1 Introduzione

“[...] soggiogatc la Terra
¢ dominate sui pesci del mare
e sugli uccelli del ciclo
¢ su ogni esscre vivente,

che striscia sulla terra”
Gen18!

Il presente claborato tratta il modello preda-predatore, noto anche come
modecllo Lotka-Volterra, dal nome dei due matematici che per primi ¢ in
modo indipendente hanno studiato tali cquazioni?.

Lo stesso Volterra, nell'introduzione di [1], raceconta di come, “a scguito di
alcune conversazioni con il Sign. D’Ancona3, che chicdeva se fosse possibile
studiarc l¢ variazioni della composizione di un ecosistcma per via matemati-
ca, cgli abbia cominciato le suc ricerche su tale soggetto”*. Piu precisamente
D’Ancona aveva raccolto dai registri dei porti di Venczia, Trieste ¢ Fiume
dei dati statistici relativi alla pesca nel periodo 1905-1923, nel tentativo di
capirc sc una pesca cccessiva potesse essere causa di cstinzione del pesce.
Egli rilevd che durante la guerra, periodo in cui la pesca cra stata meno
intcnsa, si cra verificato un notevole aumento della percentuale di pesci ap-
partenenti alla classe dei sclaci; questi si nutrivano di altri pesci, e il loro
valorc commerciale era basso. Concluse quindi che la riduzione delle attivita
dei peschereeci al fine della ripopolazione del pesce sarcbbe risultata dan-
nosa; non gli era chiaro perd sc tali conclusioni fossero corrette e ne chicse a
Volterra una giustificazione dal punto di vista matematico. Volterra rispose
a D’Ancona nel modo che segue

2 Presentazione del modello

Considcriamo un ccosistema composto da H prede® ¢ P predatori®, ¢ studi-
amo comc questc due quantita variano nel tempo. Supponiamo per semplic-

'nonostante non sia uso comune, & doveroso chiarire il significato di tale citazione:
Pautore di questi versi, vissuto attorno al 500 aC, esprime l'impressione che I'uvomo, fra
tutte le creature della Terra, goda di una posizione di dominio; di questa idea tiene conto
il modello che presenteremo, dove I'uomo occupa un ruolo di predatore del predatore; del
resto, l'idea stessa di fare un modello, di studiare una situazione in astratto, & un tentativo
umano di dominio sulla realta

TAlfred J. Lotka (1880-1949), matematico e chimico-fisico statunitense di origini
ucraine, Vito Volterra (1860-1940), personaggio di spicco nella matematica italiana del
primo dopoguerra; si veda anche [6)

*Umberto D’Ancona (1896-1964), biologo marino e futuro genero di Volterra

‘trad. liberamente dal francese e adattato

*dall'inglese host, ospite

%ing: parasite, parassita; in effetti un rapporto di predazione fra due specie &
equivalente, dal punto di vista dello studio matematico, a un rapporto di parassitismo



itd che 'ambiente studiato non contenga altre specie, che le prede godano
di risorse illimitate, ¢ che i predatori si nutrano esclusivamente delle prede.
Sotto queste ipotesi in assenza di predatori le prede crescono in modo espo-
nenziale, e in assenza di prede i predatori decrescono csponcnzialmente, in
quanto le prede sono 1a loro unica risorsa; scriviamo quindi

H=gaH
P=_pp 1)

con a ¢ b cocfficienti reali positivi, detti coefficienti biotici. Considerando
poi intcrazionc fra preda e predatore, I'influcnza reciproca fra le duc specic
¢ dircttamente proporzionale al numero di incontri fra prede ¢ predatori,
quindi al prodotto HP.

Il modello che studieremo & quindi il scgucnte:

H =aH - aHP 2)
P=_-bP+BHP

con a ¢ f sono costanti rcali positive, delle quali o rapprescnta la proba-
bilitd di un incontro fra una preda c un predatore che risulti vincente per il
predatore, ¢ 8 = ya, dove 7 ¢ il fattore di conversione preda-predatore’.
Tale cquazione & detta modello dj Lotka-Volterra.

3 Le traiettorie nel piano della fasi

Lo studio delle varazioni nel tempo di queste due popolazioni ci ha condotto
quindi a cquazioni differenziali® » pill precisamente a un sistema di due
cquazioni differenziali in duc incognite, del quale tracceremo le orbite nel
piano delle fasi.

Il sistema ha duc punti di equilibrio: E; = (0,0) ¢ E, = (%, L) =(H*, P*).
Osscrviamo immdiatamentc che, come gia acccnnato,

H(it)=0 H(t) = Hy e
{ P(t) = Pye™* ¢ P(t)=0

sono solugioni di (2); cid ci dice immediatamente che il punto di cquilib-
rio (0,0) ¢ una sella, quindi instabile. Inoltre risulta che le soluzioni che

"per capire la necessitd di utilizzare un fattore di conversione che misuri come un
predatore “trasforma la preda in s€”, basta pensare alla differenza fra una balena che
mangia krill ¢ un lupo che divora un cinghiale, anche solo in termini dj apporto calorico
dato dalla singola preda

8 “[...] cerchiamo di esprimere con parole come procede all’ingrosso il fenomeno; quindi
traduciamo le parole in linguaggio matematico. Questa traduzione conduce ad equazioni

differenziali.”
V. Volterra, “ Variazioni e futtuazioni del numero d’individui in specie animali convivents”



partono da duc condizioni iniziali Hy, Py > 0 rimangono di segno positivo®;
questo garantisce che il modello non ci porta all’assurdo di una popolazione
ncgativa.

3.1 Un integrale primo del moto

Notiamo per prima cosa che lo slépe P’ (H) = —,’;— = ﬂH(':—_’LfFH)l & un’cspres-
sione a variabili scparabili, che si pud integrare nel scguente modo:
-a—aP - ~b+ BH
P =H
p H
integrando rispetto al tempo ottengo

sa—aP . —-b+BH

con c¢ costante reale,

a—aP _ [ -b+pH
C+/ P dP_/TdH

infinc
c=aP+pfH —alnP -blnH (3)

Cio significa che le traicttoric ncl piano delle fasi delle soluzioni si trovano
nclle curve di livello della funzione f(H,P) = aP + 8H —alnP — bIn H.

3.2 Le traiettorie sono tutte chiuse

Procediamo dimostrando che tali curve di livello sono tutte curve chiuse,
ossia che E & un centro globale. Passando all’esponenziale la (3) ottcniamo

C=¢ %= PoHbc P ~PH (4)
che, introducendo le variabili
XH)=H" " ¢ y(P)=pecoP

diventa I'cquazione della retta Y = CX nel piano (X,Y). Ora, X(H) ha il
$uo unico minimo in H*, cosi come Y (P) ha un solo massimo in P*; inoltre

X(0")=X(+00) =400 ¢  Y(0)=Y(+00) =0

costruendo “per punti” il grafico della curva di livello risulta dunque che le
traicttoric sono tutte chiuse!®, come si evince dalla figura, per ogni valore
di C tale che 0 < C < exp(—f(H*, P*)).

®cid avviene perché P’equazione (2) & autonoma, quindi le orbite non si possono
incrociare

1034 eccezione ovviamente delle due soluzioni banali gid mostrate, e delle soluzioni
costanti nei due punti di equilibrio E, e E,




3.3 Le soluzioni sono periodiche

Dimostriamo ora che una qualsiasi soluzione percorre tutto il proprio ciclo
in un tempo finito!!.. Per prima cosa, H ¢ P si annullano contcmporanca-
mentce solo in Ez, dunque i cicli vengono percorsi tutti in verso antiorario.
Chiamiamo ora

7(t) = (H(t)-H*, P(t)-P") il raggio vettore e (t) = arctan (——-—;8; :Z:)

Pangolo spazzato dal raggio vettore rispetto all’assc orizzontale {P = P*}.
Derivando ¢ otteniamo

S (H - HYP = (P~ PYH) = 57 (P,~H)
Una forma equiva.lentc della (2) & la scguente
{ H =oH(P* - P)
P=pg8P(H - H*)
¢, sostituendo H ¢ P ncll'equazione di ¢ ne ricaviamo
r2p = (H — H*)?BP + (P — P*)?aH > r’ min{BP,aH}

dunque ¢ > min{8P,aH} > 0, che vuol dire che il raggio vettore compic un
giro in un tempo finito!?. Le soluzioni H(t) ¢ P(t) sono dunque pcrlodlche
¢ sfasate di un quarto di periodo.

Figura 1: Un esempio numerico: i grafici di H(t) e P(t) con accanto la rispettiva
curva iutegrale

i3 basta a dire che le soluzioni sono periodiche in quanto la (2) ¢ autonoma
2 questa dimostrazione contiene un piccolo bug: in effetti I'angolo , non ¢ definito in
H = H’; possiamo aggirare questo problema considerando I’angolo che il raggio vettore

forma con l'asse verticale girando in senso antiorario, ossia § = — arctan (%—.—), e
ripetendo gli stessi conti fatti per p, con il medesimo risultato
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3.4 La media su un ciclo

In generale il periodo di oscillazione non é uguale per ogni orbita!3; tuttavia,
conoscendo il periodo di un ciclo posso calcolare i valori medi di H ¢ P su
quel ciclo

_ 1 T _ 1 T
H=5,-/0 H(t)dt o P=T/0 P(t) dt

Osscrviamo che, su qualunque ciclo vale
Tp
/ =dt=InP(T)-InP(0)=0
o P

per la periodicita delle soluzioni. Dunque possiamo dire immediatamente
che

T p T T
0=/ —dt=/ (—b+ﬂH)dt=-—bT+ﬂ/ Hdt
o P 0 0
quindi risulta
-b--l/TH(t)dt—ﬁ
B Tl

cio¢ il valor medio di H non dipende dal periodo T, quindi ¢ indipendcente
anche dal ciclo sul quale ci troviamo.
Analogamente troviamo che

T f T T
0=/ -——dt=/ (a—aP)dt:aT—a/ Pdt
o H 0 0

in ogni ciclo. Dunque il punto di cquilibrio E2 é anche la
), P(t)) su qualunque ciclo.

quindi P =
media di (H(

Rie

o~

3dato che H (O) = P(O) = 0, le soluzioni tendono a girare tanto pill lentamente quanto
pil la soluzione & vicina agli assi H=0e P =0

e }
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Figura 2: Un esempio numerico: alcune orbite nel piano delle fasi; su ognuna di
queste orbite il numero medio di prede e predatori & lo stesso

4 Prede, predatori e umani: modelli con pesca

Introduciamo adesso ncl modello un termine che rappresenti un prelicvo
costante da entrambe le specic, causato, ad cscmpio, da un’azione di pesca,
caccia, o la diffusione di un antiparassitario da parte dell’'uomo. 11 modello

diventa quindi
{ H=aH ~aHP - AH
P=—bP+BHP - BP

con A ¢ B, al solito, costanti positive.

