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Abstract

The problem of the existence of periodic solution for the Liénard equation
is investigated, and a result which improves the classical Dragilev’s theorem
is presented, together with a corollary in which there are no assumptions on
the function g(x) besides the standard sign condition. In the final part of the
paper constructive examples with several limit cycles are provided.
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1. Preliminaries and well known results

In this paper we discuss the problem of existence of periodic solutions for
the Liénard equation

ẍ+ f(x)ẋ+ g(x) = 0

Such a problem has been widely investigated since the first results of Liénard
[15], appeared in 1928 and there is an enormous quantity of papers on this
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topic.
It is well known that Liénard equation is equivalent to the system{

ẋ = y

ẏ = −f(x)y − g(x)
(1.1)

in the phase plane, and to the system{
ẋ = y − F (x)

ẏ = −g(x)
(1.2)

in the Liénard plane, where F (x) =
∫ x
0
f(x)dx.

For this reason, the problem of the existence of periodic solutions is bring
back to a problem of existence of limit cycles for the previous systems, and
in this paper we work in the enviroment of Liénard system (1.2).
Among the existence results until 1960, the classical theorems of Filippov [6],
Levinson-Smith [12] and Dragilev [3] may be considered as milestones, while
in the last decades the number of results is drammatically increasing.
All the results are based on the classical Poincaré-Bendixson theorem, and
in order to fulfil the assumptions of this theorem, it is necessary to produce
a winding trajectory large enough.
It is interesting to observe that the methods used to attack this problem are
basically two.
We can call the first one the ”method of energy”, because one may consider
the Liénard equation as perturbation of the Duffing equation

ẍ+ g(x) = 0

which plays the rôle of the energy.
Let us discuss in details this situation.

1.1. The method of energy

The Duffing equation is equivalent in both planes to the system{
ẋ = y

ẏ = −g(x)
(1.3)
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and it is well known that the level curves of the function

H(x, y) = 1
2
y2 +G(x)

where G(x) =
∫ x
0
g(x)dx, are its solutions.

Here we follow the elegant and concise description of Lefschetz [13, p.266].
If we consider the level curve

1

2
y2 +G(x) = K (1.4)

in the dynamical interpretation as motion of a particle, the first term repre-
sents its kinetic energy and (1.4) expresses the law of conservation of energy
as applied to the particle.
For this reason, we may consider the level curves of the function H(x, y) as
energy levels.
Coming back to the Liénard system (1.2), consider a generic point
S = (xS, yS). Keeping the dynamical interpretation, we can say that this
point lies on the level of energy

1
2
y2S +G(xS) = KS

For sake of simplicity, we consider a generic point of the y-axis S = (0, yS),
which lies on the level energy 1

2
y2S = KS.

Define as γ+(S) the positive semi-trajectory starting from S, and assume
that γ+(S) moves around the origin and intersects again the y-axis in the
same half-plane of S at a point R = (0, yR). Clearly, such semi-trajectory is
winding if |yR| < |yS|, unwinding if |yR| > |yS| and a cycle if |yR| = |yS|.
In terms of energy, this means that in the first case we are losing energy, in
the second one we are gaining energy and in the last one there is no incre-
ment.
Therefore, one can investigate the variation of energy, even if in most papers
this was not explicitly observed.
In general, the situation is the following: we start at a point P = (xP , yP ) at
the time t0 and follow γ+(P ) for the time T until the point Q = (xQ, yQ) at
the time t0 + T .
The variation of energy is

H(xQ, yQ)−H(xP , yP ) = 1
2
y2Q +G(xQ)− 1

2
y2P −G(xP )

=
∫ t0+T
t0

Ḣ(x, y)dt
(1.5)
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Ḣ(x, y) = yẏ + g(x)ẋ = −yg(x) + g(x)(y − F (x)) = −g(x)F (x) .

