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Abstract. In this paper we give a description of some particular aspects of Schwarz–
Christoffel transformations either from a theoretical point of view or related to numerical
approach. Furthermore some interesting geometrical properties of these transforms are
shown and displayed by means of a graphical interface. In particular, an approximation of
the identity in the unit disc of

�
by means of a sequence of Schwarz–Christoffel transfor-

mations is exhibited.
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0.1 Introduction to Schwarz–Christoffel transformations

In 1851, in his Dissertation Thesis, Bernhard Riemann proved that any simply
connected open subset of � different from � is biholomorphically equivalent to
the unit disc �������
	����� �������� of � . This result (nowadays known as the
Riemann mapping theorem) gives only few information about the biholomorphism
involved and, indeed, its analytic expression remains completely unknown except
for some special class of open sets in � , such as the halfplanes1 or the polygons.
If ��� is a polygon of � edges in � , the value of a biholomorphism ����������� �
in �!	"� can be calculated from an expression (known as Schwarz–Christoffel
transformation in � ) which involves an integral of a product of � functions related
to the “geometry of the polygon”. To be more precise, if the vertices of a polygon��� are denoted by #%$'&'('('(�&)#*� and +-,/. is the measure of the amplitude of the outer
angle of �0� at the vertex #1, , one has (see, for instance, [15])�32/��4 �65 7988;: �<='> $ 2@?%�BA ,DCFE 4HG-I EKJ ?MLON , (1)

where ��P is a point in � , 5RQ�TS and N are two constants, and A ,DCVU &'('('(W&XA ,DC�Y 	[Z\� ,
called prevertices, are such that �32@A ,DCFE 43�6# = for any ]^�_�F&'('('(�&)� . Because of the
Cayley transformation, it is easy to see that if `a�cbd���e� � is a biholomorphism,

1If the halfplane is fhghiHjlk%monqpsrtjvuow'x then the map, called Cayley transformationy{z n|f
}�~!�j �}�~ j�}��j���� ,
is a biholomorphism of f in � which maps � into w and has as its inverse the mapyc� Uz n|��}�~!f� � }�~��'� � �� } � .
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then `�2/��4��T5 7 88;: �<='> $ 2@?%��� = 4HG-I E�J ?MLBN , (2)

where ��P is a point in b , 5�Q��S and N are two constants, and ��$W&'('('(W&)���9	6� ,
called prevertices, are such that �32s� = 4���# = for any ]R���F&'('('(�&)� . We will
define � ����� as the set of all Schwarz–Christoffel transformations in � such that+�$�LB+���L6('('(FLB+-�^�!� whereas � �\�Vb will be the set of all�����5 7 88;: �<='> $ 2@?%��� = 4 G-I E J ?MLON (3)

where 5�&HN�	��l&^5�Q��S , and ��P9	�b are constants, � = 	�����] �¡�F&'('('(X�
and2 + = 	�2;���F&W��4���][�¢�F&'('('(X� are such that +K$�L�+��*L�('('(�L�+-�[��� . The set
of all biholomorphisms of � (or b ) onto �3� will be denoted by £3�V� (or £��Vb ).
Furthermore the biholomorphisms of £���� and of £��Vb turn out to be continuous
in � or in b�¤B�F¥¦� respectively: this follows from a well–known theorem due
to Carathéodory (see [2] or [10]), which asserts that given a bounded open set§_¨ � , a biholomorphism �B�-�R��� §

can be extended to a homeomorphism ©�
of � in

§
, if and only if Z § is a Jordan curve (for a complete and self–contained

exposition of these aspects see [1]). On the other hand, it is not true that, given a
map ��	T� ���Vb (or ��	T� ���V� ) then necessarily ��	!£3�Vb (or ��	�£���� ). We
remind that for `�	�� �\�Vb to belong to £3��b it suffices to be injective in � (see,
for instance, [8]). But in 1983 E. Johnston (see [9]) showed that the Schwarz–
Christoffel transformation ` in b given by`�2/��4�� 7 88;:«ª<='> $ 2@?%��� = 4HG-I E1J ?
where �K$l�����'S , ���¬��� ��'S , ��¬�TS ,��®M� ��'S , ��¯¬� �° , � ª �_�'S
and +�$l�6+ ª ��� °± ,+��¬�6+�¬�6+-®M�6+�¯¬�d²± ,

is not injective in b and so `�³	h£ �Vb . Notice that, as observed before, the function` cannot be injective in �9¤h�F¥¦� , and then `�2s�9¤[�F¥¦�F4 is not a simple curve but
it has self–intersections. The existence of such a map ` can be directly obtained as
an application of the following (see [9])

2If one admits a prevertex in ´ , then the number of factors in (3) is µM} � .
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Theorem 1. If `o	a� �\�Vb is injective in b then¶¶¶¶¶ �·='> $ + =��Pl��� = ¶¶¶¶¶ � ¸¹{º ��P
for any ��P»	¼b .