4.1 1l principio di Volterra

Notiamo subito che, sc @ > A, la (5) & ancora un modecllo di Lotka-Volterral4

con nuovi cocfficienti biotici ' = a — A ¢ b’ = b+ B. Quindi la media su un
ciclo di H ¢ P ¢ la scguente

_ _ . a-4A
H'=——b;B>H e P=2

=l

<

14in caso contrario il prelievo risulterebbe eccessivo, e porterebbe all’estinzione della
preda, seguita dall'estinzione del predatore



che vuol dire che la presenza di condizioni meno favorevoli a entrambe le
spccie causano un incremento del numero medio di prede ¢ un decremento del
numcro medio di predatori. Questo fenomeno ¢ noto come effetto Volterra,
cd ¢ un risultato non intuibile ¢ non ottenibile se non con tale ragionamento
matematico!®. Supponendo di poter pescare con una rete sclettiva, cio¢ che
prenda solo prede, quindi B = 0, o solo predatori, A = 0, ci accorgiamo
che la pesca va ad alterare solo il numero medio della specic “scartata”;
sc il risultato generale appariva inconsucto, questo caso particolarc scmbra
veramente paradossale.

4.2 Prelevamento una tantum

Consideriamo il caso in cui il prelievo non & costante, ma occasionale. In tal
caso la (2) non cambia, tuttavia dallistante ¢, in cui & avvenuto il prelicvo
le orbitc cambiano ciclo, ossia ripartono dalle nuove condizioni iniziali

(H(t1), P(t1)) = (H(t:) - A, P(t:) - B)

cio vuol dire che il prelevamento una tantum non varia il numero medio delle
duc specic, ma ne altera 'ampiczza delle oscillazioni (si veda la figura (4)).

®tuttavia, come spesso accade, un ragionamento intuitivo fatto a posteriori pud giusti-
ficare I'effetto Volterra: le prede infatti sono gia soggette a prelievo, e si sono adattate a
subire perdite continue, cosa che non vale per i predatori. Ad esempio le lepri o i conigli,
la cui velocita di riproduzione si & rilevata determinante alla sopravvivenza della specie



Figura 3: Un esempio di prelevamento una tantum: un primo prelievo diminuisce
I’ampiezza delle oscillazioni portando l'orbita su un ciclo pill interno; un secon-
do prelievo effettuato in un altro punto pud aumentare l'ampiezza e riportare la
traiettoria sul ciclo originale

5 Un modello piu realistico

Ricostruiamo il modecllo escludendoe dalle ipotesi l'illimitatezza delle risorsc a
disposizione delle prede; senza tale ipotesi dobbiamo correggere I'equazione
(2) sottracndo un terminc logistico, dircttamente proporzionale alla proba-
bilita di incontro fra duc prede

{ H=aH(1-4)-aHP 6)

P=-bP+BHP

dove K ¢, al solito, una costante positiva.

Anche in questo caso ho due soluzioni sugli assi cartcsiani,una logistica per le
prede in assenza di predatori ¢ una malthusiana decrescente per i predatori,
quindi le soluzioni H(t) ¢ P(t) sono scmpre positive a patto di prendere
condizioni iniziali positive, cosa esscnziale perché il modello non perda di
significato fisico.

Studiamo i punti di cquilibrio del sistema: Ey = (0,0), che, come prima, ¢
una sclla, By = (K,0), ¢ B3 = (§,2(1 — g5)) = (Hoo, Px); quest’ultimo



punto ha ascissa positiva solo se¢ K > %. Dunque tratteremo separatamente
duc casi: il primo caso K < £ in cui le due isocline non si incrociano, il caso
B

limite K = g dove E; = Ej3, c il sccondo caso K > %, in cui 'intersezione
fra le due isocline genera il nuovo punto di equilibrio Ej.

5.1 Il primo caso e il caso limite

Studiamo la matrice di Jacobi per capire come sono fatti i punti di cqulibrio.

_(6-2f§H—-aP -aH
Come ci aspettavamo, J(E,) = 8 _Ob ), quindi E; ¢ una sclla; invece

J(Eg) = ( —E)a —b— ng ) ¢ una matrice a determinante positivo nel pri-

mo caso, nullo nel caso limite, ¢ a traccia ncgativa. Ne segue che E & un
punto di cquilibrio stabile in cntrambi i casi.

Tracciando il grafico qualitativo notiamo che ogni traiettoria tende al punto
E3; cid significa estinzione dei predatoril®.

//t" - LN S e
/ ¥ e e e e e € e g € €e € T €, e c e a am de Ge G €m G et R wo

L i R e R
e -~
D e R I
I e T L NUR N NG

P =l
IR PRS-, -

v
e

[ B e

-~

e e e e e €

P e e e e e Ae e e e e e

Jor e ea G e e € € e

~

P = g e
- \4..‘\‘

L e de @ G e e don . -

R S IR T SO S W S Sy

'/,.-....._o_..g.-_q-.s

LI T S ST S

[ SN S S N S N M,
e e L e T

L S Y i . -

LR R R IR S TS

«

“.

8,
hE

e T T~ R LU Touy S A i

«

. . I e N
A T R Sy o SNy

e € e e L e

e e e e e e
T e e e e Ay P P

. T - T fr "\l“’
&

Figura 4: Due esempi numerici: sia il primo caso che il caso limite predicono
I’estinzione del predatore

19§ predatori si estinguono in quanto le prede sono cosi poche che predatori non riescono
a incontrarne; & la stessa cosa che accade nei modelli epidemiologici quando la popolazione
& rarefatta: il mancato incontro fra individui rende nullo il contagio e I'epidemia cessa




5.2 Il secondo caso

Nel secondo caso invece J(E;) ha determinante negativo, quindi E; ¢ un

_ab b
punto di sclla. Calcolando J(E3) = of KB b az risulta che
w(1-g3) O
det(J(E3)) = ab(1 - —b—) >0 ¢ tr(J(E3) = _8
KB KB

tiefr ¢t it ot

t

Figura 5: Un esempio numerico: il nuovo punto di equilibrio & un attrattore

5.2.1 Una funzione di Lyapunov

Cid non basta per dirc che Ej ¢ un attrattore globale: non ¢ csclusa infatti
la presenza di traicttoric che si svolgono, quindi di uno o pit cicli limite.
Abbiamo quindi bisogno di una funzione di Lyapunov per la (6) rclativa a

E;.
Proviamo a confrontare le orbite della (2) centrate in E3 con le traicttoric

della (6).
b
K—-aP+ﬁH—a(1 - 75) InP-blnH

10



derivando rispetto al tempo, ¢ immettendo le cquazioni del sistcma (6)
ottengo

. . . b\P H
K—aP+,3H—-a(l————)?—b—ﬁ—

_ab®  ab_ af,, af b2
———k_ﬁ+2EH—T(—H ——f( —-—) <0
L'assenza di soluzioni con H(t) = % sc non quclla banale garantiscono che
E3 ¢ un punto di cquilibrio asintoticamente stabile. L'cffctto che abbi-
amo ottcnuto aggiungendo il termine logistico alla (2) ¢ stato dunque la
riduzionc progressiva dell’ampiezza delle oscillazioni di H(t) ¢ P(t) fino al
loro stabilimento a un valore limite, rispettivamente Hy, ¢ Pxo.

Figura 6: Un esempio numerico: il termine logistico smorza le ampiezze delle
oscillazioni fino al loro annullamento

5.2.2 Ancora il principio di Volterra

Inscriamo ancora una volta un termine di prelicvo costante al modello; cid
che otteniamo ¢ il sistema:

H=aH(1-£)-aHP - AH ®)
P =-bP + BHP - BH

Quecsto modcllo, sempre a condizionc che A sia pil piccolo di a, ¢ cquivalente
al sistcma (6) con
b+ B a—A b
Ht;o=_ﬂ_>H0° c Péc: P (1—'1(—ﬂ)<P°°
quindi vale sempre il principio di Volterra, non piti nel senso di media su un
ciclo, ma ncl senso di valore limite verso il quale le soluzioni si stabilizzano.

11
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Can the drinking bird explain economic cycles ?
(A history of auto-oscillations and limit cycles)

par Jean Mawhin
Membre de la Classe

Dedicated to the memory of my thesis adviser, Paul Ledoyr

1 Introduction

The aim of this work is to sketch and, sometimes, to refine the history of the
notion of self-sustained oscillations or auto-oscillations in science and technology,
and that of the mathematical concept of limit cycle of a system of ordinary
differential equations. Devices producing self-sustained oscillations, i.e. able
to transform a continuous source of energy into a periodic motion exist since
Antiquity, and the most ludic one can be the drinking bird, a scientific toy
patented by an American inventor in 1946, Those self-sustained oscillations
are of the greatest importance in clock-making, musical instruments, wireless
telegraphy, friction dynamics, chemistry, biology and many other fields.

