
FROBENIUS FIXED OBJECTS OF MODULI

VALENTINA DI PROIETTO, FABIO TONINI, LEI ZHANG

Abstract. Let X be a category �bered in groupoids over a �nite �eld Fq, and let k be
an algebraically closed �eld containing Fq. Denote by φk – Xk Ñ Xk the arithmetic
Frobenius of Xk{k and suppose that M is a stack over Fq (not necessarily in groupoids).
Then there is a natural functor αM,X : MpX q ÝÑ MpDkpX qq, where MpDkpX qq is the
category of φk-invariant maps Xk Ñ M. A version of Drinfeld's lemma states that if X
is a projective scheme and M is the stack of quasi-coherent sheaves of �nite presentation,
then αM,X is an equivalence.

We extend this result in several directions. For proper algebraic stacks or a�ne gerbes
X , we prove Drinfeld's lemma and deduce that αM,X is an equivalence for very general
algebraic stacks M.

For arbitrary X , we show that αM,X is an equivalence when M is the stack of im-
mersions, the stack of quasi-compact separated étale morphisms or any quasi-separated
Deligne-Mumford stack with separated diagonal.

1. Introduction

We work over a �nite �eld Fq of characteristic p, where q is a power of p and �x an
algebraically closed �eld k over Fq. We denote by φk : k Ñ k the power of the absolute
Frobenius corresponding to q, that is a ÞÑ aq. More generally if X is a category �bered in
groupoids over Fq we use the notation

Xk “ X ˆ k and φk “ idX ˆ φk : Xk Ñ Xk

The map φk above is called the arithmetic Frobenius of Xk.
Let M be a stack in the étale topology over Fq and X be a category �bered in groupoids

over Fq. We denote by MpDkpX qq the category whose objects are pairs pu, fq where
u P Xk Ñ M is a map and f : u ˝ φk Ñ u is a natural isomorphism. In other words an
object of MpDkpX qq is a 2-commutative diagram

Xk

M
Xk

u

φk

u

When X “ X is a scheme an object of MpDkpXqq is a pair px, fq where x PMpXkq and
f : φ˚kpxq Ñ x is an isomorphism.

Date: November 15, 2020.
1



2 VALENTINA DI PROIETTO, FABIO TONINI, LEI ZHANG

We also denote by MpX q the category of maps X Ñ M. The aim of this paper is to
study the canonical functor

αM,X : MpX q ÑMpDkpX qq
We now summarize the results obtained. Fully faithfulness holds in general:

Theorem 1.1. Let X be a category �bered in groupoids over Fq and let M be a stack (not
necessarily in groupoids) in the étale topology and whose Hom-sheaves are quasi-separated
algebraic spaces. Then the functor

αM,X : MpX q ÑMpDkpX qq
is fully faithful.

Next, we consider the �proper� case, which has been studied by Drinfeld. Here one
consider M “ QCohf , the stack (not in groupoid) of quasi-coherent sheaves of �nite
presentation. The key point is the case X “ SpecFq, proved in [Laf97, Lemma 4, p. 43]:

Theorem 1.2. The functor

VectpFqq Ñ VectpDkpFqqq
is an equivalence of categories. A quasi-inverse takes an object pV, σq where V P Vectpkq
and σ : V Ñ V is a φk-linear isomorphism to the Fq-vector space

V σ
“ tv P V | σpvq “ vu

Building up from the previous result we prove the following.

Theorem 1.3 (See 5.6). Let X be a quasi-compact category �bered in groupoid over Fq
(see �2 (2)). Suppose that, for all F ,G P QCohf pXkq, the k-vector space HomXkpF ,Gq
has �nite dimension, and all quasi-coherent sheaves on X are quotient of a direct sum of
objects in QCohf pX q. Then the functor

QCohf pX q Ñ QCohf pDkpX qq
is an equivalence of categories.

Theorem above applies to proper schemes and algebraic stacks over Fq, generalizing
Drinfeld's lemma [Laf97, Lemma 3, p. 44], that is the case of projective schemes. It also
applies to arbitrary a�ne gerbes over Fq (see 5.4 (3)).
The proof follows closely the original one. The new idea is to replace shea��cation of

graded modules with a more general construction described in [Ton20].
As a consequence of the above theorem we have:

Theorem 1.4. Let X be a �bered category as in Theorem 1.3. Assume that either:

(1) M is a quasi-compact algebraic stack with quasi-a�ne diagonal and there exists a
representable fpqc covering V Ñ Xk from a Noetherian scheme (e.g. X is of �nite
type over Fq or an a�ne gerbe);

(2) M is a Noetherian algebraic stack with quasi-a�ne diagonal;
(3) M is an a�ne gerbe over a �eld.
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Then the functor

αM,X : MpX q ÑMpDkpX qq
is an equivalence.

Theorem above implies that all a�ne gerbes over Fq are trivial (see 5.9), which was
known only for a�ne gerbes of �nite type.
Another classical case it has been considered is the case of �nite and étale maps. We

are going to prove the following:

Theorem 1.5. Let X be a category �bered in groupoids over Fq. Then the functor

EtspX q Ñ EtspDkpX qq

is an equivalence of categories.

Here Ets is the stack (not in groupoid) of representable, étale, quasi-compact and sepa-
rated maps. The classical case was proved for the stack of �nite and étale maps (see [Ked17,
Lemma 4.2.6, p. 100]).
As a consequence of the above result we obtain:

Theorem 1.6. Let X be a category �bered in groupoids over Fq and M be a quasi-separated
Deligne-Mumford stack over Fq with separated diagonal (e.g. a quasi-separated algebraic
space). Then the functor

αM,X : MpX q ÑMpDkpX qq
is an equivalence of categories.

2. Notation

(1) By a stack over a ring R we mean a stack (not necessarily in groupoids) for the
fpqc topology over Sch{R. If we want to consider a stack in a di�erent topology we
will specify the topology.

(2) We call a category X �bered in groupoids over a ring R quasi-compact if it admits
a representable fpqc covering from an a�ne scheme.