Since for the map ` it is not difficult to see that¶¶¶¶¶ ª·='> $ + =½ ��� = ¶¶¶¶¶�¾ ¸ � ¸¹{º ½ ,
Theorem 1 guarantees that ` is not injective in b and so `�³	a£v�Vb . In [9], Johnston
proves the following

Lemma 2. Let ¿ be a holomorphic and injective function in b , then¶¶¶¶ ¿»À À@2/��P�4¿ À 2/��P�4 ¶¶¶¶ � ¸¹{º ��P
for any ��P»	¼b .

After that, the author claims that Theorem 1 is a consequence of the previous
Lemma. This can be shown by considering that if `o	a� ���Vb , then, for any ��	�b ,
one has` À 2/��4 � �<='> $ 2/�Á��� = 4 G-I E ,` À À 2/��4 ��� �·Â > $ + Â 2/�%��� = 4 G-IXÃqG $ �<='> $=VÄ> Â 2/�Á��� = 4 G-I E
so that `cÀ ÀÅ2/��4` À 2/��4 ��� �·='> $ + = 2/�%��� = 4 G-I E G $2/�%��� = 4 G-I E � �·='> $ �1+ =�%��� = ,

i.e. ` satisfies the differential equation` À À 2/��4KL�` À 2/��40Æ �·='> $ + =�Á��� = �TS . (4)

Actually, every (holomorphic and locally injective in b ) solution of (4) belongs to� ����b , how it is stated in the next Lemma.

Lemma 3. Let ` be a locally injective and holomorphic function in b . Then ` is
a solution of the differential equation (4) if and only if ` belongs to � ����b .

4



Proof. It has been shown above that every `o	�� ���Vb is a solution of (4). Now, let` be a locally injective and holomorphic function in b which satisfies (4). Since` is a locally injective function in b , then `\À never vanishes and, therefore, the
logarithm Ç of `�À is defined in b . Since (4) is satisfied, one can writeÇ À 2/��4 � `cÀ ÀÅ2/��4` À 2/��4 � �·='> $ �1+ =�Á��� = for any �^	�b .

For ]t�_�F&'('('(�&)� let Ç = be the logarithm of ` = 2/��4��T�*�a� = in b in such a way that2/�Á��� = 4 G-I E �" �Á��� =  G-I E Æ�A G , I E�È{ÉsÊVË;E'Ì 8XÍ . Given ��P»	�b we haveÇV2/��4 � 7 88;: �·='> $ �1+ =?%��� = J ?�� �·='> $ 7 88;: �1+ =?%��� = J ?��
��� �·='> $ + = 7O88;: J ??»��� = ��� �·='> $ + =lÎ Ç = 2/��40��Ç = 2/��P�4ÅÏ��
��� �·='> $ + = Ç = 2/��4KL �·='> $ + = Ç = 2/��P�4 .

If we define Ð�� �·='> $ + = Ç = 2/��P�4 and 5��!A�Ñ6Q�TS we finally obtain

` À 2/��4 �6ÒqÓ�Ô�Õ0� �·='> $ + = Ç = 2/��4KL�Ð%Ö_�T5hÒqÓ�Ô�Õ0� �·='> $ + = Ç = 2/��4;Ö"�
�T5 �<='> $ ÒqÓ�Ô Î �1+ = Ç = 2/��4ÅÏ��T5 �<='> $ 2/�Á��� = 4HG-I E ,

hence, after putting N�� �¦`�2/�FP�4 , we get`�2/��4��T5 7 88;: �<='> $ 2@?%��� = 4HG-I EWJ ?MLON
that is `o	a� �\�Vb .