This well known result in the dynamical interpretation shows that when
g(x)F (x) > 0 we are losing energy, while when g(x)F (x) < 0 we are gaining
energy, and in order to have the existence of the limit cycle it is necessary
that g(x) change sign.
Considering the positive semi-trajectory γ+(P ) reaching the point Q, the
variation of energy given by the integral in (1.5) may be split in four parts
as follow∫ t0+T
t0

Ḣ(x, y)dt =
∫ β
α
−g(x)F (x)
y−F (x)

dx+
∫ y2
y1
F (x)dy+

∫ α
β
−g(x)F (x)
y−F (x)

dx+
∫ yQ
y3

F (x)dy

where α < 0 and β > 0 are necessary in order to make a correct change
of variables.
Such semi-trajectory will be winding if and only if the sum of the four inte-
grals is negative.
We observe that actually the integral∫

F (x)dy

plays a crucial rôle. This because the integral∫ β
α
−g(x)F (x)
y−F (x)

dx

may be considered arbitrarily small.
In principle there are two way for which this can be achivied. The first one
is letting the difference (β − α) be arbitrarily small. In virtue of the regu-

larity of the function −g(x)F (x)
y−F (x)

, the integral will be arbitrarily small. On the
other hand being the 0−isocline the y-axis, the trajectory may be read as
a function in y, and hence the integral

∫
F (x)dy is well defined outside the

strip [α, β]. But this way cannot be further developed because in general we
cannot evaluate the integral unless we have strong condition on F (x) on the
whole line.
The second way is more efficient. The interval [α, β] is now fixed and can

be large. However, the integral
∫ β
α
−g(x)F (x)
y−F (x)

dx may be considered arbitrarily

small if we take a trajectory with |y| arbitrarily large. In this case we can
evaluate the integral

∫
F (x)dy, provided that outside the interval [α, β], there
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are conditions on F (x) which allow an extimation of the previous integral.
For this reason, the rôle of

∫
F (x)dy was already emphatized by Lefschetz

[[13] p.267], who called this integral taken along a path as the energy ”dissi-
pated” by the system.
In order to work with energy, it is therefore necessary to consider trajectories
arbitrarily large, and in this light we need sufficient conditions which guar-
antee that any positive semi-trajectory starting from a point P = (x, y) with
|y| arbitrarily large, intersects the vertical isocline y = F (x), otherwise the
method fails. Such conditions were at first introduced in [21] and for more
general case in [24] (see also [8], [9],[10]).
Most of the existence results present in the literature are actually based on
this method, even if, as already mentioned, this was not explicitely stated.
One of the most important in this framework is, without any doubt, the clas-
sical theorem of Dragilev because the condition of F (x) outside the interval
[α, β] and the integral

∫
F (x)dy play a crucial rôle in the proof.

Theorem 1.1 (Dragilev [3]). Suppose that:

1. f, g : < → < are continuous and g(x) is locally Lipschitz. Also xg(x) >
0 ∀x 6= 0;

2. g(x) satisfies xg(x) > 0 for x 6= 0 and limx→±∞G(x) = +∞;

3. F (x) satisfies a Lipschits condition in every finite interval, and xF (x) <
0 for x 6= 0 and |x| sufficiently small;

4. There exist constants N, K1, K2 with K2 < K1 such that F (x) ≥ K1

for x > N and F (x) ≤ K2 for x < −N .

Then the system 1.2 admits at least one limit cycle.

We observe that in order to guarantee that any positive semi-trajectory
starting from a point P = (x, y) with |y| arbitrarily large intersects the ver-
tical isocline it is required that limx→±∞G(x) = +∞.
A similar approach namely the perturbation of a global center may be adopted
also when the global center is not given by the Duffing equation. More pre-
cisely we split f(x) in p(x) + h(x) and the equation

ẍ+ [p(x) + h(x)]ẋ+ g(x) = 0

may be read as a perturbation of the equation
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ẍ+ h(x)ẋ+ g(x) = 0 .