(3) We call category X �bered in groupoids over a ring R quasi-separated if the diagonal
map is representable and quasi-compact.

3. General Remarks

Let X be a category �bered in groupoids over Fq and M be a stack in the étale topology
over Fq. In this section we reinterpret the map

αM,X : MpX q ÑMpDkpX qq

We de�ne

DkpFqq “ rSpec k{Zs and DkpX q – DkpFqq ˆFq X
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for a �bered category X over Fq, where Z is the constant group scheme over Fq of Z. The
action of Z on Spec k is the one induced by the Frobenius φk. Since

Z “
ğ

nPZ

SpecFq Ñ SpecFq

and therefore a covering in the étale (actually Zariski) topology, a Z-torsor P Ñ X for
the fpqc topology over a scheme X is automatically a Z-torsors for the étale topology: P
become trivial after the étale covering P Ñ X. This means that the quotient rSpec k{Zs
made with respect to the étale topology is a stack in the fpqc topology, or, in other words,
it coincide with quotient made with respect to the fpqc topology.
One can check easily that the action of φk on Spec k is free, so that DkpFqq is actually a

sheaf (in the fpqc topology). It is an algebraic space in the sense of , but not in the sense
of [LMB00, De�nition 4.1, p. 25], because DkpFqq is not quasi-separated.
By de�nition ofDkpX q, the map Xk Ñ DkpX q is a Z-torsor and the corresponding action

of Z on Xk is given by the geometric Frobenius φk. If X is just a sheaf in the étale topology
we can conclude that DkpX q “ rXk{Zs is the stack quotient for the étale topology.
In general there is a 2-commutative diagram

Xk

DkpX q
Xk

u

φk

u

and it induces a functor

HomFqpDkpX q,Mq ÑMpDkpX qq

Lemma 3.1. If M is a stack in the étale topology then the above functor is an equivalence.

Proof. First, one reduces to the case when X is a stack in the étale topology. Since

HomFqpDkpX q,Mqq “ HomFqpDkpFqq,HomFqpX ,Mqq

we can reduce to the case X “ SpecFq.
In this case the claim follows from the universal property of the map Spec k ÝÑ

rSpec k{Zs “ DkpFqq: an object x PMpkq together with an isomorphism σ : φ˚kpxq Ñ x is
a descent datum along the groupoid Spec k ˆDkpFqq Spec k “ Spec k ˆ Z ⇒ Spec k. �

The above equivalence motivates the use of the symbol MpDkpX qq. In this paper we
identify functors DkpX q ÑM and objects of MpDkpX qq when M is a stack in the étale
topology. The projection map DkpX q Ñ X induces a functor

MpX q ÑMpDkpX qq

which is easily checked to be the map αM,X de�ned in the introduction.
In what follows we prove some general properties of the functor αM,X . We keep the

notation from above.
We �rst observe a general procedure to reduce problems to categories �bered in groupoids.
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Remark 3.2. If Y is a �bered category over some site one de�nes YCart as the sub �bered
category of Y whose objects are the same, but whose maps are the Cartesian arrows of Y
(see [Vis05, Def 3.31]). In terms of sections, given an object T in the site, one has that
YCartpT q is the groupoid associated with YpT q.
Thus YCart is a category �bered in groupoid and any map X Ñ Y from a category

�bered in groupoids has image in YCart. More precisely YCartpX q “ HompX ,YCartq is the
groupoid associated with YpX q “ HompX ,Yq.
Moreover if Y is a stack (or prestack) then so is YCart. Indeed there is a Cartesian

diagram

IsoYpξ, ηq HomYpξ, ηq ˆ HomYpη, ξq

T EndYpξq ˆ EndYpηq
pid,idq

which shows that if Y is a prestack then so in YCart. On the other hand descent data is
expressed in terms of isomorphisms, thus are the same for Y or YCart.

From the properties of p´qCart we easily deduce the following result.

Lemma 3.3. If the functors

αM,X : MpX q ÑMpDkpX qq and αMCart,X : MCart
pX q ÑMCart

pDkpXqq

are respectively fully faithful and essentially surjective then they are both equivalences.

Lemma 3.4. Assume that M is a stack in the étale topology. If for all a�ne schemes
X over Fq the functor αM,X : MpXq ÑMpDkpXqq is fully faithful (resp. an equivalence)
then αM,X : MpX q ÑMpDkpX qq is so for all categories X �bered in groupoids over Fq.
Proof. The association

N : Sch{Fq Ñ pgroupoidsq, N pUq “MpDkpUqq

de�ned a �bered category over Fq. If δ : DkpFqq Ñ SpecFq is the canonical map, it is easy
to see that N “ δ˚δ

˚M. Moreover, since by de�nition δ˚X “ X ˆDkpFqq “ DkpX q, we
have

HomFqpX ,N q » HomDkpFqqpδ
˚X , δ˚Mq » HomFqpDkpX q,Mq »MpDkpX qq

and, applying HompX ,´q to the unit map MÑ δ˚δ
˚N , we exactly obtain αM,X .

In particular it is enough to prove that M Ñ N is fully faithful (resp. an equivalence)
and, the hypothesis, means that MpXq Ñ N pXq is fully faithful (resp. an equivalence)
for all a�ne schemes X. Since M and N are stacks in the étale topology this ends the
proof. �

Lemma 3.5. If M a stack in the étale topology and a prestack in the fpqc topology, then
the functor αM,X : MpX q ÑMpDkpX qq is faithful

Proof. The functors Xk Ñ DkpX q and Xk Ñ X are both representable fpqc coverings. It
follows thatMpX q ÑMpXkq,MpDkpX qq ÑMpXkq and thefore the map in the statement
are all faithful. �
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Now we want to understand how to reduce the study of αM,X locally on X .