Now it is very interesting to continue by considering some special cases such
as the biholomorphisms ��� of � into the regular polygon of � edges (shortly the� –agon); its vertices can be easily described as the � –th roots of the unity, that
is # = �×A �{ØcÌ = G $ Í ,ÚÙ;� . If we assume (as it is natural to think) that the prevertices
coincide with the vertices of the � –agon and that �c��2/Sc4
�eS , then + = ���V³����]^�_�F&'('('(X� and����2/��4 �T5 7 8P �<='> $ 2@?%�BA �{ØcÌ = G $ Í ,ÚÙ;� 4HG �HÙ;�lJ ?
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or ����2/��4��T5 À 7 8P 2@? � �¦��4 G �HÙ;� J ?\Û
so we are left only to evaluate the constant 5%À . To do so, we recall that integrating
over the real segment Î S�&W�|Ï ¨ � one hasÜ � � 7 $P J�Ý2{�*� Ý � 4 �HÙ;� � �� 7 $P!Þ $;Ù;� G $ 2{�*� Þ 4HG �HÙ;�lJ Þ . (5)

Since the Beta function is defined, for
Ý &)ß ¾ S , asà 2 Ý &)ßH43� 7 $P!Þ-á G $ 2{�*� Þ 4ãâ/G $�J Þ ,

and since
à

and the ä function are related byà 2 Ý &)ßH43� äv2 Ý 4;äv2sßH4äv2 Ý L�ßH4 for
Ý &)ß ¾ S ,

it is possible to rewrite (5) in the following formÜ � �� à�å �� &W�*� ��*æ � äv2 $� 4;äv2{�1� �� 4�Käv2{�*� $� 4 .

Now ����2{��4��_� and ����2{��4��T5¬À�Æ Ü , so that5 À � �Ü
� �Kä[ç)�*� $��èä[ç $��è ä[çH�l� ���è .

Since the following identity holdsäv2sßH4;äv2{�*��ßH4 � .éHêÚë .�ß for ß ¾ S ,
we have5 À � �äv2 $� 4;äv2{�*� $� 4 Æ ä ç �*� $��è �ä ç �l� ���è � � éHêÚë Ø�. Æ ä ç �*� $��è �ä ç �l� ���è . (6)

Finally we can write the biholomorphism �V� in the following form

����2/��4�� � éHêÚë Ø�. Æ ä ç �*� $��è �ä ç �*� ���è 7 8P J ?2{�*��? � 4 �HÙ;� . (7)

There is some evidence that as � increases the polygon � �!������2ì�*4 inscribed
in Z\� is a better approximation of the disc � itself. Since each biholomorphism
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��� fixes S and � , it is conceivable believe that the sequence of biholomorphisms�����-�W�cí� converges to the identity map; this is proved3 in the following

Proposition 4. The sequence of biholomorphisms ���c�-�W�cí� defined in (7) con-
verges uniformly on compact sets î ¨ � to the identity.

Proof. Since the sequence �����-�W�cí� is bounded, it is, in particular, locally bounded.
By Montel Theorem (see, for instance, [12]) it suffices to prove that given any
subsequence ���F��EF� = í�P of �����-�W�cí� which converges uniformly on compact setsî ¨ � , it converges to the identity. Let ���V��EF� = í�P be a subsequence of ���F�-�W�cí�
which converges uniformly on compact sets î ¨ � to the holomorphic function�
�V�����ï� . Since �F��Ec2ì�l4 ¨ � for any ]�ð6S , one has �32ì�v4 ¨ � ; but since � is
an open map, �32ì�v4 ¨ � . Finally, since�32/Sc4 �òñ ê º='óÁô�õ ����Ec2/Sc4 �TS ,

� À 2/Sc4 �òñ ê º='óÁô�õ � À��E 2/Sc4��òñ ê º='óÁô�õ éHêÚë Ø��E.�³�� = Æ ä�öV�l� $��Ec÷ �ä�öc�l� ���Ec÷ �_� ,
the proposition follows from the Schwarz Lemma (see, for instance, [11]).

0.2 Numerical approach to Schwarz–Christoffel transfor-
mations

As seen in the previous section, even for the case of regular polygons, the full de-
scription of a Schwarz–Christoffel transformation relies upon the choice of some
parameters, that is to say essentially the choice of the prevertices, since the con-
stants 5 and N and the real numbers +�$W&'('('(�&)+-� can be obtained by geometric con-
siderations. But even when one has all the parameters required, the evaluation of
the integral in (1) still remains in general impossible so that it is normally preferred
a numerical approach to the problem. This way of considering the evaluation of
Schwarz–Christoffel transformations starts in the 60’s, but one of the major contri-
butions is of the end of the 70’s when L. N. Trefethen wrote the package SCPACK
in Fortran (see [13, 14]), which numerically solves the problem of determining the
parameters and of evaluating the integral of a Schwarz–Christoffel transformation
for a generic polygon by means of the Gauss–Jacobi formulae (see, for instance,
[3]). More recently, in 1996, T. A. Driscoll has developed the algorithms proposed
by G. H. Golub and J. H. Welsch (see [7] and [5]) 4 already adopted by Trefethen

