FROBENIUS FIXED OBJECTS OF MODULI

VALENTINA DI PROIETTO, FABIO TONINI, LEI ZHANG

ABSTRACT. Let X be a category fibered in groupoids over a finite field Fy, and let k be
an algebraically closed field containing IF;. Denote by ¢, = X — &} the arithmetic
Frobenius of X} /k and suppose that M is a stack over F, (not necessarily in groupoids).
Then there is a natural functor ax x: M(X) — M(Dy(X)), where M(Dy(X)) is the
category of ¢p-invariant maps X, — M. A version of Drinfeld’s lemma states that if X
is a projective scheme and M is the stack of quasi-coherent sheaves of finite presentation,
then apq x is an equivalence.

We extend this result in several directions. For proper algebraic stacks or affine gerbes
X, we prove Drinfeld’s lemma and deduce that ax is an equivalence for very general
algebraic stacks M.

For arbitrary X, we show that aaq x is an equivalence when M is the stack of im-
mersions, the stack of quasi-compact separated étale morphisms or any quasi-separated
Deligne-Mumford stack with separated diagonal.

1. INTRODUCTION

We work over a finite field F, of characteristic p, where ¢ is a power of p and fix an
algebraically closed field k over F,. We denote by ¢5: & — k the power of the absolute
Frobenius corresponding to ¢, that is a — a?. More generally if X is a category fibered in
groupoids over F, we use the notation

Xk:Xxkand¢k:idXx¢k:Xk—>Xk

The map ¢, above is called the arithmetic Frobenius of AX.

Let M be a stack in the étale topology over F, and X be a category fibered in groupoids
over F,. We denote by M(Dy(X)) the category whose objects are pairs (u, f) where
ue Xy - Mis amap and f: uo ¢, — u is a natural isomorphism. In other words an
object of M(Dg(X)) is a 2-commutative diagram

& u
d’klk\}./\/l
X /u\'

k

When X = X is a scheme an object of M(Dy(X)) is a pair (z, f) where z € M(X}) and
f: ¢i(x) — x is an isomorphism.
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We also denote by M(X) the category of maps X — M. The aim of this paper is to
study the canonical functor
A Xt M(X) - M(Dk()())

We now summarize the results obtained. Fully faithfulness holds in general:

Theorem 1.1. Let X be a category fibered in groupoids over F, and let M be a stack (not
necessarily in groupoids) in the étale topology and whose Hom-sheaves are quasi-separated
algebraic spaces. Then the functor

AM,x - M(X) - M(Dk(.)())
15 fully faithful.
Next, we consider the “proper” case, which has been studied by Drinfeld. Here one

consider M = QCoh,, the stack (not in groupoid) of quasi-coherent sheaves of finite
presentation. The key point is the case X = SpecF,, proved in | , Lemma 4, p. 43|

Theorem 1.2. The functor
Vect(F,) — Vect(Dg(F,))

is an equivalence of calegories. A quasi-inverse takes an object (V,o) where V € Vect(k)
and o: V — V is a ¢p-linear isomorphism to the [ -vector space

Vi={veV|o) =uv}
Building up from the previous result we prove the following.

Theorem 1.3 (See 5.6). Let X be a quasi-compact category fibered in groupoid over F,
(see §2 (2)). Suppose that, for all F,G € QCoh,(Ay), the k-vector space Homy, (F,G)
has finite dimension, and all quasi-coherent sheaves on X are quotient of a direct sum of
objects in QCoh;(X). Then the functor

QCoh ;(X) — QCoh (D, (X))
s an equivalence of categories.

Theorem above applies to proper schemes and algebraic stacks over F,, generalizing
Drinfeld’s lemma | , Lemma 3, p. 44|, that is the case of projective schemes. It also
applies to arbitrary affine gerbes over F, (see 5.4 (3)).

The proof follows closely the original one. The new idea is to replace sheafification of
graded modules with a more general construction described in | |-

As a consequence of the above theorem we have:

Theorem 1.4. Let X be a fibered category as in Theorem 1.5. Assume that either:

(1) M is a quasi-compact algebraic stack with quasi-affine diagonal and there exists a
representable fpgc covering V- — Xy from a Noetherian scheme (e.g. X is of finite
type over F, or an affine gerbe);

(2) M is a Noetherian algebraic stack with quasi-affine diagonal;

(8) M is an affine gerbe over a field.
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Then the functor
QM x - M(X) - M(Dk(X>)

1 an equivalence.

Theorem above implies that all affine gerbes over I, are trivial (see 5.9), which was
known only for affine gerbes of finite type.

Another classical case it has been considered is the case of finite and étale maps. We
are going to prove the following:

Theorem 1.5. Let X be a category fibered in groupoids over F,. Then the functor
Ety(X) — Ets(Di(X))
15 an equivalence of categories.

Here Et; is the stack (not in groupoid) of representable, étale, quasi-compact and sepa-
rated maps. The classical case was proved for the stack of finite and étale maps (see | ,
Lemma 4.2.6, p. 100]).

As a consequence of the above result we obtain:

Theorem 1.6. Let X be a category fibered in groupoids over F, and M be a quasi-separated
Deligne-Mumford stack over F, with separated diagonal (e.g. a quasi-separated algebraic
space). Then the functor

amx: M(X) = M(Dy(X))

s an equivalence of categories.