Situation 3.6. We consider the following data and assumptions:

‚ a map ψ : V Ñ X of algebraic spaces;
‚ the stack M is a prestack in the fpqc topology (e.g. an algebraic stack by [Sta18,
0APL] );

‚ the map V Ñ X is an étale (resp. fppf, fpqc) covering and M is a stack in the
étale (resp. fppf, fpqc) topology.

Consider the diagram

MpXq MpV q MpV ˆX V q

MpDkpXqq MpDkpV qq MpDkpV ˆX V qq

ψ˚

ψ˚

αM,VˆXVαM,X αM,V

The two rows above are exact: indeedDkpV ˆXV q⇒ DkpV q Ñ DkpXq is just V ˆXV ⇒
V Ñ X base changed along DkpFqq Ñ SpecFq. Notice moreover that the functors αM,˚

are faithful thanks to 3.5.

The following results all follow by diagram chasing.

Lemma 3.7. Assume Situation 3.6. Let ξ, η P MpXq and ω : αM,Xpξq Ñ αM,Xpηq be
a morphism. If ψ˚pωq comes from a morphism ψ˚pξq Ñ ψ˚pηq then ω comes from a
morphism ξ Ñ η.

Lemma 3.8. Assume Situation 3.6. Assume moreover that αM,V and αM,VˆXV are fully
faithful. Consider a 2-commutative diagram as in the outer diagram of

V

DkpV q X M

DkpXq

Then there exists a dashed arrow as in the above diagram and it is unique up to a unique
isomorphism.

We will often use the above lemma in the following form.

Lemma 3.9. Assume Situation 3.6. Assume moreover that αM,Y is fully faithful for all
schemes Y over Fq. Consider commutative diagrams

A B A V

DkpXq M DkpXq X

https://stacks.math.columbia.edu/tag/0APL
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where B is a sheaf and the second one is Cartesian, so that A » DkpV q. Assume moreover
that the induced map DkpV q Ñ B factors as DkpV q Ñ V Ñ B. Then there exists a
X ÑM, unique up to a unique isomorphism, �tting in the following commutative diagram

A “ DkpV q V B

DkpXq X M

If moreover the original diagram was Cartesian, then so is the above diagram on the right.

Proof. The �rst claim follows from 3.8, so only the last one needs to be proved.
One checks easily that there is a Cartesian diagram:

Vk Bk

Xk Mk

which is the pullback of

V B

X M
along Spec k ÝÑ SpecFq, whence the claim. �

Corollary 3.10. Assume Situation 3.6. If αM,V is fully faithful then so is αM,X . If αM,V

and αM,VˆXV are equivalences then so is αM,X .

Remark 3.11. If X is a category �bered in groupoids over Fq and M is an a�ne scheme
then αM,X is an isomorphism (of sets). Indeed by 3.4 we can assume that X “ X “ SpecA
is a�ne as well. If M “ SpecB then MpXq “ HomFqpB,Aq as algebras, while

MpDkpXqq “ HomFqpB, pAbFq kq
φkq

It is easily checked by choosing a basis of A over Fq that the map A Ñ pA bFq kq
φk is an

isomorphism, thus we see that αM,X is an isomorphism.

4. The case of immersions

In this section we consider as M the stack of immersions.

De�nition 4.1. We denote by Emb the �bered category of immersions over Fq.

The aim of this section is to prove the following.

Theorem 4.2. Let X be a category �bered in groupoids. Then the functor

EmbpX q Ñ EmbpDkpX qq
is an equivalence of categories and it preserves quasi-compact (resp. open, closed) immer-
sions
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We �rst show that Emb is a stack for the fppf topology.

Proposition 4.3. The �bered category Emb is a stack in the fppf topology and a prestack
in the fpqc topology. If X is a category �bered in groupoids over Fq, then EmbpX q is the
category of immersions in X , that is functors Z Ñ X representable by immersions.

Proof. The category Emb is a sub-�bered category of ShFq , the stack of fpqc sheaves over
Fq. In particular it is a prestack in the fpqc topology.
E�ective descent for the fppf topology instead follows from [Sta18, 04SK] and [Sta18,

02YM] �

We need some preparatory lemmas. The following is called the Moore determinant
[Goss98, Corollary 1.3.7]. We present here a direct proof of the result.

Lemma 4.4. The following relation holds in the ring Fqrx0, . . . , xrs:

det

¨

˚

˚

˚

˝

x0 x1 . . . xr
xq0 xq1 . . . xqr
...

...
. . .

...

xq
r

0 xq
r

1 . . . xq
r

r

˛

‹

‹

‹

‚

“ ω
ź

pa0:¨¨¨:arqPPrpFqq

pa0x0 ` ¨ ¨ ¨ ` arxrq

where ω P Fq˚ and, in the product on the right, one chooses a representative of an element
of PrpFqq.

Proof. Denote by N “ Npx0, . . . , xrq the matrix in the statement and by F “ F px0, . . . , xrq
its determinant. We are going to prove the equality on Fq.
Let a “ pa0, . . . , arq P Fqr`1 be a non zero element and set

La “ a0x0 ` ¨ ¨ ¨ ` arxr P Fqrx0, . . . , xrs

Notice that

Npx0, . . . , xrq¨ a “ pLa, L
q
a, . . . , L

qr

a q

where the right hand side should be thought of as a vertical vector. In particular it is clear

that, if pu0, . . . , urq P Fq
r`1

is such that Lapu0, . . . , urq “ 0 then Npu0, . . . , urq¨ a “ 0 and

therefore F pu0, . . . , urq “ 0. In other words the zero locus tLa “ 0u Ď Fq
r`1

is contained

in the zero locus tF “ 0u Ď Fq
r`1

. We can therefore conclude that La divides F in
Fqrx0, . . . , xrs.
Notice that given a, b P Fqr`1 we have that La and Lb generates the same ideal in

Fqrx0, . . . , xns if and only if a “ λb for some λ P Fq. Using the factorization into primes
we can conclude that the product P in the statement divides F . But

degP “ #PrpFqq “
qr`1 ´ 1

q ´ 1
“ 1` q ` ¨ ¨ ¨ ` qr

Using the inductive determinant formula it is easy to see that degF “ degP , which ends
the proof. �

https://stacks.math.columbia.edu/tag/04SK
https://stacks.math.columbia.edu/tag/02YM
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Corollary 4.5. Let L be a �eld over Fq and µ0, . . . , µr P L. Then µ0, . . . , µr are Fq-linear
independent if and only if the matrix

¨

˚

˚

˚

˝

µ0 µ1 . . . µr
µq0 µq1 . . . µqr
...