Almost simultaneously and independently in the beginning of the years 1880,
LorRD RavLEicH proposed a second order differential equation with a suit-
able nonlinear friction term, to modelize self-sustained oscillations, and Hexgj
POINCARE showed the presence, in planar systems of nonlinear differential equa-
tions, of periodic solutions to which neighboring solutions are asymptotic for ¢
going to infinity, named limit cyeles.

Despite of his interest and his contributions in wireless telegraphy, PoiNcaARg
did not apparently connect the auto-oscillations with his limit cycles, a relation
ouly made in 1929 by ALEKSANDR A. ANDRONOV. It was the starting point for
a new interdisciplinary research domain called theory of nonlinear oscillations
Or sometimes nonlinear mechanics,

The development of this area in the XX* and the beginning of the XX|st
centuries has beep spectacular and the scope of its domains of applications
constantly widened, including attempts in humap sciences like economics. This
explains the somewhat cryptic title of this essay.



2 Linear models for oscillators

2.1 Celestial harmony

HOOKE's law tells us that the restoring force of a spring is proportional to its
elongation with respect to its equilibrium position. Mathematically speaking,
if the displacement of a unit mass attached to a spring, with respect to its
equilibrium position, is denoted by z, the restoring force F is given by

F=-z

and NEWTON's fundamental law of dynamics gives the linear differential equa-
tion

" +z2=0 (1)

for the motion of the unit mass, where ’ denotes the derivative with respect
to time ¢t. Eq. (1), called the harmonic oscillator equation, also modelizes the
small oscillations of the pendulum, of oscillating circuits made of a self and a
capacity in electricity and even, after a clever change of variables, of the two-
body problem in astronomy. Its solutions, known at least since the time of
LEONHARD EULER, are given by

z(t) = Asin(t + ¢) (A20, 0<¢< 2n), (2)
where A > 0 is called the amplitude of the motion, and ¢ its phase. It is also

easy to show, by multiplying both members of eq. (1) by =’ and integrating,
that eq. (1) has a first integral, namely the energy integral

2 2‘.2

4+ =c (C20) ®)

2
expressing that the sum of the kinetic energy and of the potential energy remain
constant during the motion.

To picture the solutions of eq. (1), one can use a time-picture given by (2)

NN D
VAV,

HARMONIC OSCILLATOR : TIME EVOLUTION

showing that the time-evolution of any solution is sinusoidal, but also a geome-
tric-picture in the so-called phase plane of coordinates (z.z') deduced from eq.
(3), namely

2+ 122 =2C,



showing that the orbits of the motion, namely the curves
{(z(t),2'(t)) : =0 < t < +oc}

corresponding to the solutions z(t) of eq. (1) are circles centered at the origin,
which is a stable equilibrium position. They are described for increasing time
in the sense given by the arrows.

HarMoNIC OSCILLATOR : PHASE PLANE

So, periodic solutions with respect to time correspond, in the phase plane, to
closed orbits or cycles, and equilibria to fized points.

2.2 Terrestrial friction

The model of the previous section does not easily apply to terrestrial phenomena
because of the almost unavoidable and often positive presence of friction or
damping in those phenomena. A real pendulum will never exhibit oscillations
with constant amplitude, but with decreasing one. The harmonic oscillator eq.
(1), only valid in a world without friction, is just an equation for motions in
heavens.

The simplest model for a damped oscillation is given by

' +er’ +z=0 (e >0), (4)

and referred as the damped linear oscillator. If € > 0 is sufficiently small (namely
0 < € < 2), its solutions are given by

z(t) = Ae~ ¥tsip (t\/l—f;+aﬁ> (A>20, 0<¢<2nm). (5)

and consist in oscillations whose amplitude Ae~ £t decreases exponentially to
the asymptotically stable equilibrium position x(t) = 0.

Hence, the time-picture of the motions is given by a sinusoid with decreasing
amplitude,



DAMPED OSCILLATOR : TIME EVOLUTION

from which one can deduce (there is no energy integral anymore !) that the
corresponding orbits in the phase plane are spirals around the origin (0,0},
described in increasing time in the sense shown by the arrows.

*U

DAMPED OSCILLATOR : PHASE PLANE
Mathematically, there is no reason to exclude the case of a negative damping
' —ex'+z=0 (e>0) (6)

and eq. (6) can indeed be associated to the linearization of some models of
nonlinear oscillators, as shown later. Its solutions, for 0 < € < 2, are given by

z(t) = Ae¥tsin (t,/l—%mﬁ) (A>0, 0<¢<2m), (7)

and consist in oscillations with indefinitely increasing amplitude Ae#! around
the unstable equilibrium z(t) = 0.

So the time-picture of the motion is given by a sinusoid of increasing ampli-
tude.

_“‘ﬂ"f\-”ﬂ ¢
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NEGATIVE DAMPING : TIME EVOLUTION

and the corresponding orbits in the phase plane

NEGATIVE DAMPING : PHASE PLANE

are spirals around the origin (0,0), described in increasing time in the sense
shown by the arrows.

2.3 Periodic oscillations by forcing

The discussion above show that periodic motions in a linear oscillator with one
degree of freedom are only possible in the absence of damping, so that this linear
model is unable to describe adequately most periodic motions observed on Earth.
The harmonic oscillator has also the property of being structurally unstable, in
the sense that the nature of its orbits (cycles) can be destroyed by arbitrarily
small perturbations of the equations (for example by terms ez’ with arbitrary
small € > 0). Because of the fact that approximations of various types are
always present in the modelization of a physical phenomenon, a reliable model
should on the contrary be structurally stable in the sense of A.A. ANDRONOV
and L.S. PONTRYAGIN [6].

Of course, it is well known that if we force a (positively or negatively) damped
harmonic oscillation with an exterior force of some period T, namely if we
consider the forced linear damped oscillator with e(t) periodic of period T,

' +ex’ +z=et) (8)

and € # 0, there will always be a unigue solution of period T to which all other
solutions tend when ¢ tends to +00.

This just shifts the question, because we will have in practice to device
a physical way to produce the T-periodic forcing term e(t), i.e. to construct
another oscillator having e(t) as solution. Physically, the question is how to
transform a constant source of energy into a periodic motion ? Such periodic
motions are generally called self-sustained oscillations or auto-oscillations. All
the linear models described above fail in providing an answer.



3 Self-sustained oscillations

3.1 Early technical examples

As it has often happened in the evolution of science, technology did not wait
for a scientific explanation or for a mathematical model to produce devices
exhibiting self-sustained oscillations. Maybe the eldest one is the so-called vase
of Tantale already known in Antiquity : a continuous flow of liquid provides
a periodic oscillation of the level of the liquid in the vase, which never reaches
the top of the vase, because of the presence of the syphon (hence the name of
‘Tantale’ because of the torment of a potential drinker having his lips at the top
of the vase).
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VASE OF TANTALE

Musical instruments with rubbed string, or wind instruments are other ex-
amples, as well as pendulum clocks with weight or WATT’s double action steam
engine.

Another example was exhibited by the French engineer GERARD-LESCUYER
in 1880 [52, 155 : if a direct current produced by a dynamo is sent through
a magneto-electrical engine, this one starts to move, with increasing velocity
depending upon the intensity of the sent electrical current, but then slows down,
stops and restarts in opposite sense, to stop again and restart in the original
sense, and so on. The source of electrical direct current of the first machine
produces a periodic motion in the second one.

The development of radio-electricity strongly depends upon devices produc-
ing self-sustained oscillations of high frequency, whose amplitude will be modu-
lated to produce the sound. One of the first devices to reach this aim was the
singing arc invented around 1900 by the British electrical engineer WILLIAM
Du Bots DUDDELL (1872-1917) [45] : a circuit made of a self L and a capac-
ity C is placed on an electrical arc alimented by continuous current. Under
some conditions, the arc light flashes in a periodic way, producing a very pure
sound of frequency T = onvLC. This is the prototype of electrical musical
instruments. See {19, 75 for more details and explanations. The singing arc
was later replaced in radio transmission by an oscillating circuit containing a



triode or lamp with three electrodes, invented by the American LEE DE FOREST
(1873-1961) in 1906 under the name of audion.

A more recent and more popular example is the drinking bird (or dunking
bird, or dippy bird or dipping bird), a scientific toy invented and patented in
1946 by the American MILES V. SuLLIVAN (born in 1917).

MILES V. SuLLivan (8. IN 1917) DRINKING BIRD

The bird is constructed in glass and its head and body consist in balls emp-
tied from the air and joined by a tube going in the body ball to a small distance
of the bottom, in order to produce a siphon effect. The body is partly filled
with a volatile liquid and the beak is covered with a spongy material. The bird
is posed in such a way that its beak can plunge into a glass full of water. The
bird freely oscillates on a support. When his beak has been watered in this way,
evaporation of the water diminishes the temperature inside the head and the
volatil liquid moves up in the neck, modifiying the center of gravity of the bird,
whose head moves down and enters the water again, causing a return of the
volatile liquid in the bird’s bottom. The same motion then repeats itself peri-
odically. Of course it is not an example of perpetual motion, but a water engine
! See (66, 93] and references therein for more detailed physical explanations and
experiments.
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US PATENT 2,402.463, JUNE 18, 1946

Other examples of auto-oscillations can be found in (30, 72, 86, 104, 123).

3.2 The first mathematical model for self-sustained oscil-
lations

In 1883, the British physicist and Nobel prize JOHN WILLIAM STRUTT (LORD
RAYLEIGH) (1842-1919) introduced the first mathematical model for self-sustai-
ned oscillations [120]. The paper is reproduced with slight modifications in his
famous treatise Theory of Sound.

