Funzioni di Variabile complessa 23.2.2010

Si risolvano il maggior numero possibile fra i seguenti esercizi:

- 1. Siano $T \subset \mathbb{C}$ il triangolo chiuso di vertici 0, 1, i e $f(z) = \frac{z}{1+z}$. Disegnare approssimativamente B = f(T).
- **2.** Sia f_n una successione di funzioni intere con solo zeri reali uniformemente convergente sui compatti di \mathbb{C} alla funzione f. Dimostrare che o f è identicamente nulla oppure f ha solo zeri reali.
- 3. Sia f(z) una funzione meromorfa su $\mathbb C$ ma non intera. Dimostrare che $g(z)=e^{f(z)}$ non definisce una funzione meromorfa su $\mathbb C$
- **4.** Dimostrare che se $a \in \mathbb{C}$ è tale che |a| > e, allora, per ogni intero $n \ge 0$ l'equazione $e^z = az^n$ ha n radici nel disco $\{z \in \mathbb{C} \mid |z| < 1\}$.
- **5.** Per ogni una curva di classe C^1 regolare semplice chiusa $\gamma:[a,b]\to\mathbb{C}$ tale che per ogni $t\in[a,b]$ si abbia $\gamma(t)\neq 0$ e $\gamma(t)\neq 1$, si calcoli

$$\frac{1}{2\pi i} \int\limits_{\gamma} \frac{e^z - 1}{z^2 (1 - z)^2} dz.$$