...
. . .

...

µq
r

0 µq
r

1 . . . µq
r

r

˛

‹

‹

‹

‚

is invertible.

Proof of Theorem 4.2. The last claims hold because those properties of morphisms are local
in the target for the fpqc topology (see [Sta18, 02L3], [Sta18, 02L6], [Sta18, 02L8]).
By 3.4 we can assume that X “ SpecA is a�ne.
1). Fully faithfulness. Faithfulness follows from 3.5 and 4.3. Thus let Ui Ñ X , i “ 1, 2

be immersions and

λD : DkpU1q “ U1 ˆX DkpX q ÝÑ U2 ˆX DkpX q “ DkpU2q

be a map over DkpX q. We have to show that λD descends to a map λ : U1 Ñ U2.
Consider the projection p : U1 ˆX U2 Ñ U1. By construction its base change along

DkpX q Ñ X is an immersion with a section, thus an isomorphism. By fpqc descent it
follows that also p : U1 ˆX U2 Ñ U1 is an isomorphism, which allows to de�ne the map λ.
2). Essential surjectivity. Let us �rst show how to conclude assuming the result true

for closed immersions. Let Z Ñ U Ñ DkpAq be an immersion, where Z Ñ U is a closed
immersion and U Ď DkpAq is an open subset. Consider the reduced closed substack
C “ DkpAqzU Ñ DkpAq, so that there exists a closed immersion Q Ñ SpecA inducing
C Ñ DkpAq. By construction V “ pSpecAqzQ Ñ SpecA induces U Ñ DkpAq. In
particular U “ DkpV q. Applying again the result for closed immersion on Z Ñ U “ DkpV q
we get the result.
Let us now focus on the case of closed immersions. Since closed immersions form a

substack of Emb, using again 3.4 we just have to show that a closed embedding Z Ñ DkpAq
comes from A. This closed embedding is given by an ideal I of Ak such that φkpIq “ I.
We have to prove that I is generated by elements of A. Let tµiuiPJ be a basis of k over Fq.
Given f P I Ď Ak we can write

f “
n
ÿ

r“0

µirar

where ar P A. Set

M –

¨

˚

˚

˚

˝

µi0 µi1 . . . µin
µqi0 µqi1 . . . µqin
...

...
. . .

...

µq
n

i0
µq

n

i1
. . . µq

n

in

˛

‹

‹

‹

‚

https://stacks.math.columbia.edu/tag/02L3
https://stacks.math.columbia.edu/tag/02L6
https://stacks.math.columbia.edu/tag/02L8
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then we have a matrix equation:
¨

˚

˚

˝

f
φkpfq
¨ ¨ ¨

φnkpfq

˛

‹

‹

‚

“M

¨

˚

˚

˝

a0

a1

¨ ¨ ¨

an

˛

‹

‹

‚

in which M is invertible by 4.5. The relations obtained inverting M in the equation above
allow to conclude that

xa0, . . . , anyk “ xf, φkpfq, . . . , φ
n
kpfqyk Ď I

as k-vector spaces. This implies that

ta0, . . . , anu Ď I X A

hence I Ď pI X AqAk Ď I, so I “ pI X AqAk . �

Using 4.2 we prove a variant of Theorem 1.1.

Lemma 4.6. Let X be a category �bered in groupoids over Fq and M be a stack in the
étale topology with the following property: for all ξ, η PMpT q for a scheme T the functor
HomMpξ, ηq Ñ T is a sheaf in the fpqc topology and its diagonal is an immersion. Then
the functor

αM,X : MpX q ÑMpDkpX qq
is fully faithful.

Proof. By 3.4 we can assume that X “ X “ SpecA is a�ne. Let ξ, η P MpXq and set
H “ HomMpξ, ηq Ñ X. By 3.5 we need to show that a commutative diagram

H

DkpXq X

induces a section of H Ñ X. We have Cartesian diagrams of solid arrows

Xk DkpXq Z

Hk DkpHq H

Xk DkpXq X

Since the diagonal of H Ñ X is an immersion, the same property holds for the diagonal
of DkpXq Ñ DkpHq. It follows that the section DkpXq Ñ DkpHq is an immersion as
well. Thanks to 4.2 we �nd an immersion Z Ñ H and a Cartesian diagram like in the
above diagram. Since Z is a sheaf in the fpqc topology and the map Z Ñ X become an
isomorphism after the fpqc base change Xk Ñ X it follows that Z Ñ X is an isomorphism
as well. In conclusion the section X Ñ Z Ñ H satis�es the requests. �
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5. The proper case

The goal of this section is to prove Theorem 1.3, that is the case M “ QCohf , which
is the stack (not in groupoid) of �nitely presented quasi-coherent sheaves over Fq. Using
this we will then prove Theorem 1.4.
Let X be a category �bered in groupoids over Fq. An object of QCohf pDkpX qq is a pair

pF , σq where F P QCohf pXkq and σ : φ˚kF Ñ F is an isomorphism.
We start showing how to prove Theorem 1.4 as a consequence of Theorem 1.3.

Lemma 5.1. Let M be a quasi-compact category �bered in groupoid. Then the "taking
colimit" functor

indpQCohf pMqq Ñ QCohpMq

is a faithful additive tensor functor. If M is quasi-separated then it is also fully faithful.