If such equation is a global center, its trajecetories may be considered as
the level curves of some kind of energy. But in this case, in general, it is not
possible to write the energy explicitely as a function H(x, y) and its variation
cannot be express in terms of an integral.
The only possible way seems a comparison of the slopes of the previous two
equations and the positive sign of p(x), for x large, plays a crucial rôle. Such
idea was used in [23], and improved in [24]. More precisely, in [23], the exis-
tence of periodic solution was actually proved for the equation

ẍ+ [x3 + x2 − 1]ẋ+ x7 = 0

The previous Dragilev’s theorem cannot be applied because

limx→±∞ F (x) = +∞

and hence assumption (3) is not verified.

1.2. Intersection with the vertical isocline

The second method to obtain a winding trajectory is strictly related with
the intersection with the vertical isocline. More precisely, if there is P = (0, y)
with y 6= 0 such that γ−(P ) does not intersect the curve y = F (x) and γ+(P )
is oscillatory, clearly such trajectory is winding. Clearly γ−(P ) is the nega-
tive semi-trajectory starting from P.
Such property was called ”property K” in [24] where this problem has been
investigated.
We observe that, in order to get that γ+(P ) is oscillatory, it is again neces-
sary that γ+(P ) intersects y = F (x) for |y| large enough.
This method seems more effective because no balance of energy is necessary,
but actually, the requirement that γ−(P ) does not intersects the vertical iso-
cline is a strong condition on the structure of the system, and in general this
implies that F (x) dominates G(x) [24].
An example in which both methods may be used is the Van Der Pol equation

ẍ+ µ(x2 − 1)ẋ+ x = 0
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and one can easily check that F (x) is x3

3
− x while G(x) is x2

2
and F (x)

actually dominate G(x).
A very recent application in connetion with the uniqueness Massera theorem
may be found in [20].

In this paper we use both methods in order to prove the existence of limit
cycle for system (1.2) and the main result is a theorem which improves the
result of Dragilev, which seems not easy to be further generalized. Moreover
we present a corollary in which no assumptions on g(x) are required except
for the usual sign condition.
In the final part of the paper, the assumptions of the existence theorem are
restricted to an interval [x1, x2], which depends only on F (x) and g(x).
Such restriction is used to produce constructive examples with several limit
cycles.

2. Main Results

In the framework of the previous discussion on the rôle of the energy and
the intersection with the vertical isocline, we are going to prove the following
result:

Theorem 2.1. Consider the Liénard’s equation ẍ+ f(x)ẋ+ g(x) = 0. Sup-
pose that:

T1: f, g : < → < are continuous and g(x) is locally Lipschitz. Also xg(x) >
0 ∀x 6= 0;

T2: g(x)F (x) < 0 for |x| < ε, where ε is arbitrarily small;

T3: Exist K1, K2 ∈ <, K1 > K2 such that
F (x) ≥ K1, x > β > 0
F (x) ≤ K2, x < α < 0;

T4: lim supx→±∞G(x)± F (x) = +∞.

Then, the Liénard’s equation has at least one periodic solution.

Proof. We read the Liénard’s equation in the equivalent Liénard system (1.2).
An usual assumption T1 guarantees existence and uniqueness for its solu-
tions. Moreover the origin is the unique singular point and trajectories are
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clockwise.
Assumption T2 gives that the origin is a source.
In order to prove the existence of at least a stable limit cycle, and hence a
non-trivial periodic solution of Liénard’s equation, in virtue of the Poncaré-
Bendixson theorem, we need to produce a winding trajectory.
Under assumption T3, assumption T4 is a necessary and sufficient condition
for the intersection with the vertical isocline y = F (x) of any positive semi-
trajectory [21].
The idea of the proof is based on the possibility of producing an arbitrarily
large trajectory and, using assumption T3, prove that such trajectory is ac-
tually winding.
Assumption T3 gives that K1 > K2, and at first we consider the case K1
positive.
Consider a point P = (α,−yP ) with yP > 0 arbitrarily large, in virtue of
assumption T4, γ+(P ) intersects the vertical isocline and, being the slôpe
bounded, intersects again the axis x = α at a point Q = (α, yQ) with yQ > 0.
Whitout loss of generality, we can assume that yQ ≥ yP . In fact, if yQ < yP ,
we consider a point Q̃ = (α, yP ) and follow γ−(Q̃). There are only two
possibilities:

a) γ−(Q̃) does not intersect the vertical isocline.
In this case, we already obtain a winding trajectory because, again in
virtue of assumption T4, γ+(Q̃) intersects the vertical isocline at first
in x positive and then in x negative.

