation \& ordering of retained boundary edges

Minkowski product example

left: quintic Bézier curve operands; center: products of one operand with points of other; right: untrimmed \& trimmed Minkowski product boundary

Minkowski product of N circles

match logarithmic Gauss maps: $\frac{\sin \theta_{1}}{R_{1}+\cos \theta_{1}}=\cdots=\frac{\sin \theta_{N}}{R_{N}+\cos \theta_{N}}$
geometrical interpretation: intersections of operands with circles of coaxal system (common points $0 \& 1$)

proof - inversion in operand circles

$$
\partial\left(\mathcal{C}_{1} \otimes \cdots \otimes \mathcal{C}_{N}\right)=\text { " } N^{\text {th }} \text { order Cartesian oval" }
$$

multipolar representation with respect to poles at $0, a_{1}, a_{2}, \ldots, a_{N}$?

implicitly-defined complex sets

$$
\mathcal{A}(\mathfrak{f} \mathcal{B}=\{\mathbf{f}(\mathbf{a}, \mathbf{b}) \mid \mathbf{a} \in \mathcal{A}, \mathbf{b} \in \mathcal{B}\}
$$

example: $\mathbf{f}(\mathbf{a}, \mathbf{b})=\mathbf{a b}+\mathbf{b}^{2}$ and $\mathcal{A}, \mathcal{B}=$ disks $|\mathbf{z}| \leq 1,|\mathbf{z}-1| \leq 1$
subdistributivity $\Rightarrow \mathcal{A} \oplus \mathcal{B} \subseteq(\mathcal{A} \oplus \mathcal{B}) \otimes \mathcal{B} \subseteq(\mathcal{A} \otimes \mathcal{B}) \oplus(\mathcal{B} \otimes \mathcal{B})$
set $\mathbf{a}(\lambda)=\mathrm{e}^{\mathrm{i} \lambda}$ and $\mathbf{b}(t)=1+\mathrm{e}^{\mathrm{i} t}$ for $0 \leq \lambda, t \leq 2 \pi$ in $\mathbf{f}(\mathbf{a}, \mathbf{b})$
\rightarrow family of limacons $\mathbf{r}(\lambda, t)=\mathrm{e}^{\mathrm{i} 2 t}+\mathrm{e}^{\mathrm{i}(t+\lambda)}+2 \mathrm{e}^{\mathrm{i} t}+\mathrm{e}^{\mathrm{i} \lambda}+1$
generalize Minkowski sum \& product algorithms to $\mathcal{A} \Subset \mathcal{B}$:
matching condition $\quad \arg \frac{\mathrm{d} \mathbf{a}}{\mathrm{d} \lambda}-\arg \frac{\mathrm{d} \mathbf{b}}{\mathrm{d} t}=k \pi+\arg \left(\frac{\mathrm{d} \mathbf{b}}{\mathrm{d} \mathbf{a}}\right)_{\mathbf{f}=\text { const. }}$
implicitly-defined set bounded by Minkowski combinations

limacon of Pascal

implicitly-defined set as one-parameter family of limacons

(a): acnodal (b): crunodal (c): cuspidal

singular curve of surface $r(\lambda, t)$ generated by implicitly-defined set

solution of linear equation $\mathcal{A} \otimes \mathcal{X}=\mathcal{B}$

$\mathcal{A}, \mathcal{B}=$ circular disks with radii a, b

$$
\text { solution exists } \Longleftrightarrow a \leq b
$$

solution $=$ region within inner loop of a Cartesian oval !
generalization to polynomial equations, linear systems?

stability of linear dynamic system

Laplace transform of linear $n^{\text {th }}$ order system:

$$
a_{n} \frac{\mathrm{~d}^{n} y}{\mathrm{~d} t^{n}}+\cdots+a_{1} \frac{\mathrm{~d} y}{\mathrm{~d} t}+a_{0} y=0
$$

characteristic polynomial $\mathbf{p}(\mathbf{s})=a_{n} \mathbf{s}^{n}+\cdots+a_{1} \mathbf{s}+a_{0}$ stability \Longleftrightarrow roots $\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}$ satisfy $\operatorname{Re}\left(\mathbf{z}_{k}\right)<0$

$$
\Delta_{n}=\left|\begin{array}{cccccccc}
a_{1} & a_{3} & a_{5} & a_{7} & a_{9} & . & . & . \\
a_{0} & a_{2} & a_{4} & a_{6} & a_{8} & . & . & . \\
0 & a_{1} & a_{3} & a_{5} & a_{7} & . & . & . \\
0 & a_{0} & a_{2} & a_{4} & a_{6} & . & . & . \\
0 & 0 & a_{1} & a_{3} & a_{5} & . & . & . \\
0 & 0 & a_{0} & a_{2} & a_{4} & . & . & . \\
. & . & . & . & . & . & . & . \\
. & . & . & . & . & . & . & .
\end{array}\right|
$$

classical Routh-Hurwitz criterion: $\Delta_{n}, \Delta_{n-1}, \ldots, \Delta_{1}>0$
(can generalize to complex coefficients $\mathbf{a}_{0}, \ldots, \mathbf{a}_{n}$)