2. NOTATION

(1) By a stack over a ring R we mean a stack (not necessarily in groupoids) for the
fpqc topology over Sch/R. If we want to consider a stack in a different topology we
will specify the topology.

(2) We call a category & fibered in groupoids over a ring R quasi-compact if it admits
a representable fpqc covering from an affine scheme.

(3) We call category X fibered in groupoids over a ring R quasi-separated if the diagonal
map is representable and quasi-compact.

3. GENERAL REMARKS

Let & be a category fibered in groupoids over [F, and M be a stack in the étale topology
over F,. In this section we reinterpret the map

amx: M(X) - M(Dy(X))

We define
D, (F,) = [Speck/Z] and D (&X) = Dy(F,) xg, X
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for a fibered category X over I, where Z is the constant group scheme over F, of Z. The
action of Z on Speck is the one induced by the Frobenius ¢. Since

Z= |_| SpecF, — SpecF,

neZ

and therefore a covering in the étale (actually Zariski) topology, a Z-torsor P — X for
the fpqc topology over a scheme X is automatically a Z-torsors for the étale topology: P
become trivial after the étale covering P — X. This means that the quotient [Spec k/Z]
made with respect to the étale topology is a stack in the fpqc topology, or, in other words,
it coincide with quotient made with respect to the fpqc topology.

One can check easily that the action of ¢, on Speck is free, so that Dy(F,) is actually a
sheaf (in the fpqc topology). It is an algebraic space in the sense of | but not in the sense
of | , Definition 4.1, p. 25|, because D (F,) is not quasi-separated.

By definition of Dy (X), the map X}, — Dy (X) is a Z-torsor and the corresponding action
of Z on A} is given by the geometric Frobenius ¢. If X is just a sheaf in the étale topology
we can conclude that Dy (X) = [A}/Z] is the stack quotient for the étale topology.

In general there is a 2-commutative diagram

X, \u}
¢kl

XK/J

Dy (X)

and it induces a functor
HOHqu (Dk<X>, M) - M(Dk<X))
Lemma 3.1. If M is a stack in the étale topology then the above functor is an equivalence.

Proof. First, one reduces to the case when X is a stack in the étale topology. Since
Homp, (D (&), M)) = Homp, (D (F,), Homg (X, M))

we can reduce to the case X = SpeclF,.

In this case the claim follows from the universal property of the map Speck —
[Speck/Z] = Dy(F,): an object x € M(k) together with an isomorphism o: ¢;(zr) — = is
a descent datum along the groupoid Speck xp, r,) Speck = Speck x Z = Speck. 0

The above equivalence motivates the use of the symbol M(Dy(X)). In this paper we
identify functors Dg(X) — M and objects of M(D (X)) when M is a stack in the étale
topology. The projection map Dy (X') — X induces a functor

M(X) — M(Dy(X))

which is easily checked to be the map ax x defined in the introduction.

In what follows we prove some general properties of the functor ayx. We keep the
notation from above.

We first observe a general procedure to reduce problems to categories fibered in groupoids.
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Remark 3.2. If V is a fibered category over some site one defines Y as the sub fibered
category of ) whose objects are the same, but whose maps are the Cartesian arrows of )
(see | , Def 3.31]). In terms of sections, given an object T" in the site, one has that
YCart(T) is the groupoid associated with (7).

Thus V¥ is a category fibered in groupoid and any map X — Y from a category
fibered in groupoids has image in Y3, More precisely Y (X) = Hom (X, Y°¥") is the
groupoid associated with Y(X) = Hom(X,)).

Moreover if ) is a stack (or prestack) then so is Yyart - Indeed there is a Cartesian
diagram

IS_O))(S? 77) B I‘IO_HIy(f, 77) X HO_HW(’?, 5)
l (idid) l

T— E_ndy(ﬁ) X E_11dy<77)

which shows that if ) is a prestack then so in Y. On the other hand descent data is
expressed in terms of isomorphisms, thus are the same for ) or ¢,

From the properties of (—)¢t
Lemma 3.3. If the functors
apmx: M(X) = M(Dy(X)) and apcer 2 MOH(X) - M@ (Dy(X))

are respectively fully faithful and essentially surjective then they are both equivalences.

we easily deduce the following result.

Lemma 3.4. Assume that M is a stack in the étale topology. If for all affine schemes
X over F, the functor ap x: M(X) - M(Dy(X)) is fully faithful (resp. an equivalence)
then apx: M(X) = M(Dg(X)) is so for all categories X fibered in groupoids over F,,.

Proof. The association
N: Sch/F, — (groupoids), N (U) = M(Dy(U))
defined a fibered category over F,. If §: Dy (F,) — SpecF, is the canonical map, it is easy

to see that N' = 0,0* M. Moreover, since by definition §*X = X x Dy(F,) = Dy(X), we
have

Homy, (X, N)) ~ Homp, (r,)(0* X, 0*M) ~ Homg, (Dy(X), M) ~ M(Dy(X))

and, applying Hom (X, —) to the unit map M — 0,.0*N, we exactly obtain aq x.

In particular it is enough to prove that M — N is fully faithful (resp. an equivalence)
and, the hypothesis, means that M(X) — N (X) is fully faithful (resp. an equivalence)
for all affine schemes X. Since M and N are stacks in the étale topology this ends the
proof. O

Lemma 3.5. If M a stack in the étale topology and a prestack in the fpqc topology, then
the functor ay x: M(X) - M(Dy(X)) is faithful

Proof. The functors X, — Dy (X) and X}, — X are both representable fpqc coverings. It
follows that M(X) — M(X}), M(Dy(X)) — M(X) and thefore the map in the statement
are all faithful. [
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Now we want to understand how to reduce the study of axr locally on X.