b) γ−(Q̃) intersects the vertical isocline, and then the α-axis at a point
P̃ = (α,−yP̃ ) with yP̃> yP , because such negative semi-trajectory is
bounded away from γ+(P ).

Once that this property is taken for granted, we can follow γ+(P ) until that
intersect again the α-axis at a point T = (α,−yT ) with yT > 0.
More precisely, starting at the time t0, γ

+(P ) intersects, as already observe
the α-axis at the point Q, then β-axis at the point R = (β, yR), then the
vertical isocline and again the β-axis at the point S = (β,−yS) with yS > 0,
and finally the α-axis in a point T , at the time t1.
By contradiction, we assume that such large trajectory is actually unwind-
ing.[Fig.1]
The increment of energy along the trajectory between the point P and the
point T is therefore positive. This means that the integral
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Figure 1: γ+(P )

∫ t1
t0
Ḣ(t)dt

taken along the trajectory must be positive.
Let us split such integral in four parts.∫ t1
t0
Ḣ(t)dt =

∫ yQ
−yP

F (x)dy +
∫ β
α
−g(x)F (x)
y−F (x)

dx+
∫ −yS
yR

F (x)dy +
∫ α
β
−g(x)F (x)
y−F (x)

dx

≤ K2(yQ + yP ) +
∫ β
α
−g(x)F (x)
y−F (x)

dx−K1(yR + yS) +
∫ α
β
−g(x)F (x)
y−F (x)

dx

(2.1)
Observe that yR may be written as

yR = yQ + ∆1y

where ∆1y is the unknown increment of y due to the arc of trajectory in
the strip α ≤ x ≤ β.
In the same way, yS may be written as

yS = yT −∆2y

Clearly, we do not know the sign of ∆1y and ∆2y. Hence, the previous
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inequality (2.1) may be written as

K2(yQ + yP ) +
∫ β
α
−g(x)F (x)
y−F (x)

dx−K1(yQ + ∆1y − yT + ∆2y) +
∫ α
β
−g(x)F (x)
y−F (x)

dx =

= K2(yQ + yP ) +
∫ β
α
−g(x)F (x)
y−F (x)

dx−K1(yQ + yP )−K1∆1y −K1∆2y +
∫ α
β
−g(x)F (x)
y−F (x)

dx

(2.2)

As we can take yP , yQ and yT arbitrarily large∫ β
α
−g(x)F (x)
y−F (x)

dx and
∫ α
β
−g(x)F (x)
y−F (x)

dx

can be considered arbitrary small.
Moreover being the slôpe −g(x)

y−F (x)
arbitrarily small in the strip α ≤ x ≤ β, the

trajectory tends to be orizontal and therefore ∆1y and ∆2y can be considered
arbitrarily small as well.
Therefore the sign of (2.2) is given by

K2(yQ + yP )−K1(yQ + yT ) (2.3)

At this point we must discuss the sign of K1 and K2 respectively.
We considered the case K1 positive. In terms of energy this means that if
x > β we are ”losing” energy. Even if the sign of K2 does not play any rôle,
the only interesting case is when K2 is positive, because if K2 is negative, we
are losing energy from both sides and the proof is trivial.
Coming back to (2.3), we assume, by contradiction, that the trajectory is
unwinding and hence that actually (yQ + yT ) > (yQ + yP ).
We get

K2(yQ + yP )−K1(yQ + yT ) < K2(yQ + yP )−K1(yQ + yP )

= (K2 −K1)(yQ + yP ) < 0

This means that is possible to choose a point P = (α,−yP ) with yP large
enough such that

∫ t1
t0
Ḣ(t)dt < 0 which is the desired contradiction.