LORD RAYLEIGH (1842-1919)

RAYLEIGH realized that self-sustained oscillations could be mathematically
modelled by replacing the linear damping *ez’ in eq. (4) or (6) by a suitable
nonlinear one f(z') such that f(0) = 0, namely by considering the differential
equation

2+ flz')y+x =0, 9)

and choosing f in such a way that f(z') behaves qualitatively like a negative
damping —ezx’ when |z'| is small, and like a positive damping ex’ when |z'] is
large. The simplest choice (from a Taylor expansion) of f(z') = (-1 + %)z
(e > 0) provides the so-called Rayleigh equation

" +e(-1+2H)2 +2=0, (10)

whose damping term corresponds to a negative damping producing oscillations
of increasing amplitude when |z’| < 1, and to a positive damping producing
oscillations of decreasing amplitude when |z/| > 1. Heuristically, RAYLEIGH
conjectured the existence of a self-sustained oscillation separating those two
regimes of motion. He gave some approximate justification and some estimate
of the amplitude of the self-oscillation when ¢ is small. In his own words [120] :



When a vibrating system is subjected to dissipative forces, the vibrations
cannot be permanent, since they are dependent upon an initjal store of
energy which suffers gradual exhaustion. In the usual equation

d%9 df
Eﬁ+n-¢i—t+n29=0 (11)

K is positive, and the solution indicates the progressive decay of the vibra-
tions in accordance with the exponential law. In order that the vibrations
may be maintained, the vibrating body must be in connexion with a
source of energy. This condition being satisfied, two principal classes of
maintained vibrations may be distinguished. [..] The first class is by far
the more extensive, and includes vibrations maintained by wind (organ-
pipes, harmonium-reeds, aeolian harps,etc.), by heat (singing flames, Ri-
Jke's tubes, etc.), by friction (violin-strings, finger-glasses, etc.), as well as
the slower vibrations of clock-pendulums and of electromagnetic tuning-
forks. When the amplitude is small, the force acting upon the body may
be divided into two parts, one proportional to the displacement 6 (or to
the acceleration), the second proportional to the velocity 5%. The inclusion
of these forces does not alter the formof (11). [...] When « is negative, so
that small vibrations tend to increase, a point is of course reached after
which the approximate equations cease to be applicable. We may form an
idea of the state of things which then arises by adding to equation (1) a
term proportional to a higher power of the velocity. Let us take

a8 do  ,(de\* |,
at—z'-’-liz-i-n (E) +n°8=0 (12)
in which & and &’ are supposed to be small. The approximated solution
of (12) is
1 A3
8 = Asinnt + & nA cos Int (13)

in which A is given by
K+ gn’n’A’ =0. (14)

From (14) we see that no steady vibration is possible unless x and «’'
have different signs. [-.] If k be negative and «’ positive, the vibration
becomes steady and assumes the amplitude determined by (14). A smaller
vibration increases up to this point, and a larger vibration falls down of
it. If, on the other hand, x be positive, while x’ is negative, the steady
vibration abstractedly possible is unstable, a departure in either direction
from the amplitude given by (14) tending always to increase.

3.3 Poincaré’s limit cycles

In a paper of 1881 anounced by a note to the Comptes rendus of the French
Academy of Science in 1880 (116], the French mathematician, physicist and as-
tronomer HENRI POINCARE (1854-1912) initiated a study of the geometry of
the orbits

{®).y(t) : =20 < t < +20}



described by the solutions (z(t),y(t)) of (possibly) nonlinear planar differential
systems of the form

' =P(z,y), ¥ =Qz,y) (15)

where P and Q are polynomials.

HENRI POINCARE (1854-1912)

Notice that all the cases of unforced oscillations already considered above
reduce to eq. (15) (when f is a polynomial) by letting y := 2’ and writing (9)
in the equivalent form of the planar system

=y y=-fly)-=

The plane (z,y) corresponds to the phase plane (z,z') of the corresponding
second order differential equation.

Among many other things, POINCARE observed that system (15) could have
closed orbits (cycles) to which all neighboring orbits would spiral whent — +o00
or t — —o0. He called such closed orbits limit cycles. In his own words [116] :

Ce Mémoire a pour but ’étude géométrique des courbes définies par une
équation différentielle de la forme %f— = 5‘%, ol X et Y sont des polynomes
entiers en z et y. [Je les| appelle caractéristiques. [...] Parmi ces courbes
fermées, les unes ne sont pas caractéristiques et ne touchent une car-
actéristique en aucun point : je les appelle cycles sans contact; les autres
sont des caractéristiques : je les appelle cycles limites, parce qu’elles sont
asymptotes aux caractéristiques voisines.

[This memoir is devoted the geometric study of the curves defined by a
differential equation of the form “7’ = ny‘ where X and Y are integer
polynomials in z and y. [ call them characteristics. [..] Among those
closed curves, some are not characteristics and touch a characteristic in no
point : I call them cycles without contact, other ones are characteristics:
I call them limit cycles, because they are asymptotic to the neighboring
characteristics.}
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POINCARE gave some rigorous methods for their detection, in particular the
so-called Poincaré- Bendizson criterion (16]. implying the existence of a limit
cycle in an annular region free of constant solutions and containing a solution
defined for all t > ¢, for some to.

POINCARE also gave a slight variant of the following simple example of dif-
ferential equation admitting such a limit cycle

" +e(-1+ 22+ 2% +r=0 (e > 0). (16)

This example differs from the one given in 1883 by RAYLEIGH (without any
reference to POINCARE's paper) by the presence of the term 22z’ in the damping.
Here, when 22422 < 1, the nonlinear term behaves like a negative damping, and
the solutions are oscillations of increasing amplitude (or spirals going away from
(0,0) in the phase plane). When z? + 272 > 1, the nonlinear term behaves like
a positive damping, and the solutions are oscillations of decreasing amplitude
(or spirals approching (0,0) in the phase plane). Now, the circle of equation
22+ 22 =1 in the phase plane is itself an orbit for eq. (16), corresponding to
the periodic solutions z(t) = sin(t + ¢) of eq. (16), as immediately checked.

POINCARE's LiMIT CYCLE

In his own words POINCARE's example goes as follows [116) :
Soit 'équation

dz dy

2+ - 1) - y(z2 ¥ g2+ 1) Y+ - +z(z? ¥ g2+ 1)

Il 0’y a qu'un point singulier [...]; c'est le point £ = y = Q qui est un
foyer. [...] Tous les cercles sont des cycles sans contact, excepté le cercle

de rayon 1 qui est un cycle limite. Il n'y a pas d’autre cycle limite.
(Consider the equation

dr _ dy
2@+ - ) —y(z¥ g2 1 1) Y@+ - ) +2(z + 2 ¥ 1)
There is only one singular point [...]; it is the point z = y = 0 which is a
focus. [...] All the circles are cycles without contact, except the circle of

radius 1 which is a limit cycle. There is no other limit cycle.]

11



3.4 Poincaré and the singing arc

POINCARE's scientific interests were very wide and he contributed to the early
development of the theory of Hertzian waves. At this occasion, he wrote in 1907
a popular account of the recent progress of wireless telegraphy entitled Théorie
de Mazwell et les oscillations Hertziennes. La télégraphie sans fil (118].

In this book, POINCARE described DUDDELL' singing arc mentioned above,
first used in wireless telegraphy by VALDEMAR POULSEN (1869-1942) in 1902,
before the introduction of the triode. POINCARE noticed the similarity of this
device with a classical example of self-sustained oscillations when he wrote :

Ces oscillations sont entretenues comme le sont celles du balancier de nos
horloges.
[Those oscillations are sustained as those of the pendulum of our clocks).

However, POINCARE did not make any connection between those auto-
oscillations and the limit cycles he had introduced some twenty-five years before.
As we will see, another twenty-five years will be necessary to make it !

4 Modeling self-sustained oscillations

4.1 Janet and electrical machines in series

The French physicist PAUL JANET (1863-1937) had included for many years the
experiment of GERARD-LESCUYER in his lectures on electricity.

PauL JANET (1863-1937)

In a note of 1919 at the Comptes rendus of the Academy of Science of Paris
[76], he proposed a model for a direct current dynamo excited in series and
connected to an electrical motor with permanent magnets or series excitation.
He also observed interesting analogies :

Il m’a semblé intéressant de signaler les analogies inattendues que présente
cette expérience avec les oscillations entretenues si largement utilisées au-
jourd'hui en télégraphie sans fil, par exemple avec celles qui se produisent
dans 'arc de Duddell ou dans les lampes & trois électrodes employées
comme oscillateurs. [...] La dynamo-série génératrice se comporte comme

12



une résistance négative, et le moteur a excitation séparée se comporte
comme un condensateur.

(It seemed to me interesting to mention the unexpected analogies of this
experiment with the sustained oscillations so widely used to-day in wire-
less telegraphy, for example with those produced in Duddell’s arc or in the
lamps with three electrodes used as oscillators. [-] The dynamo-series
acts as a negative resistance, and the engine with separated excitation
acts as a capacity.]

He deduced from the fundamental laws of electricity, that, if e = F(i) rep-
resents the electro-mechanical force of the dynamo, the intensity of the current
in the electrical motor satisfies a differential equation of the form

1y daF 1., k’.__
Li +[R—d—i(z)Jz +?z—0, (17)

quite similar to RAYLEICH's one.

4.2 Van der Pol and the oscillating circuit with triode

One year later, the Dutch physicist BALTHAZAR VAN DER PoL (1889-1959) used
the fundamental laws of electricity and electronics to modelize an oscillating
circuit containing a triode [142].