3The proof given here of this quite intuitive proposition – a disc can be approximated by regular
polygons – seems to be new or, at least, so the proof looks like to the authors, even though it is from
the Ancient Greek period that many mathematicians and philosophers have developed and used this
idea in several ways. In particular the Neoplatonic philosopher Nikolaus Chrypffs or Krebs (1401-
1464), born in Cusa (near Treviri, now Germany) and therefore known as “Cusanus”, used this image
to describe human knowledge when compared to the vastness of the Universe.

4For polygons having an irregular shape, this algorithm may lead to a loss of accuracy, mainly
due to the crowding of the prevertices. This phenomenon can easily appear even with low values
of µ , because it depends on polygon “elongation”. T. A. Driscoll and S. A. Vavasis have described
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and implemented them for MATLAB5; the toolbox he obtained is the Schwarz–
Christoffel toolbox (briefly “SC toolbox”) 6 that can be freely downloaded from
the site

http://www.math.udel.edu/˜driscoll/software

The SC toolbox offers also some graphical functions; one of them allows the in-
sertion an orthogonal grid in � or in b and displays its image through a Schwarz–
Christoffel transformation. These graphical functions are integrated in a graphical
interface or GUI7 (generated by the script file scgui.m) which accepts the def-
inition of the vertices of a polygon simply by clicking on a mouse. As examples
of these functions, in figure 1 the images of � through �c� (as introduced in Propo-
sition 4) are shown for ��� ° & ² & ± &Xø . These images can be easily obtained by
evaluating in

° & ² & ± and ø the function nagon, defined by the following script8 of
MATLAB

function nagon(n)
% definition of inner angles
b = zeros(n,1);
b(1:n,1) = -2/n;
% definition of vertices
w = zeros(n,1);
for j=1:n

w(j,1) = exp((2*pi*i*(j))/n);
end;
% definition of prevertices
z = w;
% definition of the constant
C = (n/pi)*sin(pi/n)*gamma(1-1/n)ˆ2/gamma(1-2/n);
dplot(w, b, z, C)

in [6] a method to avoid the crowding of the prevertices in case of elongated polygons; this method
(which is implemented in the SC Toolbox) is based on Möbius transformations and on existence (and
computability) of a particular triangulation for the polygons.

5MATLAB is a trade mark registered by The MathWorks, Inc.
6To determine the parameters involved, the SC toolbox applies the package NESOLVE (written

by R. Behrens), which is an implementation of the Newton–Broyden method with line search (see
[4]) and which solves the non linear system which the integral conditions are reduced to.

7Acronym of Graphical User Interface.
8Note that in this script (and in the other which is described later on in this paper) we do not let

the SC Toolbox calculate the multiplicative constant of the transformation, but we assign it explicitly,
using the expression found in (6); this is a rare case in which the constant can be written down without
referring directly to the complex integral which define the SC transformation.
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Figure 1.

In general, for the function dplot with the parametersù �"2s#»$W&'('('(�&)#*�\4v	h� � ,ú �"2@ûW$W&'('('(�&XûX�\4v	a� � ,ü �"2/��$W&'('('(W&H�W�-4v	h� � and Ð_	h� ,

the SC toolbox evaluates the function�32/��4 ��Ð 7 8P �<='> $ å �l� ?� = æ¬ý E J ? ;
since, for ]^�_�F&'('('(�&)� , the functionþ = 2@?�4 �_�*� ?� =
never vanishes in � and  þ = 2@?�4��¦�c�� � if ?�	�� , we can defineå �*� ?� = æ¬ý E � ¶¶¶¶ �*� ?� = ¶¶¶¶ ý E A ý EH,Úÿ�Ì�� Í ,

9



where �l2@?�4v�������^öV�*� �8 E ÷ 	�2;�¬.�&H.�4 . The function dplot automatically plots

the closed curves 	 = which are obtained as images, through �V� , of the circles


 = 2sßH4 � ]��� A , â , ßv	 Î S�&X�F.�Ï , ]^�_�F&'('('(�&W�'S . (8)