On the other hand, if K1 is negative, in x > β we are ”gaining” energy, but
being K2 < K1 < 0, we are losing energy in x < α and the proof remains the
same once that one starts from the point R and construct in a similar way
an unwinding trajectory.
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An evaluation of the amplitude of y will be calculated in the next section
in order to give an estimation also in x and therefore to find a boundary for
the limit cycle.

We observe that this result improves the classical theorem of Dragilev [3],
where instead of assumption T4 was required that

lim
x→±∞

G(x) = +∞ (2.4)

this because assumptions T3 and (2.4) implies assumption T4.
Moreover, we claim that this result cannot be further improved using the
idea of producing a winding trajectory large enough.
In this light, let us analyze the rôle of all assumptions.
As already mentioned, assumptions T1 and T2 are standard and appear in
all the results present in literature.
Assumption T4 cannot be removed or improved.
In fact, an arbitrarily large winding trajectory must clearly intersect the
curve y = F (x) for positive time, and such assumption is a necessary and
sufficient condition for the intersection with the vertical isocline.
Also assumption T3 is crucial, because otherwise, following the previous
discussion concerning the energy, it is possible to produce a large trajectory
which is actually unwinding.
As far as we know, the only possible improvement of T3 is the following:

∃K ∈ < such that F (x) ≥ K for x > β > 0 and

F (x) ≤ K for x < α < 0

lim supx→+∞ F (x) > K

lim infx→−∞ F (x) < K

(2.5)

This assumption may be found in [25, pp.180]. The proof remains the same,
because we use the assumptions on lim supx→+∞ F (x) and lim infx→−∞ F (x)
in order to keep necessary energy inequality.
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The previous theorem has the following corollary:

Corollary 2.1. Assume that:

C1: f, g : < → < are continuous and g(x) is locally Lipschitz. Also xg(x) >
0 ∀x 6= 0;

C2: g(x)F (x) < 0 for |x| < ε, with ε is arbitrarily small;

C3: Exists K ∈ < such that
F (x) ≥ K for x > β > 0
F (x) ≤ K for x < α < 0;

C4: lim supx→+∞ F (x) = +∞ and lim infx→−∞ F (x) = −∞

Then, system (1.2) has at least a stable limit cycle.

Proof. We just observe that assumptions C3 and C4 imply (2.5) and T4 of
theorem (2.1).

This result seems interesting because, as far as we know, there is no other
result with no assumptions on g(x), besides the regularity and the standard
sign condition.
Moreover, we have no sign assumption on f(x) except for the standard one
near the origin and no sign assumption on F (x) for x > ε or x < −ε.
In this situation let us discuss the rôle of G(x). For sake of semplicity we
consider only the case x > 0.
There are only two possibilities:

1. limx→+∞G(x) < H

2. limx→+∞G(x) = +∞

In the first case we observe that assumption C3 may be relaxed to

F(x) ≥ −c for x > 0 and F (x) ≤ c for x < 0, where c ∈ <+ (2.6)

Because, in this case, the necessary and sufficient condition for intersection
with the vertical isocline still holds [21].
Hence, in contrast with T3, we can actually have

F (x) ≥ K1 whit x > β > 0, F (x) ≤ K2 whit x < α < 0, where K2 > K1
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this because we are not using anymore the idea of a comparison of the energy,
but instead the property that there exists a point P such that γ−(P ) does
not intersect y = F (x).
Following the proof of theorem 3 in [21], if we consider a point P (x, y), with
x > β and y < −(

√
2H + c), we know that γ−(P ) does not intersect the

vertical isocline.
In fact, we consider the function

W (x, y) = 1
2
(y + c)2 +G(x) .