BALTHAZAR VAN DER PoL (1889-1959)

Before him, with the exception of JANET’s paper mention above, the study
of this circuit was limited to its linear approximation and the search of the
ranges of its coefficients leading to oscillations with increasing amplitudes (see

e.g. [20]).
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QOSCILLATING CIRCUIT WITH TRIODE

In VAN DER PoOL’s own words :

As a given triode oscillator, with definite settings of the circuit constants,
will generate oscillatory currents with harmonics all having a definite am-
plitude, it may be worth while to put forward a theory of the oscillating
triode having regard to the non-linear terms in the equation.

A triode has three active electrodes, the plate (anode), the grid, and the (heated)
filament (cathode). Its work depends upon a linear combination u = vy + Dv,
(with 0 < D < 1) of the anode potential vg and grid potential v, with respect
to the filament. The plate current i, is represented by an S-shape function
of u, iy = o¢(u), called the characteristic of the triode. Its has an inflection
point at the unstable steady value (vay,%s,). VAN DER PoL obtained first,
for the instantaneous deviation i of the total plate current from i,, and for the
instantaneous deviation v of the plate potential from v,,, the differential system

i+CY + %v' + %v =0, i=vy(kv), (18)

where v(kv) = &(va, — kv) — ¢(vq,). From this he deduced, by assuming (ac-
cording to Taylor's expansion) that

i = p(kv) = —av + Bv? + M (19)

the second order differential equation for v
1
Cv' + (E - a) v+ %v + B + () =0, (20)
which he reduced to

' —e(l-z¥)2’ +x =0, (21)

by taking, for simplicity, 3 = 0, and normalizing the coefficients.

He gave two heuristic methods for showing the existence of a periodic oscilla-
tion of amplitude close to 2 when € > 0 is small, which is the situation occuring
in the radio problem. He did not refer to JANET's work [76] mentioned above,
but, in a footnote to his first method, he noticed that :

we follow closely a method of solution given by Prof. Lorentz in a series
of lectures at Leiden University.

The second method consisted in multiplying the first equation in (18) by a
function V such that V' = v and integrating over the period of the limit cycle
to get, after some integrations by parts,

T 1 T
/ ivdt+—/ v¥dt =0, (22)
0 R Jo
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Now, eq. (19) implies that
T T
/ ivdt = / [~av? + 8e® + yo4] dt.
0 0
so that eq. {22) becomes
11
/ [(E -a)v? + 8vd + 7v4} dt = 0. (23)
0

The approximate formula v(t) = acoswt with w = %15 for the limit cycle intro-
duced in eq. (23) gives, after simple calculations the approximate expression

a —
7

ol

a?

[SM 1N

for the approximate amplitude a of the limit cycle. This reduces to a2 = 4 in
the case of eq. (21). This method was developed by DARIO GRAFFI [62] in
1942.

One should also mention that VAN DER PoL quoted RAYLEIGH's paper [120]
on p. 708, but only when discussing the values of the coefficients leading to an
unstable limit cycle. He did not comment on the close relationship between his
equation (21) and RAYLEIGH's one (10).

Six years later, VAN DER PoL (143] studied the orbits of his equation (21),
written as a system
=y, y =¢l- )y -z (24)
in the phase plane, for the three values ¢ = 0.1,1 and 10 (143], through the
graphical method of isoclines, i.e. drawing from the equation of the orbits of
(24) in the phase plane (z,y)

Y 1-2_F
da:_e(l %)

the curves of constant slope %, and connecting small lines on them having the
corresponding slope to obtain the orbits.

When € = 0.1, this shows the presence of a unique cycle approximately
circular, of radius close to 2, approached from inside and from outside by spiral-
ing orbits, and corresponding to a unique stable quasi-sinusoidal time-periodic
solution of eq. (21).

15
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e =0.1: TIME EVOLUTION e = 0.1 : PHASE PLANE

VAN DER PoL's analytical approach given in [143] to deduce heuristically
this result is a version of the method of variation of constants in a nonlinear
context, successfully developed by N.M. KryLov and N.N. BocoLiusov (83]
and their school, and called to-day the averaging method. Writing the solution
in the form v = asin(t + ¢), with a and ¢ supposed to depend also upon ¢,
assuming that @ and ¢ are slowly varying function of time, VAN DER PoL found
for a? the approximate differential equation

1 1
—(@®) —a?+-a*=0
€ 4
whose solutions
2 _ 4
2 = {1 e-etrO)

provide oscillating amplitudes with limiting value 2.

When ¢ = 1, one still observes a unique cycle of less regular shape, ap-
proached from inside and from outside by spiraling orbits. This corresponds to
a unique stable time-periodic solution of eq. (21) containing higher harmonics.

X - — - - —
A Emi : : ~ . ~'
Tl B ‘\-’/I . ‘.\_'/ R .

€ =1: TIME EVOLUTION € =1 : PHASE PLANE

Finally, when € = 10, a unique cycle of irregular shape is observed, rapidely
approached from inside and from outside by the other (non-spiraling) orbits.
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It corresponds to a unique stable time-periodic solution of eq. (21) close to a
repeating sequence of quasi-stationary states separated by fast transitions. Van
DER PoL called this type of solutions relazation oscillations. The reason of this
terminology is that the period of the limit cycle for £ > 0 large is shown to be
approximately equal to ¢, i.e., if one returns to the original equation (20), to
RC, which is a time of relaxation.

.
4 E=40 A dop s - -
s % B IR et R
S il SR I B -
€ =10 : TIME EVOLUTION e=10: PHASE PLANE

VAN DER PoL observed in (143] that the type of oscillation described in
1919 by HENRI ABRAHAM and EUGENE BLOCH (2] was of relaxation type and

provided a mathematical analysis of their multibrator. He concluded by noticing
that :

finally, it seems quite likely that, when the total characteristic [...| is taken
in account, the well-known vibration of a neon-tube connected to a resis-
tance and condenser in shunt may be similarly treated under the heading
of relaxation-oscillations, Similarly, (though no detailed investigation has
been carried out) it is likely that the oscillation of a “Wehnelt” inter-

rupter belongs to the general class of relaxation-oscillations and perhaps
also heart-beats.

As we will see later, VAN DER PoL has soon refined his last prediction. In 1927
[144], he showed that relaxation oscillations occur also in a tetrode-multivibra-
tor, in some circuits considered by E. FRIEDLANDER (50], and in GERARD-LEs-
CUYER experiment with dynamo and engine. At this occasion, VAN DER PoL
quoted for the first time, without comment, the papers of JANET [77] and of
CARTAN (28] mentioned below, as well a a book by BuscH [25].
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5 Proving the existence of self-sustained oscilla-
tions

5.1 Cartan’s family and Janet’s equation

In 1923, the French mathematicians ELIE CARTAN (1869-1951) and HENRI
CARTAN (1904-2008) (father and son) published their unique joint paper as well
as their unique paper devoted to a question of applied mathematics [28]. At
this time, HENRI CARTAN was still a student at the Ecole Normale Supérieure.

E.CARTAN (1869-1951) H.CARTAN (1904-2008)

The paper appeared in the Annales des Postes et Télégraphes (where very
few mathematicians ever published) without any reference, and proved the ex-
istence of at least one self-sustained oscillation for a differential equation of the
form

Li" + [R - (i)} + —é,—i =0, (25)

where L,C, R are positive constants, 9(0) > R, ¢ is even and decreasing to
0 when i to + co. They did not use phase plane techniques but an analytical
method based upon the study of the oscillatory behavior of the solutions. From
the structure of the equation, they first showed that any non-equilibrium so-
lution must oscillate, with positive maximums and negative minimums. They
showed also that, given a minimum —%, < 0 of a solution of eq. (25), the next
maximum iz is an increasing continuous function of iy, with iz > 1, for suf-
ficiently small 7y and 2 < @ for sufficiently large i;. The intermediate value
theorem implies the existence of at least one if such that i3 = i}, which, because
of the evenness of ¢, corresponds to a periodic solution of eq. (25).

If the corresponding i} are ordered by increasing values, E. and H. CAR-
TAN proved that the self-sustained oscillations with an odd order number are
stable and the other ones unstable. They found lower and upper bounds for
the amplitudes and the periods and leaved as an open problem the question of
the uniqueness of the self-sustained oscillation. Their approach was extended
in 1940 by DARIO GRAFFI [61] to equations of the form

'+ h(z,z') +g(z) =0. . (26)
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More general results for eq. (26) were obtained in 1942 by NORMAN LEVINSON
and O.K. SMITH [91)] using Poincaré-Bendixson's criterion. The same approach
was used in 1949 by JOSEPH P. LASALLE (84] to study the relaxation oscilla-
tions associated to Liénard equation. For higher order equations, for example
third order ones important in electronics and astrophysics, Poincaré-Bendixson's
criterion has been replaced by BROUWER fixed point theorem [27, 33, 51, 119].

The total absence of references in [28] is explained by the fact that the paper
was preceded, in the same issue of the Annales, by a short introductory one of
JANET [77] starting as follows :

L’intéressant travail mathématique de MM. Cartan que l'on va lire a
pour origine une trés ancienne expérience d’électricité appliquée qui a
été réalisée dés 1880. [..| L'expérience montre que dans ces conditions il
s'établit un régime oscillatoire tres stable et parfaitement déterminé. I
serait intéressant de prédéterminer, en fonction des données du probléme,
la période et l'amplitude des oscillations. C’est 1a le but du travail de
MM. Cartan.

[The interesting mathematical work of MM. Cartan that one will read
originates from a very old experiment of applied electricity realized in
1880. [...] The experiment show that, in those conditions, a very stable
and perfectly determined oscillatory regime is established. | would be in-
teresting to determine in advance, in function of the data of the problem,
the period and the amplitude of the oscillations., This is the aim of the
work of MM. Cartan,)

After recalling his equation (17) of 1919, JANET precised the shape of the
function f(3), an assumption retained by E. and H. CARTAN who wrote (i) =
%’;:(i). In JANET’s own words :

La fonction dF/di, comme il est facile de le voir, jouit des propriétés
suivantes : Elle ne change pas quand on change i en —i, passe, pouri = Q
par un maximum que nous supposerons plus grand que R > 0 (ce qu'on
peut toujours obtenir en faisant R suffisamment petit et en donnant a la
dynamo-série une vitesse angulaire suffisante) et s’annule pour i = %oo.
[The function dF/di, as can easily be seen, has the following properties :
it does not change when on replaces i by —i, has a maximum at i = 0 that
we assume larger than R > 0 (which can always be obtained by taking
R sufficiently small and giving to the dynamo-series a sufficiently large
angular velocity) and vanishes for § = +oc.]