Kharitonov conditions

desire "robust stability" of system with uncertain parameters

$$
\begin{aligned}
\mathbf{p}(\mathbf{s})=a_{n} \mathbf{s}^{n} & +\cdots+a_{1} \mathbf{s}+a_{0} \quad \text { where } a_{k} \in\left[\underline{a}_{k}, \bar{a}_{k}\right] \\
\mathbf{p}_{1}(\mathbf{s}) & =\underline{a}_{0}+\underline{a}_{1} \mathbf{s}+\bar{a}_{2} \mathbf{s}^{2}+\bar{a}_{3} \mathbf{s}^{3}+\cdots \\
\mathbf{p}_{2}(\mathbf{s}) & =\underline{a}_{0}+\bar{a}_{1} \mathbf{s}+\bar{a}_{2} \mathbf{s}^{2}+\underline{a}_{3} \mathbf{s}^{3}+\cdots \\
\mathbf{p}_{3}(\mathbf{s}) & =\bar{a}_{0}+\underline{a}_{1} \mathbf{s}+\underline{a}_{2} \mathbf{s}^{2}+\bar{a}_{3} \mathbf{s}^{3}+\cdots \\
\mathbf{p}_{4}(\mathbf{s}) & =\bar{a}_{0}+\bar{a}_{1} \mathbf{s}+\underline{a}_{2} \mathbf{s}^{2}+\underline{a}_{3} \mathbf{s}^{3}+\cdots
\end{aligned}
$$

Kharitonov polynomials $\mathbf{p}_{1}(\mathbf{s}), \ldots, \mathbf{p}_{4}(\mathbf{s})$ stable $\Longleftrightarrow \mathbf{p}(\mathbf{s})$ "robustly stable" Kharitonov, Differential'nye Uraveniya 14, 1483 (1978)
value set: $\mathcal{V}(\mathbf{p}(\mathbf{s}))=$ values assumed by $\mathbf{p}(\mathbf{s})$ at fixed \mathbf{s} as coeffs a_{k} vary over intervals $\left[\underline{a}_{k}, \bar{a}_{k}\right]=$ rectangle with corners $\mathbf{p}_{1}(\mathbf{s}), \ldots, \mathbf{p}_{4}(\mathbf{s})$
(complex coeffs - eight Kharitonov polynomials)

Γ-stability of system

roots $\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}$ of characteristic polynomial with coeffs $\mathbf{a}_{k} \in \mathcal{A}_{k}$

$$
\mathbf{p}(\mathbf{s})=\mathbf{a}_{n} \mathbf{s}^{n}+\cdots+\mathbf{a}_{1} \mathbf{s}+\mathbf{a}_{0}
$$

Hurwitz stability $\operatorname{Re}\left(\mathbf{z}_{k}\right)<0$ may be inadequate; also desire good damping and fast response
for any subset Γ of left half-plane, $\mathbf{p}(\mathbf{s})$ is Γ-stable if $\mathbf{z}_{1}, \ldots, \mathbf{z}_{n} \in \Gamma$

$\mathbf{p}(\mathbf{s})$ "robustly" Γ-stable \Longleftrightarrow one case Γ-stable, and value set satisfies $0 \notin \mathcal{V}(\mathbf{p}(\mathbf{s}))$ for all $\mathbf{s} \in \partial \Gamma$ (zero exclusion principle)

variation of value-set along the imaginary axis
for a cubic polynomial with interval coefficients

example problem

consider Γ-stability of quadratic $\quad \mathbf{p}(\mathbf{s})=\mathbf{a}_{2} \mathbf{s}^{2}+\mathbf{a}_{1} \mathbf{s}+\mathbf{a}_{0}$ coefficients disks $\mathcal{A}_{2}, \mathcal{A}_{1}, \mathcal{A}_{0}$ have centers $\mathbf{c}_{2}=1$, $\mathbf{c}_{1}=p+q, \mathbf{c}_{0}=p q$ and radii $R_{2}=R_{1}=R_{0}=0.25$
stability region Γ boundary: $\gamma(t)=(-\cosh t, \sinh t),-\infty<t<+\infty$
value set $\mathcal{V}(t)$ for $\mathbf{p}(\mathbf{s})$ along boundary $\gamma(t)$
$=$ family of disks with center curve \& radius function

$$
\begin{gathered}
\mathbf{c}(t)=1+p q-(p+q) \cosh t+\mathrm{i}[(p+q)-2 \cosh t] \sinh t \\
R(t)=R_{0}(1+\sqrt{\cosh 2 t}+\cosh 2 t)
\end{gathered}
$$

stability condition: $0 \notin \mathcal{V}(t)$ for $-\infty<t<+\infty$ $\Longleftrightarrow 2$ real polynomials have no real roots (true for any "complex disk polynomial")

closure

- basic functions: Minkowski sums, products, roots, implicitly-defined complex sets, solution of equations
- lack of closure for finitely-describable sets
\rightarrow rich geometrical structures \& applications
- 2D shape generation and analysis operators
- generalization of interval arithmetic to complex sets
- curves in bipolar \& multipolar coordinates generalize classical Cassini and Cartesian ovals
- operator language for direct \& inverse problems of wavefront reflection \& refraction
- robust stability of dynamic/control systems extend Routh-Hurwitz \& Kharitonov conditions

ANY QUESTIONS ??

It is better to ask a simple question, and perhaps seem like a fool for a moment, than to be a fool for the rest of your life.
old Chinese proverb

Please note -
Answers to all questions will be given exclusively in the form of Yogi Berra quotations.

some famous Yogi Berra responses

- If you ask me anything I don't know, I'm not gonna answer.
- I wish I knew the answer to that, because I'm tired of answering that question.

Concerning future research directions ...

- The future ain't what it used to be.

