On Riesz and Moisil-Théodoresco systems

by

R. Delanghe Ghent University, Belgium

Abstract:

Let $\mathbb{R}^{0,m+1}$ be the space \mathbb{R}^{m+1} provided with a quadratic form of signature (0, m+1) and let $\mathbb{R}_{0,m+1}$ be the universal Clifford algebra constructed over $\mathbb{R}^{0,m+1}$. Furthermore, let for $0 \leq r \leq m+1$ fixed, $\mathbb{R}_{0,m+1}^{(r)}$ be the space of r-vectors in $\mathbb{R}_{0,m+1}$ and let for $p, q \in \mathbb{N}$ with p < q and $r + 2q \leq m+1$, $\mathbb{R}_{0,m+1}^{(r,p,q)}$ be the subspace $\mathbb{R}_{0,m+1}^{(r,p,q)} \oplus \mathbb{R}_{0,m+1}^{(r+2j)}$ of $\mathbb{R}_{0,m+1}$.

If $\Omega \subset \mathbb{R}^{m+1}$ is open, then the following spaces of nullsolutions to the Dirac operator ∂_x in \mathbb{R}^{m+1} are considered.

(I) The space $M(\Omega; \mathbb{R}_{0,m+1}^{(r)})$ (0 < r < m+1), i.e. the space of $\mathbb{R}_{0,m+1}^{(r)}$ -valued smooth functions F_r in Ω satisfying the equation

$$\partial_x F_r = 0 \tag{1}$$

The system corresponding to (1) generalizes the classical Riesz system in \mathbb{R}^3 .

(II) The space $M(\Omega; \mathbb{R}^{(r,p,q)}_{0,m+1})$, i.e. the space of $\mathbb{R}^{(r,p,q)}_{0,m+1}$ -valued smooth functions W in Ω satisfying the equation

$$\partial_x W = 0 \tag{2}$$

The system corresponding to (2) generalizes the classical Moisil-Théodoresco system in \mathbb{R}^3 .

In this talk, the following problems are dealt with:

- (P1) The construction of harmonic potentials to solutions of the equations (1) and (2).
- (P2) The characterization of boundary values of elements belonging to the Hardy spaces $H^2(\mathbb{R}^{m+1}_+;\mathbb{R}^{(r)}_{0,m+1})$ and $H^2(\mathbb{R}^{m+1}_+;\mathbb{R}^{(r,p,q)}_{0,m+1})$, \mathbb{R}^{m+1}_+ being the upper half-space in \mathbb{R}^{m+1} .