The picture below gives the shape of the function f(z) := R—p(z) = R- aE (2).
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JANET'S DAMPING COEFFICIENT FUNCTION

JANET concluded as follows :

On sait que l'on trouve des équations de la méme forme que (17) dans
un grand nombre de phénomeénes d'oscillations entretenues (arc chantant,
oscillateur a lampe, etc...). Toute contribution & I'étude de cette équation
sera donc fort utile, et nous devons remercier MM. Cartan de lui avoir
consacré I'intéressant travail que l'on va lire.

(It is known that one find equations of the same form as (17) in a large
number of phenomena of self-sustained oscillations (singing arc, lamp os-
cillator, etc ...). Any contribution to the study of this equation will there-
fore be very useful, and we must thank MM. Cartan to have devoted to
it the interesting work that we will read.]

Notice that JANET did not quote any of the earlier contributions of VAN DER
PoL in this direction.

5.2 Liénard : unification and generalization

JANET's wish was already realized in 1928, by the French mathematical physi-
cist ALFRED LIENARD (1869-1958). His important contribution in the Revue
générale d’électricité [92] starts as follows :

Dans une note publiée dans les “Annales des Postes, Télégraphes et Té-
léphones” {77], M. P. Janet a attiré I'attention sur l'intérét que présente
I'étude d’une certaine équation différentielle qui régit plusieurs phénome-
nes physiques oscillatoires (entre autres, arc chantant, lampes a plusieurs
électrodes, etc.). [...] L'étude de I'équation qui régit les oscillations en-
tretenues a déja fait I'object de plusieurs mémoires, entre autres un de
MM. Elie et Henri Cartan (28] et un autre de M. van der Pol [143]. Les
hypotheéses faites par ces deux auteurs ne sont pas les mémes. [...] Je me
suis proposé, dans cette étude, de pousser plus loin les résultats obtenus
par les précédents auteurs et d’obtenir des déductions valables pour des cas
plus généraux. [...] J'emploie une méthode géométrique qui se rapproche
de celle de M. van der Pol en conservant la rigueur des raisonnements de
MM. E. et H. Cartan.

[In a note published in the ‘ Annales des Postes, Télégraphes et Téléphones’
[77). M. P. Janet has called the attention on the interest to study some
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differential equation which describes several oscillatory physical phenom-
ena (among others, singing arc, lamp with several electrodes, etc...). [...]
The study of the equation describing the sustained oscillations has already
been the object of several memoirs, among others one of MM. Elie and
Henri Cartan [28] and another one of M. van der Pol [143]. The assump-
tions made by those authors are not the same ones, [...] 1 proposed myself
in this study to push further the results obtained by the preceding authors
and to obtain deductions valid for more general cases. [...] I make use
of a geometrical method close to that of M. van der Pol but keeping the
rigor of the reasonings of MM. E. and H. Cartan.)

ALFRED LIENARD (1869-1958)

The geometric method is the use of some phase plane analysis (without any
reference to POINCARE) and the considered equation is

"+ f(z)' +z =0, (27)

where f is even, F(z) := j;)z f(s)ds < 0for 0 <z < r and some r > 0. and
F(z) > 0 is increasing for z > r. It is easy to show that those assumptions
cover the cases considered by VAN DER PoL and JANET-CARTAN.

LIENARD proved that, under those assumptions, eq. (27) has a unique closed
orbit. His idea consisted in writing eq. (27) in the form

'+ F(z)] +z =0,
leading immediately to the equivalent planar system
¥=y-F(a), y=-z

whose orbits in the plane (z,y) (now refered often as Liénard’s plane) are given
by the differential equation

dy z
d "y Fa

Like E. and H. CARTAN, LIENARD also obtained a number of estimates for the
amplitude and period of the corresponding periodic solution, including the case
of relaxation oscillations.

The physical interpretation of the geometric approach of LIENARD is well
described by NICHOLAS MINORSKY in {107] :
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A physical interpretation of Liénard’s criterion resulted in the relationship
between the periodicity of a solution and a special condition of energy ex-
changes. In fact, the fundamental point of Liénard’s theory reduces the
question of periodicity to the vanishing of a certain curvilinear integral.
This integral turns out to be the one which specifies the energy exchanges
between the oscillating system and the outside sources and. on this basis,
Liénard’s criterion acquired the very simple interpretation that a station-
ary state is reached when the energies absorbed and dissipated during one
period cancel out.

LIENARD's paper has been the starting point of a very vast literature (see for
example [30, 121, 131}). Eq. (27) is called now Liénard equation, and LIENARD's
approach was developed, among others, by the French mathematician JULES
HAAG (1882-1953) [67], with special emphasis upon relaxation oscillations and
their asymptotic developments. See also (43, 49, 129].

5.3 Self-sustained oscillations and limit cycles

One year after the publication of LIENARD's paper, the Russian mathematician
and physicist ALEKSANDR A. ANDRONOV (1901-1952) published an important
note in the Comptes rendus of the French Academy of science (5].

ALEKSANDR A. ANDRONOV (1901-1952)

In this short note, ANDRONOV identified for the first time the self-sustained
oscillations in systems with one degree of freedom modeled by equations of the
form (15) to the stable limit cycles of POINCARE. In his own words :

Les oscillations dites auto-entretenues [...] sont régies par des équations
différentielles qui different de celles qu'étudient la physique mathématique
et la mécanique classique. Les systémes oli se produisent ces phénomenes
ne sont pas conservatifs et entretiennent leurs oscillations en puisant
I'énergie a des sources non périodiques. [...] Considérons le cas le plus
simple des oscillations que présente — en mécanique et en physique — un
systeme a un degré de liberté, en chimie une réaction entre deux sub-
stances, en biologie deux espéces animales coexistantes. Ces systémes
peuvent étre représentés par [...)

dz dy

(4 F=Pzy. F=Qay.
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[..] Exigeons. en nous basant sur I'étude des phénoménes de ce genre effec-
tivement observés, que les mouvements périodiques que nous considérons
soient stables, par rapport & des variations arbitraires suffisamment petites
: 1) des conditions initiales; 2) des seconds membres des équations (A). On
peut facilement montrer qu'aux mouvement périodiques satisfaisant a ces
conditions correspondent, sur le plan zy, des courbes fermées tsolées, dont
s’approchent en spirales, de I'intérieur et de I'extérieur (pour t croissant),
les solutions voisines. 1 en résulte que les auto-oscillations qui naissent
dans les systémes caractérisés par des équations du type (A) correspon-
dent mathématiquement auz cycles limites stables de Poincaré.

[The so-called self-sustained oscillations (-] are governed by differential
equations differing from those studied in mathematical physics and clas-
sical mechanics. The systems where those phenomena are produced are
not conservative and sustain their oscillations by taking energy from non
periodic sources [...|. Let us consider the simplest case of oscillations as-
sociated - in mechanics and physics - to a system with one degree of
freedom, in chemistry to a reaction between two substances, in biology to
two coexisting animal species. Those systems can be represented by |[...)

W F=Pew, % gew.

[..] Let us impose, following the study of this type of phenomena effec-
tively observed, that the periodic motions that we consider must be stable,
with respect to sufficient small arbitrary variations : 1) of the initial con-
ditions; 2) of the right-hand members of equations (A). It is easy to show
that to the periodic motions satisfying those conditions correspond, in the
plane zy, to isolated closed curves, approached, from inside and outside
(for increasing t) by spiraling neighboring solutions. It follows that the
auto-oscillations occuring in systems characterized by equations of type
(A) mathematically correspond to the stable limit cycles of Poincaré.]

In 1935, A.G. MAIER [98] proved the existence of limit cycles for the Rayleigh
and van der Pol's equations using POINCARE’s techniques.

ANDRONOV also introduced the use of the rigorous methods, developed in
1892 by POINCARE in his book Méthodes nouvelles de la mécanique céleste [117).
to prove the existence of limit cycles and to localize them in systems of the form

' =y+ef(z,ye), y=—z+ eg(z,y,¢€)

when ¢ is small. Those methods could replace the heuristic ones precedently
used by VAN DER PoL and others. Notice that, in this direction, ANDRONOV
had been preceded by a little noticed paper of W.M.H. GREAVES in 1923 [63).
He has been followed by a large number of authors (see references in [30]).
ANDRONOV’s paper was an important impetus for the development, in par-
ticular in Soviet Union under the impulsion of LEONID I. MANDELSTAM (1879-
1944) (see e.g. (37, 42, 99, 108, 114]) and, during and after the Second World
War, in the U.S.A., under the impulsion of SOLOMON LEFSCHETZ (1884-1972)
(see e.g. [34]), of the mathematical theory of nonlinear oscillations, also some-
times called nonlinear mechanics. Both mathematical, physical and technical
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aspects are nicely presented in the ‘bible of nonlinear oscillations’, namely the
monograph Theory of oscillators of ALEKSANDR A. ANDRONOV, ALEKSANDR
A. VITT and SEMON E. KHAIKIN [9], whose first edition, published in Soviet
Union in 1937 and its English partial translation of 1949 (8], beared only the
name of ANDRONOV and KHAIKIN, as VITT was in disgrace under STALIN's
regime and died in jail in 1938. One can read, in the preface of the second
edition (published in Russian in 1965 and translated in English in 1966), under
the signature of KHAIKIN, that

the writer of this Preface is the only one of the three authors of this book
who is still alive. Aleksandr Adol'fovich Vitt, who took part in writing
the first edition of this book equally with the other two authors, but who
by an unfortunate mistake was not included on the title page as one of the
authors, died in 1937. Alexandr Aleksandrovich Andronov died in 1952,
i.e. fifteen years after the first edition of the book was published.