Situation 3.6. We consider the following data and assumptions:

e a map Y: V — X of algebraic spaces;

e the stack M is a prestack in the fpqc topology (e.g. an algebraic stack by | ,
0APL] );

e the map V' — X is an étale (resp. fppf, fpqc) covering and M is a stack in the
étale (resp. fppf, fpqc) topology.

Consider the diagram
MX) — T MV) 3 M(V xx V)
LO‘M,X LOCM,V iaM#VXXV

M(Dy(X)) —L s MDy(V)) == MD(V xx V)

The two rows above are exact: indeed Di(V xx V) = Dp(V) — Dp(X) isjust VxxV =
V' — X base changed along Dy(F,) — SpecF,. Notice moreover that the functors a.
are faithful thanks to 3.5.

The following results all follow by diagram chasing.

Lemma 3.7. Assume Situation 3.6. Let &,n € M(X) and w: apx(§) — amx(n) be
a morphism. If Y*(w) comes from a morphism ¢¥*(&) — ¢*(n) then w comes from a
morphism & — 1.

Lemma 3.8. Assume Situation 3.6. Assume moreover that ayy and oy« v are fully
faithful. Consider a 2-commutative diagram as in the outer diagram of

/\\
\

D, (V

e

Then there exists a dashed arrow as in the above diagram and it is unique up to a unique
1somorphism.

We will often use the above lemma in the following form.

Lemma 3.9. Assume Situation 3.6. Assume moreover that oy s fully faithful for all
schemes Y over IF,. Consider commutative diagrams

A——B A—V
% ! |

|
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where B is a sheaf and the second one is Cartesian, so that A ~ Dy(V'). Assume moreover
that the induced map Dy(V) — B factors as Di(V) — V. — B. Then there exists a
X — M, unique up to a unique isomorphism, fitting in the following commutative diagram

A=Dy(V) =V —— B

! | |

D, (X) X M

If moreover the original diagram was Cartesian, then so is the above diagram on the right.

Proof. The first claim follows from 3.8, so only the last one needs to be proved.
One checks easily that there is a Cartesian diagram:

Vi —— B

L

Xy ————— M,

which is the pullback of
V——B
2
X—M
along Spec k — SpecF,, whence the claim. O

Corollary 3.10. Assume Situation 3.6. If apqv is fully faithful then so is anm x. If apmy
and aymyx v are equivalences then so is ap x.

Remark 3.11. If X is a category fibered in groupoids over F, and M is an affine scheme
then a y is an isomorphism (of sets). Indeed by 3.4 we can assume that X = X = Spec A
is affine as well. If M = Spec B then M(X) = Homg, (B, A) as algebras, while

M(Dy(X)) = Hompg, (B, (A ®r, k)**)

It is easily checked by choosing a basis of A over F, that the map A — (A ®g, k)? is an
isomorphism, thus we see that a x is an isomorphism.

4. THE CASE OF IMMERSIONS
In this section we consider as M the stack of immersions.
Definition 4.1. We denote by Emb the fibered category of immersions over [F,.
The aim of this section is to prove the following.

Theorem 4.2. Let X be a category fibered in groupoids. Then the functor
Emb(&X) — Emb(Dy(X))

is an equivalence of categories and it preserves quasi-compact (resp. open, closed) immer-
stons
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We first show that Emb is a stack for the fppf topology.

Proposition 4.3. The fibered category Emb is a stack in the fppf topology and a prestack
in the fpqc topology. If X is a category fibered in groupoids over F,, then Emb(X) is the
category of immersions in X, that is functors Z — X representable by immersions.

Proof. The category Emb is a sub-fibered category of Shr_, the stack of fpqc sheaves over
F,. In particular it is a prestack in the fpqc topology.

Effective descent for the fppf topology instead follows from | , 04SK] and | ,
02YM] OJ

We need some preparatory lemmas. The following is called the Moore determinant
| , Corollary 1.3.7]. We present here a direct proof of the result.

Lemma 4.4. The following relation holds in the ring F,[xo, ..., x.]:

Zo ry ... Ty
2?0 ad
0 1 T
det [, A e 1_[ (aoxo + -+ + a,a,)
‘o . ’ ) (ag:--:ar)ePr(Fq)
q" q" q"
Ty T ... @

where w € F,* and, in the product on the right, one chooses a representative of an element

of P"(F,).

Proof. Denote by N = N(xo,...,z,) the matrix in the statement and by F' = F(xo, ..., z,)
its determinant. We are going to prove the equality on [F,.
Let a = (ag,...,a,) € F,/ ™" be a non zero element and set

L, = apxo+ - + a,x, € Fylxo, ..., 2]

Notice that
N(zg,...,2.)-a = (Lg, L2, ..., LT)

where the right hand side should be thought of as a vertical vector. In particular it is clear
that, if (ug,...,u,) € Eﬂrl is such that L,(ug,...,u,) = 0 then N(ug,...,u,)-a =0 and
therefore F'(ug,...,u,) = 0. In other words the zero locus {L, = 0} < WH is contained
in the zero locus {F = 0} < WH We can therefore conclude that L, divides F' in
F,lz0, ..., 2,].