Proof. IfM is an a�ne scheme the result is standard. In particular, in general, faithfulness
follows taking an fpqc covering from an a�ne scheme.
So assume that M is a quasi-compact and quasi-separated �bered category. We have to

show that if F P QCohf pMqq and if tGiuiPI P indpQCohf pMqq, then

HomindpQCohf pMqqpF , tGiuiPIq “ lim
ÝÑ
iPI

HomQCohf pMqpF ,Giq ÝÑ HomQCohf pMqpF , limÝÑ
iPI

Giq

is an isomorphism. Let π : U Ñ M be a fpqc covering from an a�ne scheme, set R “

U ˆX U , which is a quasi-compact algebraic space, let V Ñ R be an étale atlas from
an a�ne scheme and set α, β : V Ñ U the induced maps. If F ,G P QCohpMq then the
following sequence is exact

HomMpF ,Gq Ñ HomUpπ
˚F , π˚Gq⇒ HomV pα

˚π˚F , α˚π˚Gq

Using this we can reduce the problem to the case when M is an a�ne scheme. �

Lemma 5.2. Let X and M as follows:

(1) X is a category �bered in groupoids over Fq for which

αQCohf ,X : QCohf pX q Ñ QCohf pDkpX qq

is an equivalence;
(2) M is a stack in groupoids over Fq for the fpqc (resp. fppf, étale) topology with

quasi-a�ne diagonal and admitting a representable fpqc (resp. fppf, étale) covering
from an a�ne scheme;

(3) for any map DkpX q
ψ
ÝÑM and any quasi-coherent sheaf of algebras A over M, the

pullback ψ˚A is the colimit of a ring object in indpQCohf pDkpX qqq.
Then the functor

αM,X : MpX q ÑMpDkpX qq
is an equivalence.
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Proof. By 4.6 we already know that αM,X is fully faithful.

By hypothesis there is an fpqc (resp. fppf, étale) covering f : W̃ “ SpecAÑM. Since
M has quasi-a�ne diagonal, it follows that f is quasi-a�ne. Therefore, ifW – Spec f˚OW̃

then W̃ Ñ W is a quasi-compact open immersion [Sta18, 01SM]. Now consider a functor
ψ : DkpX q ÑM and the Cartesian diagram

B W

DkpX q M
ψ

fg

Then by hypothesis ψ˚f˚OW̃ » g˚OB is the colimit of a ring object in indpQCohf pDkpX qqq.
We have a commutative diagram

indpQCohf pX qq QCohpX q

indpQCohf pDkpX qqq QCohpDkpX qq

Since the �rst vertical map is an equivalence by hypothesis, there is a ring object in
indpQCohf pX qq inducing a quasi-coherent sheaf of algebra on X and therefore an a�ne
map V Ñ X with a Cartesian diagram

B V

DkpX q X

g

In particular B » DkpV q. Consider the Cartesian diagrams on the left in

B̃ W̃ B̃ Ṽ

DkpV q W ùñ DkpV q V

DkpX q M DkpX q X

Applying 4.2 to the immersion B̃ Ñ DkpV q we obtain the Cartesian diagrams on the right
for some immersion Ṽ Ñ V . Since Ṽk Ñ Xk is a base change of W̃ ÑM which is an fpqc
(resp. fppf, étale) covering, it follows that Ṽ Ñ X is an fpqc (resp. fppf, étale) covering
as well. From 3.9 with B “ W̃ and 3.11 we obtain the desired map X ÑM. �

Remark 5.3. (1) If M is a quasi-compact and quasi-separated algebraic stack, then
each quasi-coherent sheaf on M is the union of its quasi-coherent subsheaves of
�nite type (see the main result of [Rydh16]).

(2) IfM is an a�ne gerbe over a �eld, then each quasi-coherent sheaf is a �ltered direct
limit of vector bundles (which are the only quasi-coherent sheaf of �nite type).

https://stacks.math.columbia.edu/tag/01SM
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Proof of Theorem 1.4 as a consequence of Theorem 1.3. We apply 5.2. Condition p1q is
satis�ed thanks to Theorem 1.3.
We have to prove that conditions p2q and p3q of 5.2 are satis�ed in the cases mentioned

in Theorem 1.4.
In cases p2q and p3q, taking into account 5.1 and 5.3, the functor

indpQCohf pMqq Ñ QCohpMq

is an equivalence, so quasi-coherent sheaf of algebras on M are colimit of ring objects in
indpQCohf pMqq.
In case p1q, if A is a quasi-coherent sheaf of algebras on Y , by 5.3 we can write A as the

�ltered union of its quasi-coherent subsheaves Ai of �nite type. Thus we have an object
A˚ “ tAiui P indpQCohpMqq whose limit is A .
Since the image of Ai b Aj Ñ A is of �nite type, we obtain a map A˚ b A˚ Ñ A˚

inducing the multiplication on A . Since the image of OX Ñ A is of �nite type, we also
have a unit map OX Ñ A˚.
This data de�ne a ring structure on A˚. Indeed this can be check on an a�ne atlas, using

the following property: if R is a ring,M P ModpRq is �nitely generated, N˚ P indpModpMqq
and α : M Ñ N˚ is a map whose colimit is zero then α “ 0.
Notice that quasi-coherent sheaves of �nite type over DkpX q are �nitely presented by

fpqc descent because Xk is covered by a locally Noetherian scheme. We can therefore
conclude that ψ˚A˚ is a ring object in QCohf pDkpX qq as required. �

We now come back to the proof of Theorem 1.3. We �rst show some cases when the
hypothesis of Theorem 1.3 are satis�ed.

Remark 5.4. (1) Let X be a quasi-separated algebraic stack over Fq such that X
and Xk are Noetherian and ψ : Xk Ñ Spec k pushes coherent sheaves to �nite
dimensional vector spaces. Then X satis�es the hypothesis of 1.3 by 5.3.

(2) If X satis�es the property in (1) and f : Y Ñ X is a proper map of algebraic stacks,
then Y also satis�es the property in (1). Indeed in this case f˚ maps coherent
sheaves into coherent sheaves. See [Fal03].