The level curves are the phase portrait of the Duffing system shifted by
−c.
Therefore, if y < −(

√
2H + c) and x > 0, such curves do not intersect the

line y = −c.
In x > β, we have

Ẇ = (y + c)ẏ + g(x)ẋ = −g(x)[F (x) + c] < 0

This means that trajectories of system (1.2) enter such curves and, there-
fore, back in time, exit from them.
If y < −(

√
2H+ c) and x > 0, γ−(P ) does not intersect the line y = −c and,

hence, y = F (x).
Clearly γ+(P ) intersects the vertical isocline in x < 0 and then in x > 0, due
to assumption C4, and we get a winding trajectory.[Fig: 2]
We just note that in this particular situation it is possible to obtain the ex-
istence of limit cycl with no assumptions on the sign of F (x) and the sign of
f(x) as well.
On the other hand, in the second case, assumption C3 or (2.5), cannot be,

in general, relaxed.
To investigate such situation, let us go back to the theorem (2.1).
If F (x) < r for x > 0 large, arguing as before, we can prove that γ−(P )
intersects the vertical isocline for every P = (0, y), with y < 0.
More precisely, consider the function

V (x, y) = 1
2
(y − r)2 +G(x) = costant
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Figure 2: Phase portrait of Duffing system shifted by −c and γ−(P )

Now, the level curves are the phase portrait of the Duffing system shifted by
+r, and every curves intersect the line y = r.

V̇ = (y − r)ẏ + g(x)ẋ = g(x)[r − F (x)] > 0

This means that trajectories of system (1.2) exit such curves and, there-
fore, back in time, enter in them.
Therefore, γ−(P ) is guided to line y = r and, hence, intersect the vertical
isocline. [Fig: 3]
For this reason, we must apply the idea of the energy, and assumption C3

or (2.5) cannot be relaxed.
Roughly speaking, in order to get that γ−(P ) does not intersect the vertical
isocline, F (x) must ’dominate’ G(x).
Otherwise, one has to work with the energy. In this framework relationship
between F (x) and G(x) may be found in [24].
Following this work, if limx→+∞G(x) = +∞ and F (x) is not bounded above
for x > 0, a necessary and sufficient condition for γ−(P ) intersecting the
vertical isocline is, in our case,

lim supx→+∞ Γ+(x)− F (x) = +∞
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Figure 3: Phase portrait of Duffing system shifted by +r and γ−(P )

with Γ+(x) =
∫ x
0

g(u)
1+F+(x)

du, F+(x) = max {0, F (x)}, and

lim infx→+∞ F (x) < +∞.
Therefore, if lim supx→+∞ Γ+(x)− F (x) = +∞ we need assumption T3, or
(2.5).
Otherwise, (2.6) is sufficient.
The case limx→+ F (x) = +∞ is trivial, because one can easily verify that
assumption T3 and T4 are verified.

3. Some extimations on the planar region containing the limit cycle

In this section, we produce a concrete extimation for the value yP intro-
duced in theorem (2.1).
Such a value will be used in order to get an extimation in x of the region in
which the obtained limit cycle is located.
This problem has already been investigated, for the case g(x) = x, in the
pioneristic works of J. LaSalle [11] and, for the Van Der Pol equation by
Gomory-Richmond [7].

Let us consider a point A = (β,−yA), with yA > 0. The positive semi-
trajectory starting from A intersects the y-axis at a point B = (0,−yB),
with yB > 0.[Fig.4]
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Figure 4: Extimation of y

−yB = −yA +

∫ 0

β

−g(x)

y − F (x)
dx = −yA −

∫ β

0

−g(x)

y − F (x)
dx =

= −yA −
∫ β

0

g(x)

F (x)− y
dx ≤ −yA −

∫ β

0

g(x)

Fm − yA
dx =

= −yA −
1

Fm − yA

∫ β

0

g(x)dx = −yA −
G(β)