Notice that given a,b € Fq”l we have that L, and L, generates the same ideal in
F,[zo,...,2,] if and only if a = Ab for some A € F,. Using the factorization into primes
we can conclude that the product P in the statement divides F'. But

qr+1 -1

q—1
Using the inductive determinant formula it is easy to see that deg F' = deg P, which ends
the proof. [
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Corollary 4.5. Let L be a field over ¥, and po, ..., pu. € L. Then po, ..., pu, are Fy-linear
independent if and only if the matrix

fo fi1 oo
py pyoopd
po piooopd

1s invertible.

Proof of Theorem /.2. The last claims hold because those properties of morphisms are local
in the target for the fpqc topology (see | , 02L3], | , 02L6], | , 02L8]).

By 3.4 we can assume that X = Spec A is affine.

1). Fully faithfulness. Faithfulness follows from 3.5 and 4.3. Thus let U; — X, i = 1,2
be immersions and

)\DZ Dk(Ul) = U1 Xy Dk(X) — UQ Xy Dk(X) = Dk(Ug)

be a map over Dy (X). We have to show that Ap descends to a map \: U; — Us.

Consider the projection p: U; xy Uy — U;. By construction its base change along
D;(X) — X is an immersion with a section, thus an isomorphism. By fpqc descent it
follows that also p: U; xx Uy — Uj is an isomorphism, which allows to define the map A.

2). Essential surjectivity. Let us first show how to conclude assuming the result true
for closed immersions. Let Z — U — Dy(A) be an immersion, where Z — U is a closed
immersion and U < Dj(A) is an open subset. Consider the reduced closed substack
C = Di(A)\U — Dy(A), so that there exists a closed immersion () — Spec A inducing
C — Dy(A). By construction V = (Spec A)\Q — Spec A induces U — Dy(A). In
particular U = Dy (V). Applying again the result for closed immersion on Z — U = Dy (V)
we get the result.

Let us now focus on the case of closed immersions. Since closed immersions form a
substack of Emb, using again 3.4 we just have to show that a closed embedding Z — Dy(A)
comes from A. This closed embedding is given by an ideal I of Ay such that ¢p(I) = 1.
We have to prove that I is generated by elements of A. Let {u;}.e; be a basis of k over F,.
Given f e I < A, we can write

f= Z Hi, Qr
r=0

where a, € A. Set

Hig  Miy o oov iy
te pg

n n

MZO M/Ll ttt /I/an
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then we have a matrix equation:

f ag
Qbk(f) =M ai
ok (f) an,

in which M is invertible by 4.5. The relations obtained inverting M in the equation above
allow to conclude that

(ao, -, anye = (fo o)y R (P € 1

as k-vector spaces. This implies that
{ag,...,an} S I N A
hence I € (InA)A, < 1,501 = (I nA)A;. O
Using 4.2 we prove a variant of Theorem 1.1.

Lemma 4.6. Let X' be a category fibered in groupoids over F, and M be a stack in the
étale topology with the following property: for all £,m € M(T) for a scheme T the functor
Hom ,,(&,n) — T is a sheaf in the fpqc topology and its diagonal is an immersion. Then
the functor

V- M(X) g M(Dk(.)())
s fully faithful.

Proof. By 3.4 we can assume that X = X = Spec A is affine. Let £,n € M(X) and set
H = Hom ,,(&,n) — X. By 3.5 we need to show that a commutative diagram

Since the diagonal of H — X is an immersion, the same property holds for the diagonal
of Dg(X) — Dg(H). It follows that the section Dy(X) — Dg(H) is an immersion as
well. Thanks to 4.2 we find an immersion Z — H and a Cartesian diagram like in the
above diagram. Since Z is a sheaf in the fpqc topology and the map Z — X become an
isomorphism after the fpqc base change X, — X it follows that Z — X is an isomorphism
as well. In conclusion the section X — Z — H satisfies the requests. [
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5. THE PROPER CASE

The goal of this section is to prove Theorem 1.3, that is the case M = QCoh,, which
is the stack (not in groupoid) of finitely presented quasi-coherent sheaves over F,. Using
this we will then prove Theorem 1.4.

Let & be a category fibered in groupoids over IF,. An object of QCoh ;(Dy(X)) is a pair
(F,0) where F € QCoh(X}) and o: ¢fF — F is an isomorphism.

We start showing how to prove Theorem 1.4 as a consequence of Theorem 1.3.

Lemma 5.1. Let M be a quasi-compact category fibered in groupoid. Then the "taking
colimit” functor

ind(QCoh ;(M)) — QCoh(M)
s a faithful additive tensor functor. If M is quasi-separated then it is also fully faithful.
Proof. Tf M is an affine scheme the result is standard. In particular, in general, faithfulness
follows taking an fpqc covering from an affine scheme.