THEORY OF
OSCILLATORS

»”

A A ANDRONOV. A.A VITT
AND S E KHAIKIN

FRANEIATIO b RGW THD RUIE AN BY
P IMMIRLE

EAF PRANAIATIUN FOITED AND ABRIDUIL 01
WFISHWICK
PRUTRIBUE NP RO TR AL U INSLRING
Larernts Colage of Swamera

TUARR PLBLI ATRNS (W,

THE 'BIBLE’ OF NONLINEAR OSCILLATIONS

One can consult the papers [12, 40, 41, 53, 63, 74, 100, 105, 130, 145, 149] and
the monographs [24, 30, 64, 67, 103, 104, 106, 110, 121, 123, 131, 136, 137| for
more technical and bibliographical details about the early history of the theory
of nonlinear oscillations. We have also included in the bibliography a number of
direct references to contributions made in Western Europe before 1955, to show
that, contrary to what has been written in some recent histories, the theory of
nonlinear oscillations was also developed in Western Europe, in the first half
of the XX'" century, by a number of mathematicians, physicists and engineers
11, 10, 14, 21, 26, 29, 38, 41, 46, 54, 85, 102, 105, 111, 115, 132, 133, 134, 147,
150, 152]. The corresponding history remains to be done.
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5.4

Science needs time

The milestones of the early history of self-sustained oscillations and limit cycles
of nonlinear differential equations can be summarized as follows :

Devices producing auto-oscillations exist since Antiquity.

In 1881, POINCARE defined and studied the concept of limit cycle of a
planar differential system.

In 1883, RAYLEIGH proposed the second order nonlinear differential equa-
tion (10) to model self-sustained oscillations.

In 1919, JANET modeled some electrotechnical self-sustained oscillations
with eq. (17).

In 1920, van DER PoL modeled an oscillating circuit containing a triode
with eq. (21).

In 1925, ELIE and HENRI CARTAN proved the existence of a self-sustained
oscillation for JANET's equation (17).

In 1928, LIENARD proved the existence of a self-sustained oscillation for a
class of equations (27) containing both VAN DER Pot’s and JANET' ones.

1929 : ANDRONOV identified the self-sustained oscillations with POINCA-
RE’s limit cycles.

This shows that it took some fifty years to first class scientists to identify an
existing mathematical theory with the solutions of differential equations mod-
eling self-sustained oscillations.

Science needs time and interdisciplinarity cannot be decreed : a good lesson
for those modern ‘deciders’ in science who have a tendency to confuse so often
research with development.

6
6.1

The universality of self-sustained oscillations

Heartbeats and relaxation

In 1928, vaN DER PoL and J. VAN DER MARK, inspired by their work on
relaxation oscillations and by the analogy of shape between them and electro-
cardiograms, constructed an electronic model of the heart, nicely described in
their paper [146] :

We will consider the heart as a system of three degrees of freedom : the
sinus, the atrium (auriculum) and the ventriculum. {...] 1t will be obvious
that we exclude at the outset those phenomena of the heart, which in the
language of mathematicians can only be described by partial differential
equations. [...] We therefore shall not consider flutter, or fibrillation as
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these phenomena are directly connected with progressing and standing
waves. [...] We consider each [degree of freedom] able to perform a relax-
ation oscillation by itself, each of the three having its own natural period.
Moreover a coupling exists between the sinus and the auriculum, the for-
mer acting on the latter. Another coupling exists between the auriculum
and the ventriculum, which coupling is realized through the existence of
the bundle of His. [..] In the normal heart these couplings have [...] a
unidirectional character. [...] In an electrical model [...| these two cou-
plings are therefore represented by two triodes [...] inserted to provide an
unidirectional instrument.

VAN DER PoOL and VAN DER MARK used systems involving intermittent
discharge of a neon-tube [50, 132] to obtain the required relaxation oscillations.
They obtained responses to their system which exhibit

a very striking similarity with the electrocardiograms taken from the hu-

man heart [...] beating in the normal way, [...] showing a ventricular
extra systole given shortly before an impulse from the atrium arrives, |...}
an interpolated ventricular systole, [...] an auricular eztrasystole, |...| a

typical case of sino-auricular block.

ELECTRONIC MODEL OF THE HEART, STRUCTURE, OUTPUT

They concluded that

the very close analogy between the working of our model and the beating of
a mammalian heart leaves no doubt that the view expressed |...] regarding
the heart beat as a relaxation oscillation is correct. {...] In conclusion we
give some further possible disorders mainly obtained mathematically and
which were all verified with the aid of our model. Possibly these anomalies
either have or will be found in the human heart as well.

Since the pioneering work of VAN DER POL AND vAN DER MARK, more and
more sophisticated models of the heart have been developed, including ones
with infinitely many degrees of freedom (see e.g. {112, 140, 159. 156] and the
references therein).
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6.2 They see self-sustained oscillations everywhere

Motivated by their success, VAN DER PoOL and VAN DER MARK identified self-
sustained oscillations in a large number of phenomena [146] :

Hence, with the Aeolian harp, as with the wind blowing against telegraph
wires, causing a whistling sound, {...] many other instances of relaxation
oscillations can be cited, such as : a pneumatic hammer, the scratching
noise of a knife on a plate, the waving of a flag in the wind, the humming
noise sometimes made by a watertap, the squeaking of a door, a steam
engine with a much too small flywheel, the multivibrator of ABRAHAM
and BLOCK ([sic}, the tetrode multivibrator, the periodic sparks obtaining
while turning 8 WHIMSHURST machine, the WEHNELT interruptor, the
intermittent discharge of a condenser through a neon-tube, the periodic
reoccurrence of epidemics and of economical crises, the periodic density
of an even number of species of animals, living together and the one
species serving as food to the other, the sleeping of flowers, the periodic
reoccurrence of showers behind a depression, the shivering from cold, the
menstruation and finally the beating of the heart.

The authors were just too optimistic concerning the mathematical models for
the predator-prey species proposed independently around 1925 by the Italian
mathematician VITO VOLTERRA (1860-1940) and the American scientist AL-
FRED LOTKA (1880-1949). In this case, the planar system of two first-order
nonlinear differential equations does not exhibit limit cycles but, because of the
presence of a first integral, a family of concentric cycles qualitatively similar to
the ones encountered in the undamped harmonic oscillator, with shapes differ-
ing from circles or ellipses and periods depending upon the amplitude, because
of the presence of the nonlinearities.

Similarly, ANDRONOV identified self-sustained oscillations in the pulsations
of Cepheid stars (see also [3, 82, 88, 125, 141, 153, 158]), in FROUDE’s pendulum
(simple pendulum suspended in a rotating shaft described in {120]) and in peri-
odic reactions in chemistry observed by KREMANN [81] and LoTKA [95] (see also
(15, 90, 154, 157]). Auto-oscillations have been shown since to be important,
for example, in neurology (48], physiology [151}, hydraulics [122], car mechanics
(122], control (17, 23, 97, 135], geology [40], chronometry [68], quantum mechan-
ics [4. 139], thermomechanics [109], population dynamics (101], biology (31, 55,
and oceane circulation {78].

6.3 Do relaxation oscillations explain the recurrence of
economic cycles ?

Since the XIX** century at least, the presence of economic or business cycles (of
various periods) had been observed by economists and the tentative explana-
tions were about as numerous as their authors. Astronomical or meteorological
explanations were invoked, before trying to find internal economic ones, like
over-investment, psychological factors, monetary factors, underconsumption or
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sudden equilibrium disturbances. Mathematical models involving linear differ-
ential equations were unable to provide convincing models.

In 1928 already, the Dutch economist LODEWI1IK HAMBURGER (1890-7) sug-
gested to associate relaxation oscillations to the periodic recurrence of economic
crises. He told the story as follows in [71] :

The present writer would like to point out that the applicability of the
principle of relaxation-oscillations to economic cycles was first emphasized
by him in 1928 (May 7, Meeting of the Batavian Society of Logic Empirical
Philosophy) in a discussion following a paper read by Messrs. van der
Pol and J. Van der Mark on “The Heartbeat considered as a relaxation-
oscillation, and an electrical model of the heart” (see e.g. Arch. Néerland.
de Physiologie de [’homme et des animauz, 3° livraison, p. 418 (1929)).
This suggestion, at first somewhat ridiculed even by the pioneer in the
field of relaxation phenomena, was subsequently corroborated by results
indicated in my paper {70]. A French version of this paper appeared
January 1931.

HAMBURGER wrote in 1930 [70)] :

Only the conception of economical cycles as relaxation oscillations can
give a rational and sufficient basis for an explanation of those important
phenomena.

In 1930, vaN DER PoL, who, as we have seen, had first rejected HaM-
BURGER's suggestion, wrote in this respect in the Onde électrique {145] :

The last word surely has not been said, and many questions remain subject
to discussions.

In 1933, the French scientist PHILIPPE LE CORBEILLER again suggested in
Econometrica {87] to apply relaxation oscillations to the theory of economical
crises :

Le probléme des crises, et plus généralement des oscillations des prix,
est assurément I'un des plus difficiles de I'Economie politique; il ne sera
sans doute pas de trop, pour approcher sa solution, de la mise en com-
mun de toutes les ressources de la théorie des oscillations et de la théorie
économique. C’est pourquoi j'ai pensé pouvoir vous présenter un compte-
rendu succinct d'une avance récente, que je crois importante, de la théorie
des oscillations : celle apportée au probléme des systéemes autoentretenus
par la découverte des oscillations de relaxation, due & un savant hollandais,
le Dr. Balth. van der Pol.