(3) If X satis�es the property in (1) and f : Y Ñ X is a relative (fppf) gerbe banded
by a sheaf of groups G Ñ X which is representable by �at algebraic spaces of �nite
type over X , then Y also satis�es the property in (1).
We claim more generally that: Y and Yk are algebraic stacks; f : Y Ñ X is

smooth and quasi-separated, so that Y and Yk are Noetherian and quasi-separated;
f˚ maps coherent sheaves to coherent sheaves.
Taking into account [Sta18, 06DC] we see that all claims above are fppf local on

X . Thus we can assume X “ SpecA, for some Noetherian ring A and Y “ BA G,
for some �at algebraic group space G of �nite type over A. Again [Sta18, 06DC]
tells us that Y is algebraic. Moreover BA G Ñ SpecA is smooth: it is �at with
smooth geometric �bers. The diagonal of Y Ñ SpecA is fppf locally of the form
G Ñ SpecA, which is quasi-compact by hypothesis.

https://stacks.math.columbia.edu/tag/06DC
https://stacks.math.columbia.edu/tag/06DC
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Finally, a quasi-coherent sheaf F on BA G is equivalent to a A-module M with
an action of G and f˚F is just the submodule of G´invariants MG Ď M . Thus if
F is coherent, that is of �nite type, then M is �nitely generated, and so is MG.

We will actually work in a slightly more general situation than the one in 1.3.

Situation 5.5. Let X be a quasi-compact category �bered in groupoids over Fq. Let C be
a full subcategory of QCohf pX q which generates it, that is, such that all quasi-coherent
sheaves are quotient of a sum of objects in C. Assume that for all F P QCohf pXkq the
k-vector space HomXkpE b k,Fq has �nite dimension for all E P C, where E b k is the
pullback of E along π : Xk Ñ X . For simplicity we also assume that C is stable under �nite
direct sums.

In the hypothesis of 1.3 we can take C “ QCohf pX q and the above requirements are
satis�ed. We prove

Theorem 5.6. If X is as in Situation 5.5 then

QCohf pX q Ñ QCohpDkpX qq

is an equivalence of categories. In particular Theorem 1.3 holds.

The main result we are going to use is:

Proposition 5.7. [Ton20, Theorem B] Let X be a quasi-compact category �bered in
groupoid over a ring R, A be an R-algebra and denote by LRC, Aq the category of con-
travariant R-linear functors C Ñ ModpAq. Then the functor

Γ˚ : QCohpX ˆR Aq Ñ LRpC, Aq, F ÞÝÑ ΓF “ HomXˆRAp´ bR A,Fq

is an equivalence onto the full subcategory of functors Ω: C Ñ ModpAq which are exact on
right exact sequences with objects in C.

Proof of Theorem 5.6. Using 5.7 we want to de�ne a functor QCohf pDkpX qq Ñ QCohf pX q.
Consider an object in QCohf pDkpX qq, which we think of as a pair pF , σq where F P

QCohf pXkq and σ : φ˚kF Ñ F is an isomorphism. With such a pair we can associate the
Fq-linear functor

ΓF “ HomXkp´ bFq k,Fq : C Ñ Modpkq

and a natural isomorphism Γφ˚
kF Ñ ΓF . Notice that

Γφ˚
kFpEq “ φ˚kpΓFpEqq for E P C

Since by hypothesis ΓF has value in Vectpkq we can conclude that pF , σq de�nes a functor
ΓpF ,σq : C Ñ VectpDkpFqqq. Via the canonical equivalence of 1.2

VectpFqq Ñ VectpDkpFqqq

we obtain a functor

Ω: QCohf pDkpX qq Ñ LRpC,Fqq
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together with an isomorphism ΩF bFq k Ñ ΓF compatible with the φk equivariant maps.
Notice moreover that by construction the composition

QCohf pX q Ñ QCohf pDkpX qq Ñ LRpC,Fqq
is just Γ˚ over Fq. Using 5.7 the following lemma concludes the proof of 5.6. �

Lemma 5.8. The functor Ω: QCohf pDkpX qq Ñ LRpC,Fqq is fully faithful and its image
is made by functors which are exact on right exact sequences.

Proof. Let F “ pF , σq,G “ pG, δq P QCohf pDkpX qq. The second claim is clear: ΩF is
exact because ΓF : C Ñ Vectpkq is so and ΩF bFq k » ΩF .
By 5.7 the functor

Γ˚ : QCohpXkq Ñ LFqpC, kq
is fully faithful. This easily implies that the functor in the statement is faithful.
Let β : ΩF Ñ ΩG be a morphism. Via the equivalence VectpFqq Ñ VectpDkpFqqq the map

β is a natural morphism β : ΓF Ñ ΓG such that

Γφ˚
kF “ φ˚kΓF ΓF

Γφ˚
kG “ φ˚kΓG ΓG

Γσ

φ˚
kβ β

Γδ

By 5.7 β “ Γζ for a unique ζ : F Ñ G. Moreover, ζ makes the following diagram commu-
tative as required:

φ˚kF F

φ˚kG G

σ

φ˚
k ζ ζ

δ

This concludes the proof. �

Theorem 5.9. A�ne gerbes over Fq are trivial.

Proof. We apply 1.4 with X “ SpecFq and M an a�ne gerbe. Choose an algebraically
closed �eld k such that there is an object ξ P Mpkq. It could be that ξ and φ˚kξ are not
isomorphic, but they surely become so enlarging the �eld k. Thus we get an object of
MpDkpFqqq »MpFqq. �

6. The etalé case

In this section we consider the case when M “ Et is the stack over Fq of representable,
étale, quasi-compact and quasi-separated morphisms from algebraic spaces. Let M “ Ets
denote the substack of Et of étale maps which are separated. The goal is to prove Theorem
1.5. We use the abbreviation qcqs for quasi-compact and quasi-separated, and qcs for
quasi-compact and separated.
If X is a category �bered in groupoids then EtpX q (resp. EtspX q) is the category of maps

V Ñ X which are representable, étale and qcqs (resp. qcs). Arrows are any morphisms
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between such objects: Et and Ets are not �bered in groupoids. Since locally quasi-�nite
and separated morphisms of algebraic spaces are schematically representable (see
it follows that if V Ñ X is an object of EtspXq and X is a scheme then also V is a

scheme.
We denote by FP the �bered category over Z of �nitely presented (in particular qcqs)

morphisms from algebraic spaces: if X is a category �bered in gropoids then FPpX q “
HompX ,FPq is the category of representable morphisms Y Ñ X which are �nitely pre-
sented.