So assume that M is a quasi-compact and quasi-separated fibered category. We have to
show that if 7 e QCoh;(M)) and if {G;}icr € ind(QCoh;(M)), then

Homind(QCOhf(M))(Fv {gi}iel> = ﬁ_I)HHOHchOhf(M)(}—, gi) — HomQCohf(M)<-F7h_I>ngi)
iel iel

is an isomorphism. Let 7: U — M be a fpqc covering from an affine scheme, set R =
U xy U, which is a quasi-compact algebraic space, let V' — R be an étale atlas from
an affine scheme and set o, : V' — U the induced maps. If F,G € QCoh(M) then the
following sequence is exact

Hom,(F,G) — Homy (7*F,7*G) = Homy (a*7*F, a*7*G)
Using this we can reduce the problem to the case when M is an affine scheme. O

Lemma 5.2. Let X and M as follows:
(1) X is a category fibered in groupoids over F, for which

aQCohf,X: QCOhf(X) - QCOhf<Dk(X))

1$ an equivalence;

(2) M is a stack in groupoids over F, for the fpgc (resp. fppf, étale) topology with
quasi-affine diagonal and admitting a representable fpqc (resp. fopf, étale) covering
from an affine scheme;

(8) for any map Dy(X) Y M and any quasi-coherent sheaf of algebras </ over M, the
pullback *<f is the colimit of a ring object in ind(QCoh ;(Dy(X))).

Then the functor
AM,x - M(X) - M(Dk(.)())

18 an equivalence.
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Proof. By 4.6 we already know that ay y is fully faithful.
By hypothesis there is an fpqc (resp. fppf, étale) covering f: W = Spec A — M. Since
M has quasi-affine diagonal, it follows that f is quasi-affine. Therefore, if W := Spec f, Oy

then W — W is a quasi-compact open immersion | , 01SM]. Now consider a functor
: Dg(X) — M and the Cartesian diagram

B—""W

L

Then by hypothesis 1* f, Oy, ~ g.Op is the colimit of a ring object in ind(QCoh ;(Dy(&X))).
We have a commutative diagram
ind(QCoh (X)) ——— QCoh(X)

l l

ind(QCoh ;(Dx(X))) — QCoh(D(X))

Since the first vertical map is an equivalence by hypothesis, there is a ring object in
ind(QCoh (X)) inducing a quasi-coherent sheaf of algebra on A and therefore an affine
map V — X with a Cartesian diagram

B——V

lo ]

In particular B ~ D (V). Consider the Cartesian diagrams on the left in

B— W B—V
Ll L]
D(V) > W = DyV)—V
L] L]
Dy (X) = M Dy(X) — &

Applying 4.2 to the immersion B — Dy, (V) we obtain the Cartesian diagrams on the right
for some immersion V — V. Since Vj, — X}, is a base change of W — M which is an fpqc
(resp. fppf, étale) covering, it follows that V — X is an fpqc (resp. fppf, étale) covering
as well. From 3.9 with B = W and 3.11 we obtain the desired map X — M. [

Remark 5.3. (1) If M is a quasi-compact and quasi-separated algebraic stack, then
each quasi-coherent sheaf on M is the union of its quasi-coherent subsheaves of
finite type (see the main result of | D-
(2) If M is an affine gerbe over a field, then each quasi-coherent sheaf is a filtered direct
limit of vector bundles (which are the only quasi-coherent sheaf of finite type).
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Proof of Theorem 1.4 as a consequence of Theorem 1.53. We apply 5.2. Condition (1) is
satisfied thanks to Theorem 1.3.

We have to prove that conditions (2) and (3) of 5.2 are satisfied in the cases mentioned
in Theorem 1.4.

In cases (2) and (3), taking into account 5.1 and 5.3, the functor

ind(QCoh ;(M)) — QCoh(M)

is an equivalence, so quasi-coherent sheaf of algebras on M are colimit of ring objects in
ind(QCoh ;(M)).

In case (1), if &7 is a quasi-coherent sheaf of algebras on ), by 5.3 we can write <7 as the
filtered union of its quasi-coherent subsheaves .7 of finite type. Thus we have an object
o, = {;}; € ind(QCoh(M)) whose limit is .o7.

Since the image of & ® &; — 4/ is of finite type, we obtain a map %, ® o, —
inducing the multiplication on 7. Since the image of Oy — & is of finite type, we also
have a unit map Oy — .

This data define a ring structure on .o7,. Indeed this can be check on an affine atlas, using
the following property: if R is a ring, M € Mod(R) is finitely generated, N, € ind(Mod(M))
and a: M — N, is a map whose colimit is zero then o = 0.

Notice that quasi-coherent sheaves of finite type over Dy (X') are finitely presented by
fpqc descent because A} is covered by a locally Noetherian scheme. We can therefore
conclude that 1)*.7 is a ring object in QCoh (D (X)) as required. O

We now come back to the proof of Theorem 1.3. We first show some cases when the
hypothesis of Theorem 1.3 are satisfied.

Remark 5.4. (1) Let X be a quasi-separated algebraic stack over F, such that X
and X are Noetherian and ¢: Xy — Speck pushes coherent sheaves to finite
dimensional vector spaces. Then X satisfies the hypothesis of 1.3 by 5.3.

(2) If X satisfies the property in (1) and f: Y — X is a proper map of algebraic stacks,
then ) also satisfies the property in (1). Indeed in this case f, maps coherent
sheaves into coherent sheaves. See | |-

(3) If X satisfies the property in (1) and f: Y — X is a relative (fppf) gerbe banded
by a sheaf of groups G — X which is representable by flat algebraic spaces of finite
type over X, then ) also satisfies the property in (1).

We claim more generally that: ) and ) are algebraic stacks; f: ) — X is
smooth and quasi-separated, so that ) and ), are Noetherian and quasi-separated;
f+ maps coherent sheaves to coherent sheaves.