It also plots the arcs � = which are obtained as images, through �V� , of the radii in �
defined as follows

� = 2sßH43�6ß)A E � U Ø�, , ßv	 Î S�&W�|Ï , ]t�_�F&'('('(�&W�'S . (9)

Other examples of application of the graphical functions are figure 2 and figure 3.
It is important to remark that in the first case, for the assigned triangle of verticesS�&�� ¾ S�&)#e	�b 9 and inner angles of measure ��,/. , the biholomorphism with
prevertices S�&W�F&|¥ can be written explicitly, namely`�2/��4�� �q.äv2�� $q4;äv2��0��4;äv2��0�4 éHêÚë .��0 7O8P ?�� U G $ 2{�*�B?�4����XG $�J ? , (10)

whereas for the second case this is far for being possible (see [1] for details), even
though only one vertex is added!
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Figure 2.

9In figure 2 we have ��g�� and � g U
� ��� .
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Having in mind the problem of describing the biholomorphism of � into a regular
polygon, we have slightly modified the GUI created by Driscoll by developing
the script described at the beginning of the section; in this way the new script,
denominated nagongui.m, and available at the site

http://www.math.unifi.it/˜vlacci

generates the graphical interface shown in figure 4 (and run in WindowsTM envi-
ronment). When the SC toolbox is properly installed, the GUI may be started by
entering nagongui in the command window of MATLAB.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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0.4

0.6
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PSfrag replacements

Figure 3.

Hence, after inserting a positive number � in N. of vertices ( ¸ is by default) and
clicking Trace polygon, the program displays Z\� on the left and a regular polygon��� of � edges on the right. An orthogonal grid in � can be inserted by clicking
Trace grid and its image in ��� (through the transformation ��� defined in (7)) is
displayed on the right; in figure 4 an example for �[� °

is exhibited.

PSfrag replacements

Figure 4.
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The biholomorphism ��� is such that �F��2/Sc41�_S for �9ð ¸ . After clicking Center
image and using the mouse, it is possible to move �c��2/Sc4 to any point #¬P in ��� .
The program automatically determines a biholomorphism ���c�"���e� � such that�32/Sc4��d#1P by considering �T� �¢�F����� where � is an automorphism of � such
that �l2/Sc4���� G $� 2s#1P�4 . In this way the problem of determining the prevertices is
essentially skipped (see figure 5).

PSfrag replacements

Figure 5.

To see the grid more in detail, one can click on Zoom and select the option Poly-
gon only below the label Show.
The graphical interface nagongui gives also the possibility of showing several
images in sequence; this is achieved by clicking on Animation. Let `��c�_���ï���
be the biholomorphism currently shown in the GUI, that is the map which the GUI
is using to calculate the image in �3� of the orthogonal grid in � . The option Ani-
mation shows ten pictures in sequence of the map¿_�F��� Î S�&W�|Ï0��� �2/�\& Ý 4 ���� Ý Æq`�2/��4�L!2{�*� Ý 4�ÆW� ,
which is a homotopy between ` and the identity; more precisely, each picture
graphically represents the image of a map¿ Â ��� ��� ������� �

 Æq`�2/��4�L å �*� �
 æ Æ�� ,

where
� ��S�&'('('(�&  ; moreover, in the same picture, the GUI traces the orthogonal

grid which is obtained as image, through a map ¿ Â , of the curves 
 = and � = defined
in (8) and (9).
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If, in particular, one chooses `o� ��� , then the homotopy ¿ fixes the origin, that is¿^2/S�& Ý 4»�RS for all
Ý 	 Î S�&W�|Ï ; in this case the animation shows the disk � which

“deflates” itself till it coincides with a regular � –agon (see the example frame in
figure 6).

PSfrag replacements

Figure 6.

The movement displayed is less and less perceptible as � increases, because of the
convergence of the sequence �����-�W�cí� to the identity.
On the other hand, if the biholomorphism `t��� �����3� chosen is such that `�2/Sc4��#1Pt	9���"!%��S�� , then the resulting animation is more sophisticated (see figure 7),
because neither all the vertices of the polygon nor the origin is fixed; in particular,
the animation shows quite clearly the “movement” of the origin towards the point#1P .

PSfrag replacements

Figure 7.

13



Bibliography

[1] BONCIANI D., Estensioni continue di biolomorfismi, trasformazioni di
Schwarz–Christoffel e loro determinazione numerica, Tesi di Laurea (2002),
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