Proposition 6.1. Let A “ lim
ÝÑi

Ai be a �ltered direct limit of rings. Then the natural
functor

lim
ÝÑ
i

FPpAiq ÝÑ FPpAq

is an equivalence and it preserves all the following properties of morphisms: schematic,
a�ne, separated, smooth, étale.

Proof. The �rst claim is [Sta18, 076K]. For the other ones we have instead: schematic
by [Sta18, 01ZM]; a�ne by [Sta18, 01ZN]; separated by [Sta18, 0851]; smooth by [Sta18,
0CN2]; étale by [Sta18, 07SL]. �

Proof of Theorem 1.5. By 3.4 we can assume that X “ X “ SpecA is a�ne. An object of
EtspDkpAqq is a pair pV, σq where V Ñ Spec pAkq is an etale and qcs map of schemes and
σ : V Ñ V is an isomorphism making the following diagram commutative

V V

Spec pAkq Spec pAkq

σ

φk

Let tAiui be the set of all Fq-subalgebras of A which are of �nite type over Fq, so that
A is a �ltered direct limit of the Ai. We have that

lim
ÝÑ
i

EtspAiq Ñ EtspAq and lim
ÝÑ
i

EtsppAiqkq Ñ EtspAkq

are equivalences thanks to 6.1. Therefore the functor

lim
ÝÑ
i

EtspDkpAiqq Ñ EtspDkpAqq

is an equivalence. In particular we can assume that A is of �nite type over Fq.
Let X be any compacti�cation of X “ SpecA, so that X is an open subset of X.

Composing along X Ñ X we get a commutative diagram

EtspXq EtspDkpXqq

EtspXq EtspDkpXqq

https://stacks.math.columbia.edu/tag/076K
https://stacks.math.columbia.edu/tag/01ZM
https://stacks.math.columbia.edu/tag/01ZN
https://stacks.math.columbia.edu/tag/0851
https://stacks.math.columbia.edu/tag/0CN2
https://stacks.math.columbia.edu/tag/07SL
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The vertical functor are fully faithful. It is easy to see that the result for X implies the
result for X. Thus we can assume that X is a projective scheme over Fq. Since the small
étale site does not change under a nilpotent closed immersion, we can moreover assume
that X is reduced. In conclusion we can assume that X is a projective variety over Fq.
By [Sta18, 02LR] and [Sta18, 03GR] if Z is a reduced scheme of �nite type over some �eld

(hence Nagata) and V Ñ Z is a map of schemes étale and separated then the normalization
NpV q Ñ Z of Z in V is �nite and V Ñ NpV q is an open immersion.
Let Fin denote the stack of �nite morphisms. By the functoriality of normalizations

[Sta18, 035J] we get a functor
EtspXq ÝÑ FinpXq

Again by functoriality [Sta18, 035J], if pV Ñ Xk, σq P EtspDkpXqq, then σ : V Ñ V extends
to an isomorphism Npσq : NpV q Ñ NpV q over φk : Xk Ñ Xk. Thus we get a morphism
EtspDkpXqq Ñ FinpDkpXqq. We claim that the following diagram is commutative

EtspXq EtspDkpXqq

FinpXq FinpDkpXqq

αEts,X

We are going to use that the bottom functor is an equivalence thanks to 1.3. Given U Ñ X
in EtspXq we can construct the following Cartesian diagrams:

Uk NpUkq NpUqk Xk

W N NpUq X
u

v

where the top arrows should be thought of morphisms overDkpXq. The �nite map N Ñ X
and the morphism u are obtained using that αFin,X is an equivalence. The map W Ñ N is
the open immersion obtained from 4.2. Since W Ñ NpUq pullback to an open immersion,
it is an open immersion. Applying again 4.2 we can conclude that W “ U Ñ NpUq is the
given open immersion.
By the universal property of normalization we can conclude that N Ñ NpUq is an

isomorphism.
We now show that αEts,X is an equivalence.
For the fully faithfulness, given U Ñ X and W Ñ X in EtspXq and a morphism

DkpUq Ñ DkpW q, this map extends to a morphism DkpNpUqq Ñ DkpNpW qq induced by
a map a : NpUq Ñ NpW q. We have apUq Ď W because this relation holds after pulling
back to NpW qk.
For the essential surjectivity, starting with pV Ñ Xk, σq P EtspDkpXqq we get pNpV q Ñ

Xk, Npσqq P FinpDkpXqq which descents to pN Ñ Xq P FinpXq. Then we get the descent
U Ď N of the open embedding V Ď NpV q “ Nk by 4.2. �

Proposition 6.2. Let X be a category �bered in groupoids over Fq. Then the functor

EtpX q ÝÑ EtpDkpX qq

https://stacks.math.columbia.edu/tag/02LR
https://stacks.math.columbia.edu/tag/03GR
https://stacks.math.columbia.edu/tag/035J
https://stacks.math.columbia.edu/tag/035J
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is fully faithful.