Taking into account | , 06DC] we see that all claims above are fppf local on
X. Thus we can assume X = Spec A, for some Noetherian ring A and Y = B4 G,
for some flat algebraic group space G of finite type over A. Again | , 06DC]

tells us that ) is algebraic. Moreover By G — Spec A is smooth: it is flat with
smooth geometric fibers. The diagonal of JJ — Spec A is fppf locally of the form
G — Spec A, which is quasi-compact by hypothesis.


https://stacks.math.columbia.edu/tag/06DC
https://stacks.math.columbia.edu/tag/06DC
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Finally, a quasi-coherent sheaf F on B4 G is equivalent to a A-module M with
an action of G and f,F is just the submodule of G—invariants MY < M. Thus if
F is coherent, that is of finite type, then M is finitely generated, and so is MY.

We will actually work in a slightly more general situation than the one in 1.3.

Situation 5.5. Let X" be a quasi-compact category fibered in groupoids over F,. Let C be
a full subcategory of QCoh;(X') which generates it, that is, such that all quasi-coherent
sheaves are quotient of a sum of objects in C. Assume that for all 7 € QCoh(AX}) the
k-vector space Homy, (€ ® k,F) has finite dimension for all £ € C, where £ ® k is the
pullback of £ along 7: X, — X'. For simplicity we also assume that C is stable under finite
direct sums.

In the hypothesis of 1.3 we can take C = QCoh(&’) and the above requirements are
satisfied. We prove

Theorem 5.6. If X is as in Situation 5.5 then
QCoh(X) — QCoh(Dy (X))
15 an equivalence of categories. In particular Theorem 1.3 holds.
The main result we are going to use is:

Proposition 5.7. [ , Theorem B| Let X be a quasi-compact category fibered in
groupoid over a ring R, A be an R-algebra and denote by LrC, A) the category of con-
travariant R-linear functors C — Mod(A). Then the functor

F*Z QCOh(X XR A) — LR(C,A>, F— F]: = HomXxRA<_ ®R A,F)

is an equivalence onto the full subcategory of functors Q: C — Mod(A) which are exact on
right exact sequences with objects in C.

Proof of Theorem 5.6. Using 5.7 we want to define a functor QCoh (D (X)) — QCoh ;(&X).
Consider an object in QCoh;(Dy(X)), which we think of as a pair (F,0) where F €
QCoh (&%) and o: ¢fF — F is an isomorphism. With such a pair we can associate the
F,-linear functor

F]: = HOIIle(— ®Fq /{Z,f)i C — MOd(/{?)
and a natural isomorphism I'y« » — I'z. Notice that

Pys (€)= 61(TH(€)) for E e C

Since by hypothesis I'z has value in Vect(k) we can conclude that (F, o) defines a functor
I'ro): C — Vect(Dg(F,)). Via the canonical equivalence of 1.2
Vect(F,) — Vect(Dg(F,))

we obtain a functor

Q: QCoh(Dy(X)) — L(C,F,)
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together with an isomorphism Q2 ®g, & — I'r compatible with the ¢, equivariant maps.
Notice moreover that by construction the composition

QCoh;(X) — QCoh;(Dy(X)) — Lr(C,F,)
is just I', over IF,. Using 5.7 the following lemma concludes the proof of 5.6. 0

Lemma 5.8. The functor Q: QCoh;(Dy(X)) — Lgr(C,F,) is fully faithful and its image
1s made by functors which are exact on right exact sequences.

Proof. Let F = (F,0),G = (G,0) € QCoh;(Dy(X)). The second claim is clear: Qr is
exact because I'r: C — Vect(k) is so and Qr ®r, k ~ QF.
By 5.7 the functor
I'y: QCoh(X;) — Ly, (C, k)
is fully faithful. This easily implies that the functor in the statement is faithful.
Let 8: Qr — Qg be a morphism. Via the equivalence Vect(FF,) — Vect(Dy(F,)) the map
[ is a natural morphism g: I'r — I'g such that

* s
Dyrr=l'r ——Tx

Lers s
% r
Pyrg = il —— Ty

By 5.7 8 = T'¢ for a unique (: F — G. Moreover, ¢ makes the following diagram commu-
tative as required:
G F —— F
e l¢

GG — G

This concludes the proof. [
Theorem 5.9. Affine gerbes over F, are trivial.

Proof. We apply 1.4 with X = SpecF, and M an affine gerbe. Choose an algebraically
closed field k such that there is an object £ € M(k). It could be that £ and ¢;¢ are not
isomorphic, but they surely become so enlarging the field k. Thus we get an object of

M(Dy(F,)) ~ M(F,). O
6. THE ETALE CASE

In this section we consider the case when M = Et is the stack over I, of representable,
étale, quasi-compact and quasi-separated morphisms from algebraic spaces. Let M = Ft,
denote the substack of Et of étale maps which are separated. The goal is to prove Theorem
1.5. We use the abbreviation gcgs for quasi-compact and quasi-separated, and g¢cs for
quasi-compact and separated.

If X is a category fibered in groupoids then Et(X') (resp. Ets(X)) is the category of maps
YV — X which are representable, étale and qcqs (resp. qcs). Arrows are any morphisms
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between such objects: Et and Etg are not fibered in groupoids. Since locally quasi-finite
and separated morphisms of algebraic spaces are schematically representable (see

it follows that if V' — X is an object of Ety(X) and X is a scheme then also V' is a
scheme.