[The problem of the crises, and more generally of the oscillations of prices,
is surely one of the most difficult ones of political economics : it will surely
not be superfluous, to approach its solution, to put together all the re-
sources of the theory of oscillations and of economic theory. This is why 1

28



thought useful to present a short account of a recent progress, that I be-
lieve to be important, of the theory of oscillations : the one made to the
problem of self-sustained oscillations through the discovery of relaxation
oscillations, due to a Dutch scientist, Dr. Balth. van der Pol)]

LE CORBEILLER’s paper was followed by a priority claim of HAMBURGER in
the same journal in 1934 [71]. Some early discussions on the use of relaxation
oscillations in economics can already be found in the monograph Théorie des
oscillations of the French physicist YVES ROCARD quoted in [123]. In 1939,
the future first Nobel Prize in Economics, PAUL A. SAMUELSON (1915-2009),
then a very young researcher, wrote this prophetic statement about the need of
nonlinear models leading to auto-oscillations [126] :

There remains one interesting problem still to be explored. Mathemati-
cal analysis of the nonlinear case may reveal that for certain equilibrium
values of o and B a periodic motion of definite amplitude will always
be approached regardless of initial conditions. Such a relation can never
result from systems of difference equations with constant coefficients, in-
volving assumptions of linearity. This illustrates the inadequacy of such
assumptions except for the analysis of small oscillations.

Despite of the scepticism expressed by some economists like W . FELLNER
[47] in 1956 :

One cannot expect that a simple model can give a realistic picture of the
course of the events in real economics,

the quest for mathematical models for the recurrence of economic crises has con-
tinued. We can consider, for example, the series of models successively proposed
by the American mathematical economist RICHARD M. GoopwIn (1913-1996)
between 1951 and 1990.

RICHARD M. GoobwIN (1913-1996)

In 1951, GoopwiN [57] introduced a model leading to relaxation oscillations
and RAYLEIGH’s equation, as a refinement of some simpler models all based
upon the simple multiplier and accelerator principles :
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The first [model] is a threshold oscillator in which the economy once
started up continuous until it removes the capital deficiency which started
it, and then it goes down until it removes the excess deficiency with which
it started downward. The second model introduces a simple linear trend
{which is more important to nonlinear systems than to linear) which makes
it unnecessary to await the wearing out of all the capital from the preced-
ing boom before beginning the coming one. A third model consists of a
combination of a dynamical accelerator and a less crude form of the non-
linear accelerator. This gives a more complicated evolution, but it still
contains sudden shifts from declining to rising income and the reverse.
This unreality is eliminated in the final model by taking account of the
lag between investment decisions and the resulting outlays.

This final model consists of a consumption function, an investment function.
and an accounting identity

co(t) = oy(t)—ey'(t) +B(t)
k(t) ¢(y'(t - 6)) (28)
y(t) = c®+K () +0),

where c(t) is consumption, y(t) the income, k’(t) is the induced investment (the
derivative of that portion of the stock of capital whose change is determined
endogenously), {(t) the autonomous investment, and ((t) is an autonomous
component of consumption expenditure. & < 1 is a dimensionless coefficient,
e > 0 a constant with dimension of time, t the time, # a time lag. The induced
investment function ¢(s) is the piece-wise linear function defined as follows (with
respect to an acceleration coefficient «, lower limit ¢ < 0 and upper limit %> 0):

¢ if s<d/k
o(s) =4 w8 if Q/K_SSSE/N
¢ if s>¢/k

The system (28) reduces to the equation
ey’ (t) + (1 —a)y(t) = o(y'(t — 0)) + B(t) +U(¢t),

and GOODWIN assumed G(t) + I(t) to be constant (non-progressive economy)
and replaced y(t) by its deviation z(t) with respect to the unstable equilibrium
value 2£t to obtain, after a shift of time,

l-a
e (t+0)+(1—a)z(t +0) = ¢(2'(¢)).
From this differential-difference equation, he then deduced, by replacing the first

two terms by their Taylor first order approximation, the ordinary differential
equation

e[z’ (t) + 82" (1)) + (1 — a)[z(t) +02'(t)] = o(2'(t))
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which, as he observed, is of Rayleigh type
02" () + (' () + (1 — a)z(t) =0, (29)
with
Y(8) = [(1 — a)d + €]s ~ ¢(s).
Auto-oscillations are expected if the equilibrium is unstable, i.e. if
(1-a) +¢€ <k,
in which case
Y(s)=(1—-a)f+e-k<0 for Q/nS_ssE/n,

and ¥(s) tends to (1 — )8 + ¢ when s — +00. So we have a negative damping
for |2’| small and a positive one for 2’| large. According to GOODWIN :

the system oscillates with increasing violence in the central region, but as
it expands into the outer regions, it enters more and more into an area of
positive damping with a growing tendency to attenuation. It is intuitively
clear that it will settle down to such a motion as will just balance the two
tendencies. although proof requires the rigorous methods developed by
Poincaré. It is interesting to note that this is how the problem of the
maintenance of oscillation was originally conceived by Lord Rayleigh and
that our equation is of the Rayleigh, rather than the van der Pol type.
The result is that we get, instead of a stable equilibrium, a stable motion.
[.] Therefore, making only assumptions acceptable to most business
cycle theoretists, along with two simple approximations, we have been
able to arrive at a stable, cyclical motion which is self-generating and
self-perpetuating.

An electrical analog of GOODWIN's model was introduced by R.H. STROTZ,
J.C. MCANULTY and J.B. NAINES JR in 1953 (138]. Earlier models, like N.
KALDOR's one of 1940 {79} have also been reinterpreted in terms of limit cycles
(32, 80].

In 1967, GoobwIN introduced a new model [58] to describe the business
cycles in the Marxian model of a capitalist economy. This time, the construction
of the model led him to a system of two differential equations of the first order

v =uf-a+ B, v =uv[y-dy (30)

for the share of labor in national income u, and the proportion of labour force
employed v. Such a system, as already mentioned, had been introduced inde-
pendently by LOTKA and VOLTERRA around 1925 to describe the evolution of
two animal species, one prey and one predator. Curiously, if we remember some
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of the arguments given by GOODWIN in his preceding model, such a system does
not lead to one limit cycle, but to a family of closed orbits like in the case of the
(linear) harmonic oscillator. Hence the amplitude, and here also the frequency,
of the corresponding periodic solutions depend upon the initial conditions. In
contrast to the preceding one, and like the harmonic oscillator, the structure of
the orbits of this model is not structurally stable : arbitrary small perturbations
can destroy all closed orbits.

This criticism was immediately made by SAMUELSON [127}, who observed
that GOODWIN's new model contained no notion of diminishing returns, and
ceased to admit periodic solutions as soon as diminishing returns were included.
A more robust sort of periodicity results is obtained if a highly nonlinear (e.g.,
cubic) term is added to the original Volterra-Lotka equations, to account for
diminishing returns to scale, converting the equations to a Rayleigh-van der
Pol-type system, with stable limit cycle independent of the initial conditions or
the exact values of the system parameters.

PAUL A. SAMUELSON (1915-2009)

In 1990, GOODWIN [59] returned to the problem in the new setting a chaotic
dynamics by adding a control variable z, which could measure the innovation
process or public expenditure, to the two equations (30). He obtained a system
of three first order differential equations of LORENZ-ROSSLER type

u'= flu,v), v =g(uv,z2), 7z =h(@,z) (31)

for which it is well known that, in contrast to planar systems, the class of
attractors can contain, besides equilibria and cycles, more complicated strange
attractors leading to chaotic motions.

The question remains to know if those successive models of GoODWIN, al-
though based upon economic variables and laws, where more influenced by the
evolution of macroeconomics, than by some successive fashions in the theory
of nonlinear ordinary differential equations : auto-oscillations, population dy-
namics, chaos theory and their paradigms. Another important question, not
restricted to GOODWIN's models, is the real predictive value of such oversimpli-
fied models of a very complicated reality.
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Of course, we have only concentrated our attention here on some models
of business cycles based upon nonlinear ordinary differential equations having
periodic or chaotic solutions. There was no claim to give a complete and fair
account of the many other theories and approaches, and of their possible math-
ematical models, proposed in this controversial area. More information can be
found, for example, in [18, 56, 94).

We conclude this section on mathematical models for business cycles by a
recent wink of SAMUELSON [128] :

To prove that Wall Street is an early omen of movements still to come in
GNP, commentators quote economic studies alleging that market down-
turns predicted four out of the last five recessions. That is an understate-
ment. Wall Street indexes predicted nine out of the last five recessions!
And its mistakes were beauties.

7 Conclusions : the art of modeling

Modeling is a fundamental, unavoidable but difficult and delicate tool in sci-
ence. Mathematical models should not be taken necessarily like ... models in
the usual sense. The French mathematician GEORGES REEB (1920-1993), well
known for his colorful pertinent statements, preferred, with less respect, to call
a mathematical model, a mimicry (‘singerie’ in French).

A mathematical model always remains, without any pejorative sense, a car-
icature : it must give a maximum of resemblance in a minimum of strokes, and
this is and remains an art. If the model is too complicated, it escapes to any
serious mathematical treatment and computer simulation may be hazardous: if
it is too simple, it may not represent adequately reality.

It is also important, as we have seen, to distinguish models obtained by
analogy from models constructed on scientific laws. One must also resist to the
temptation of retaining only the models predicting what is expected. The pre-
dictions made with a model describe its own evolution and reality is never forced
to follow it. A permanent confrontation with results of reliable experiences or
with carefully measured data remains absolutely necessary.

For more reflections and discussions on models and their role in science and
society, see (12, 22, 35, 44, 73, 89, 96, 113].
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