Fm − yA

with Fm = minx∈[0,β]F (x).
We call

M1 = G(β)
Fm−yA

and, therefore B lies above B = (0,−yA −M1).
An inspection of the vector field given by system (1.2) shows that γ+(B)
intersects the vertical isocline at α < x < 0 or the α-axis at some −y > −yB.
Clearly, we consider only this situation. Consider a point C = (α,−yB),
moving from B to C gives an increment of energy of G(α).
This because H(x, y) = 1

2
y2 +G(x) and

16



H(B) = 1
2
y2B

H(C) = 1
2
y2B +G(α)

For this reason, from now on, we consider γ+(C). Working as in corollary
(2.1) and using the function W2(x, y) = 1

2
(y −K2)

2 +G(x), we get

˙W2(x, y) = −(y −K2)g(x) + g(x)(y − F (x))

= K2g(x)− g(x)F (x) = −g(x)[F (x)−K2] < 0

Hence γ+(C) intersects again the α-axis in y > 0 below the point D = (α, yD)
with yD = yC + 2K2.
As before, we consider a point E = (0, yE) with yE = yD + M2, where

M2 = G(α)
yD−FM

with FM = maxx∈[α,0]F (x), and the point F = (β, yE).

We know that γ+(D) intersects the y-axis below E and β-axis below F. Sum-
marising this costruction, we can say that γ+(A) or intersects the x-axis in
0 < x < β, and it is clearly winding, or the β-axis in y positive below F.
Our goal is to proof that such trajectory is winding, that is to proof that
γ+(F ) itersects the β-axis at a point G above A.
We assume, by contradiction, that this is not the case and evaluate the vari-
ation of energy, as we did in (2.1).
The increment of energy along the trajectory between the point A and the
point G is given by∫ t1
t0

˙H(t)dt = H(G)−H(A)

= 1
2
(−yG)2 +G(β)− 1

2
(−yA)2 −G(β) ≤ 1

2
(yF − 2K1)

2 − 1
2
y2A =

= 1
2
y2F + 2K2

1 − 2K1yF − 1
2
y2A =

= 1
2
(yA +M1 +M2 + 2K2)

2 + 2K2
1 − 2K1(yA +M1 +M2 + 2K2)− 1

2
y2A

= 1
2
(y2A +M2

1 +M2
2 + 4K2

2 + 2yAM1 + 2yAM2 + 4K2yA + 2M1M2 + 4K2M1 + 4K2M2)+
+2K2

1 − 2K1yA − 2K1M1 − 2K1M2 − 4K1K2 − 1
2
y2A =

= (M1+M2)2

2
+ 2K2

2 + yAM1 + yAM2 + 2K2yA + 2K2M1 + 2K2M2 + 2K2
1−

−2K1yA − 2K1M1 − 2K1M2 − 4K1K2 =

= 2(K2 −K1)yA +M1(yA + 2K2 − 2K1) +M2(yA + 2K2 − 2K1) + (K2 −K1)
2 + (M1+M2)2

2

(3.1)

Now, recalling the definition of M1 and M2, it is clear that the leading term
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of the latter expression is 2(K2−K1)yA and, being K1 ≥ K2, it has negative
sign. Therefore, it may be found ỹ large enough such that the expression is
negative. This is actually the desidered value of y, that is any positive semi-
trajectory starting below A = (β,−yA), with −yA ≤ −ỹ is actually winding.
However it is possible to simplify the above expression using the fact that

limyA→+∞M1 = 0, limyA→+∞M2 = 0

and getting a second order degree inequality, which is elementary to solve.
We are now able to get the x extimation. Consider again the point F =
(β, yF ) and assume that limx→+∞G(x) = +∞.
We already used the fact that γ+(F ) is constrained by the solutions of the
shifted Duffing equation, given by 1

2
(y −K1)

2 +G(x) = H.
We consider the level of energy identified by the point F = (β, yF ), namely
1
2
(yF −K1)

2 +G(β), which we denote with H1.
The level of energy H1 intersects the axis y = K1 at a point x̃ = G−1(H1)
and this is our positive boundary in x.
This argument clearly fails if G(x) is bounded. But in this case we must
have lim supx→+∞ F (x) = +∞ and, therefore, is sufficient to take in x > β
any value of F (x) such that F (x) ≥ yF .
The same argument can be used to find the negative x boundary.
At this point, we are able to locate the limit cycle.
As a side remark, we notice that such extimation is not the best possible, but
it is enough for our purpose. Such a result was expected, and in principle is
possible to see it using any scentific computing enviroment, but as far as we
know it was never explicitly written.