We denote by FP the fibered category over Z of finitely presented (in particular gcqs)
morphisms from algebraic spaces: if X is a category fibered in gropoids then FP(X) =
Hom(X,FP) is the category of representable morphisms ) — X which are finitely pre-
sented.

Proposition 6.1. Let A = lim. A; be a filtered direct limit of rings. Then the natural
functor

lim FP(4;) — FP(A)
s an equivalence and it preserves all the following properties of morphisms: schematic,
affine, separated, smooth, étale.

Proof. The first claim is | , 076K]. For the other ones we have instead: schematic
by | , 01ZM]; affine by | , 01ZN]; separated by | , 0851]; smooth by | ,
0CN2[; étale by | , 07SL]. O

Proof of Theorem 1.5. By 3.4 we can assume that X = X = Spec A is affine. An object of
Ets(Dg(A)) is a pair (V, o) where V' — Spec (Ay) is an etale and qcs map of schemes and
o:V — V is an isomorphism making the following diagram commutative

V—F v

| |

Spec (Ag) LN Spec (Ag)

Let {A;}; be the set of all F,-subalgebras of A which are of finite type over F,, so that
A is a filtered direct limit of the A;. We have that

lim Et,(4;) — Ets(4)  and lim Bt ((As)r) — Ets(Ag)
are equivalences thanks to 6.1. Therefore the functor
liny Et, (D (A7) — Et,(Di(A)

is an equivalence. In particular we can assume that A is of finite type over F,.
Let X be any compactification of X = Spec A, so that X is an open subset of X.
Composing along X — X we get a commutative diagram

Ets(X) —— Ety(Dx(X))

l l

Ety(X) — Ety(Dy(X))


https://stacks.math.columbia.edu/tag/076K
https://stacks.math.columbia.edu/tag/01ZM
https://stacks.math.columbia.edu/tag/01ZN
https://stacks.math.columbia.edu/tag/0851
https://stacks.math.columbia.edu/tag/0CN2
https://stacks.math.columbia.edu/tag/07SL
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The vertical functor are fully faithful. It is easy to see that the result for X implies the
result for X. Thus we can assume that X is a projective scheme over F,. Since the small
étale site does not change under a nilpotent closed immersion, we can moreover assume
that X is reduced. In conclusion we can assume that X is a projective variety over IF,.

By | , 02LR] and | , 03GR] if Z is a reduced scheme of finite type over some field
(hence Nagata) and V' — Z is a map of schemes étale and separated then the normalization
N(V)— Z of Zin V is finite and V' — N(V) is an open immersion.

Let Fin denote the stack of finite morphisms. By the functoriality of normalizations
[ , 035.]] we get a functor

Ety(X) — Fin(X)

Again by functoriality | , 035J],if (V — Xy, 0) € Ety (Dp(X)), theno: V — V extends
to an isomorphism N(o): N(V) — N(V) over ¢p: X, — Xj;. Thus we get a morphism
Ets(Dg(X)) — Fin(Dg(X)). We claim that the following diagram is commutative

QEtg, X

Ety(X) ——— Ets(Dy(X))

l l

Fin(X) ——— Fin(Dy(X))
We are going to use that the bottom functor is an equivalence thanks to 1.3. Given U — X

in Ets(X) we can construct the following Cartesian diagrams:

U, —— N(Up) —= N(U)p — X,

L0 1

%% N NU)—— X

where the top arrows should be thought of morphisms over Dy (X). The finite map N — X
and the morphism u are obtained using that o, x is an equivalence. The map W — N is
the open immersion obtained from 4.2. Since W — N(U) pullback to an open immersion,
it is an open immersion. Applying again 4.2 we can conclude that W = U — N(U) is the
given open immersion.

By the universal property of normalization we can conclude that N — N(U) is an
isomorphism.

We now show that age, x is an equivalence.

For the fully faithfulness, given U — X and W — X in Et4(X) and a morphism
D, (U) — Dg(W), this map extends to a morphism Dy (N(U)) — Dy (N(W)) induced by
amap a: N(U) — N(W). We have a(U) < W because this relation holds after pulling
back to N(W)y.

For the essential surjectivity, starting with (V' — X, 0) € Et;(Dy (X)) we get (N(V) —
Xk, N(0)) € Fin(Dy(X)) which descents to (N — X) € Fin(X). Then we get the descent
U < N of the open embedding V< N(V) = N;, by 4.2. O

Proposition 6.2. Let X be a category fibered in groupoids over F,. Then the functor
Et(X) — Et(Dg (X))


https://stacks.math.columbia.edu/tag/02LR
https://stacks.math.columbia.edu/tag/03GR
https://stacks.math.columbia.edu/tag/035J
https://stacks.math.columbia.edu/tag/035J
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Proof. According to 3.4 we may assume that X = X = Spec A.

Let Y — X be an object of Et(X), that is an étale and quasi-compact morphism of
algebraic spaces and U — Y be a map from an algebraic space. If (U — X) € Et (X),
then (U — Y) € Ety(Y). Indeed U — Y is quasi-compact because Y is quasi-separated
and it is separated by | , 03KR].

If U - Y is an étale atlas from a qcs scheme and R = U xy U, then R is qcs because
Y is quasi-separated and R — U x x U is a monomorphism. In particular R = U defines
a groupoid in Ets(X) but also in Et.(Y).