Proof. According to 3.4 we may assume that X “ X “ SpecA.
Let Y Ñ X be an object of EtpXq, that is an étale and quasi-compact morphism of

algebraic spaces and U Ñ Y be a map from an algebraic space. If pU Ñ Xq P EtspXq,
then pU Ñ Y q P EtspY q. Indeed U Ñ Y is quasi-compact because Y is quasi-separated
and it is separated by [Sta18, 03KR].
If U Ñ Y is an étale atlas from a qcs scheme and R “ U ˆY U , then R is qcs because

Y is quasi-separated and R Ñ U ˆX U is a monomorphism. In particular R ⇒ U de�nes
a groupoid in EtspXq but also in EtspY q.
We come back to the problem of fully faithfulness. Faithfulness follows from 3.5.
Suppose that Z ÝÑ X is another object in EtpXq, and suppose that λ : Yk ÝÑ Zk de�ne

a morphism DkpY q Ñ DkpZq. Let R ⇒ U ÝÑ Y be an étale presentation by qcs étale
schemes. A map Y ÝÑ Z is the same as a map U ÝÑ Z which equalizes R ⇒ U . By 1.5
we may assume that Y is a qcs étale scheme over X.
Now suppose that R ⇒ U ÝÑ Z is an étale presentation by qcs étale schemes. Then

the pullback
R1k ⇒ U 1k ÝÑ Yk

of Rk ⇒ Uk ÝÑ Zk along λ is an étale presentation of Yk. Moreover this presentation
belongs to EtspYkq. More precisely it de�nes a groupoid in EtspDkpY qq. By 1.5 it descend
to an étale presentation

R1 ⇒ U 1 ÝÑ Y

in EtspY q. On the other hand, since Y Ñ X is separated, it follows that the presentation
actually belongs to EtspXq.
By construction the original morphism λ : Yk Ñ Zk de�nes a morphism of the groupoid

presentations in EtspDkpXqq. By 1.5 this morphism induces a morphism of the correspond-
ing groupoid presentations in EtspXq. By étale descent we get a map Y ÝÑ Z inducing
λ. �

7. The non proper case

The main of goal of this section is to prove Theorem 1.6.

Proof of Theorem 1.6. Let M be a Deligne Mumford stack over Fq with qcs diagonal. In
particular, by 4.6, we know that the map αM,V is fully faithful for all categories �bered in
groupoids V over Fq. So we are interested in the essential surjectivity.
By 3.4 we can assume that X “ X “ SpecA is a�ne. Let DkpXq Ñ M be a map.

Since M is a union of quasi-compact open substacks, we see that DkpXq Ñ M factors
through one of this opens. In other words we can assume that M is quasi-compact, that
is there exists an étale map W ÑM where W is an a�ne scheme. The condition on the
diagonal of M assures that W Ñ M is an étale and qcs map. Putting together 1.5, 3.9
with B “ W and 3.11 we obtain the desired map X ÑM. �

Proof of Theorem 1.1. By 3.4 we can assume that X “ X “ SpecA is a�ne. Let ξ, η P
MpXq, set I “ IsoMpξ, ηq Ñ X and let DkpXq Ñ I be a map. Since I is a quasi-separated

https://stacks.math.columbia.edu/tag/03KR
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algebraic space, by 1.6 we �nd a factorization DkpXq Ñ X Ñ I. Since DkpXq Ñ I Ñ X
is the canonical map, again 1.6 tell us that X Ñ I Ñ X is the identity, as required. �

8. Counterexamples

The following examples shows some cases when the main Theorems of this paper cannot
be extended.

Example 8.1. Let X “ Gm and M “ BGm. We show that the functor

MpXq ÑMpDkpXqq

which is fully faithful thanks to 1.1, is not essentially surjective. In particular Theorem
1.6 cannot be extended to algebraic stacks.
By de�nition it is easy to write down the exact sequence

H0
pO˚

Xk
q Ñ H0

pO˚
Xk
q Ñ PicpDkpXqq Ñ PicpXkq

where the �rst map is ω ÞÑ ωφkpωq
´1 and X may be arbitrary. If X “ Gm “ Spec pFqrxsxq

then H0
pO˚

Xk
q “ tλxt | λ P k˚, t P Zu and φkpλxtq “ λqxt. It is therefore clear that

0 “ PicpXq Ñ PicpDkpXqq » Z

is not an isomorphism.

Example 8.2. We show an example of a �nite, �at and �nitely presented map Z Ñ

DkpGmq which does not come from Gm. In particular Theorem 1.5 cannot be extended to
the case of �nite covers.
It is enough to consider a non trivial invertible sheaf L on DkpGmq as in the above

example and set

Z “ Spec pODkpGmq ‘ Lq Ñ DkpGmq, L2
“ 0

Example 8.3. Let X “ Spec pFqq. The map Spec k Ñ DkpFqq is a Z-torsor, therefore a
map which is schematically representable, étale, separated but not quasi-compact. On the
other hand this map does not come from a map over SpecFq, so that Theorem 1.5 cannot
be extended in this direction.
Indeed suppose to have Cartesian diagrams as follows

Spec k ˆ Z Spec k V

Spec k DkpFqq SpecFq

u

v

The map u is surjective, therefore V must be a point, hence a�ne. It follows that the map
v is quasi-compact, which is not true.

Example 8.4. Let X “ SpecFq and M “ BZ. This is a quasi-compact Deligne-Mumford
stack with separated diagonal, but it is not quasi-separated.
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We claim that the map DkpFqq Ñ M does not factors through a map SpecFq Ñ M,
which implies that the functor

MpFqq ÑMpDkpFqqq

which is fully faithful thanks to 1.1, it is not essentially surjective. In particular Theorems
1.4 and 1.6 cannot be extended in this direction.
We cannot have a factorization DkpFqq Ñ SpecFq Ñ M because otherwise we would

have Cartesian diagrams

Spec k V SpecFq

DkpFqq SpecFq BZ

contraddicting what we saw in 8.3.

Example 8.5. Let X “ Fq and consider M “ DkpFqq. Then M is a quasi-compact
algebraic space, but it is not quasi-compact. On the other hand the map

MpXq ÑMpDkpXqq

is not essentially surjective, because the map id : DkpXq Ñ M does not factor through a
map X ÑM. In particular Theorems 1.4 and 1.6 cannot be extended in this direction.
If, by contraddiction, we have a factorization DkpFqq Ñ SpecFq Ñ DkpFqq, then we

would also have a factorization DkpFqq Ñ SpecFq Ñ BZ, which is false as we saw in 8.4.
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