A first and natural conseguence of the previous extimation is the follow-
ing. Consider the system (1.2) with F (x) and g(x) fixed and satisfying the
assumptions of theorem (2.1). Such assumptions, which are required in the
whole line, may be relaxed to the interval [x1, x2] where x1 and x2 can be
determined.
A natural conseguence is that F (x) and g(x) can be arbitrarily modified out-
side the interval [x1, x2] and this can be used in order to produce concrete
examples with several limit cycles. Below we present an example with at
least two limit cycles.
This problem has been widely investigated in literature. The first result in
this direction is due to Levinson-Duff [4], where there is an example in which
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three limit cycles are provided for the equation ẍ + εf(x)ẋ + x = 0. This
result was achivied using the Poincaré method of small parameters [14] and
is valid for ε arbitrarily small. We observe that such a method can be actu-
ally used only for the case g(x) = x. Conversely our result, in virtue of the
corollary (2.1), is valid for any g(x) given, provided that xg(x) > 0.
The same method was used by Lins, De Melo, Pugh [16] in order to state
their well known conjectures concerning the upper-number of limit cycles for
the polynomial equation ẍ+pn(x)ẋ+x = 0, where pn(x) is an arbitrariypoly-
nomial of degree n (see also [2] [1] where the weak conjectures was actually
proved in the case ẍ+ εpn(x)ẋ+ x = 0).
In a very recent paper Dumortier, Panazzolo,Roussarie [5], proved that actu-
ally the Lins-DeMelo-Pugh conjectures fails for n = 7. This very interesting
and deep result was proved working with the system εẍ + p7(x)ẋ + x = 0,
and producing, for ε small, an example with four limit cycles. Finally Riskov
[19] proved that equation ẍ+ (ax4 + bx2 + c)ẋ+ x = 0 has at most two limit
cycles (for other related results one can see the works of Loyd [17],[18]).

Example: Given the system (1.2) with F (x) and g(x) fixed and satis-
fying the assumptions of theorem (2.1), one can find the interval (x1, x2) as
before and set

F1(x) = F (x) in (x1, x2)

limx→+∞ F1(x) = −∞

limx→−∞ F1(x) = +∞

Then, the system {
ẋ = y − F1(x)

ẏ = −g(x)
(3.2)

has at least two limit cycles.
In order to costruct the second limit cycle, we must investigate two situations:

1. Every positive semi-trajectories starting from P = (x2, yP ) with yP
arbitrarily large intersect the vertical isocline y = F1(x) and the same
holds for a point Q = (x1,−yQ) with yQ ≥ 0 arbitrarily large. In this
case we can argue as in theorem (2.1), but now it is possible to find
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K1 < K2 such that F1(x) < K1 for x > β and F1(x) > K2 for x < α,
and we obtain an unwinding trajectory.

2. If one of the assumptions of case (1) fails, we argue as follow: assume
that exists a point P = (x2, yP ) such that γ+(P ) does not intersect
the vertical isocline. It is easy to see that γ−(P ) intersects the vertical
isocline for x < 0 and y > 0 and hence we get an unwinding trajectory.
The same for a point Q = (x1,−yQ).

In both cases, as usual, the Poincaré-Bendixson theorem gives the second
unstable limit cycle.
This procedure can be iterated and in principle, with more tedious calcula-
tion, one can construct an example with n limit cycles being n any natural
number.
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