We come back to the problem of fully faithfulness. Faithfulness follows from 3.5.

Suppose that Z — X is another object in Et(X ), and suppose that \: Y, — Zj define
a morphism Dy (Y) — Dy(Z). Let R = U — Y be an étale presentation by qcs étale
schemes. A map Y — Z is the same as a map U — Z which equalizes R = U. By 1.5
we may assume that Y is a qcs étale scheme over X.

Now suppose that R = U — Z is an étale presentation by qcs étale schemes. Then
the pullback

R, = U, — Y,
of R, = Uy — Z along X is an étale presentation of Y,. Moreover this presentation
belongs to Ets(Yy). More precisely it defines a groupoid in Ets(Dg(Y)). By 1.5 it descend
to an étale presentation

R=U —Y
in Ets(Y). On the other hand, since Y — X is separated, it follows that the presentation
actually belongs to Ets(X).

By construction the original morphism A: Y, — 7 defines a morphism of the groupoid
presentations in Ets(Dg(X)). By 1.5 this morphism induces a morphism of the correspond-

ing groupoid presentations in Et,(X). By étale descent we get a map ¥ — Z inducing
A O

7. THE NON PROPER CASE

The main of goal of this section is to prove Theorem 1.6.

Proof of Theorem 1.6. Let M be a Deligne Mumford stack over I, with qcs diagonal. In
particular, by 4.6, we know that the map o,y is fully faithful for all categories fibered in
groupoids V over F,. So we are interested in the essential surjectivity.

By 3.4 we can assume that X = X = Spec A is affine. Let Dy(X) — M be a map.
Since M is a union of quasi-compact open substacks, we see that Dy(X) — M factors
through one of this opens. In other words we can assume that M is quasi-compact, that
is there exists an étale map W — M where W is an affine scheme. The condition on the
diagonal of M assures that W — M is an étale and qcs map. Putting together 1.5, 3.9
with B = W and 3.11 we obtain the desired map X — M. O

Proof of Theorem 1.1. By 3.4 we can assume that X = X = Spec A is affine. Let {,n €
M(X), set I =1Is0,,(&,1m) — X and let Dy (X) — I be a map. Since [ is a quasi-separated


https://stacks.math.columbia.edu/tag/03KR
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algebraic space, by 1.6 we find a factorization Dy(X) — X — [. Since Dy(X) - I - X
is the canonical map, again 1.6 tell us that X — I — X is the identity, as required. [

8. COUNTEREXAMPLES

The following examples shows some cases when the main Theorems of this paper cannot
be extended.

Example 8.1. Let X = G,, and M = BG,,. We show that the functor
M(X) = M(Dy(X))

which is fully faithful thanks to 1.1, is not essentially surjective. In particular Theorem
1.6 cannot be extended to algebraic stacks.
By definition it is easy to write down the exact sequence

H°(0%,) — H°(0%,) — Pic(Dk(X)) — Pic(Xy)

where the first map is w — wey(w) ™! and X may be arbitrary. If X = G,,, = Spec (F,[z].)
then HY(O% ) = {\z' | A€ k*, t € Z} and ¢ (Aa') = A%, Tt is therefore clear that

0 = Pic(X) — Pic(Dp(X)) ~ Z
is not an isomorphism.

Example 8.2. We show an example of a finite, flat and finitely presented map Z —
Dy (G,,) which does not come from G,,. In particular Theorem 1.5 cannot be extended to
the case of finite covers.

It is enough to consider a non trivial invertible sheaf £ on Dy (G,,) as in the above
example and set

Z = Spec (ODk(Gm) &) ﬁ) — Dk(Gm), £2=0

Example 8.3. Let X = Spec (F,). The map Speck — Dy(F,) is a Z-torsor, therefore a
map which is schematically representable, étale, separated but not quasi-compact. On the
other hand this map does not come from a map over SpecF,, so that Theorem 1.5 cannot
be extended in this direction.

Indeed suppose to have Cartesian diagrams as follows

Speck x Z — Speck —~——

Ly l !

Spec k — Dy (F,) —— SpecF,
The map u is surjective, therefore V must be a point, hence affine. It follows that the map
v is quasi-compact, which is not true.

Example 8.4. Let X = SpecF, and M = B Z. This is a quasi-compact Deligne-Mumford
stack with separated diagonal, but it is not quasi-separated.
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We claim that the map Dy (F,) — M does not factors through a map SpecF, — M,
which implies that the functor

M(Fq) - M(Dk(Fq))

which is fully faithful thanks to 1.1, it is not essentially surjective. In particular Theorems
1.4 and 1.6 cannot be extended in this direction.

We cannot have a factorization Dy (F,) — SpecF, — M because otherwise we would
have Cartesian diagrams

Spec k 174 SpecF,

l ! l

D (F,) —— SpecF, —— BZ

contraddicting what we saw in 8.3.

Example 8.5. Let X = F, and consider M = D(F,). Then M is a quasi-compact
algebraic space, but it is not quasi-compact. On the other hand the map

M(X) = M(Dp(X))

is not essentially surjective, because the map id: Dy (X) — M does not factor through a

map X — M. In particular Theorems 1.4 and 1.6 cannot be extended in this direction.
If, by contraddiction, we have a factorization Dy(F,) — SpecF, — Dy(F,), then we

would also have a factorization D (F,) — SpecF, — BZ, which is false as we saw in 8.4.
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