GEOMETRIA I, c.d.L. in Matematica, Prova Scritta 7 settembre 2011, A.A. 2010-2011

NON SI POSSONO UTILIZZARE CALCOLATRICI NÉ CONSULTARE LIBRI O APPUNTI - Fila 1

NOME E COGNOME:		
Numero di matricola o data di nascita:		

1) DARE SOLO LA RISPOSTA FINALE SENZA IL PROCEDIMENTO.

1a) VALE 2 PUNTI. Dire se il sottoinsieme $S = \{p(x) \in \mathbf{R}_4[x] | (x^2 - 1)|p(x)\}$ è un sottospazio vettoriale di $\mathbf{R}_4[x]$. Inoltre se lo è, indicare una base, se non lo è, dare un controesempio o alla chiusura per la somma o alla chiusura per il prodotto per uno scalare:

1b) VALE 4 PUNTI. Si consideri la matrice parametrica

$$A_{u,v} = \begin{pmatrix} -1 & 2 & -6 & 3 & -1 \\ u - 3 & -6 & 18 & -9 & 3 \\ 3 & -4 & 12 & -v+1 & 1 \end{pmatrix}$$

Al variare dei parametri u e v stabilire:

- i) Qual è il valore minimo e massimo assunto dal rango di A.
- ii) Per quali valori dei parametri u e v la matrice $A_{u,v}$ ha rango minimo.

1c) VALE 3 PUNTI. Determinare per quale $a \in \mathbf{R}$ la conica di equazione $x^2 + ay^2 - x + ay = a + 1$ è una coppia di rette incidenti.

1d) VALE 3 PUNTI. Siano $u = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} v = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$ vettori di $\mathbf{R^4}$ pensato come spazio vettoriale metrico con il

prodotto scalare canonico. Determinare una base ortonormale del sottospazio U di \mathbb{R}^4 ortogonale ai vettori u e v.

2)	Rispondere	(con precisione)) alle seguenti	domande
----	------------	------------------	-----------------	---------

- 2a) VALE 5 PUNTI. Siano \mathcal{B} e \mathcal{C} due basi dello stesso spazio vettoriale finitamente generato V.
- a) Definire la matrice del cambio di base B dalla base $\mathcal B$ alla base $\mathcal C.$
- b) Se x e x' sono le colonne delle coordinate relative rispettivamente a \mathcal{B} e \mathcal{C} di $v \in V$, esprimere x in funzione di x' e dimostrare la formula.

- 2b) VALE 5 PUNTI. Sia $T:V \to V$ un endomorfismo di uno spazio vettoriale finitamente generato.
- a) Definire il polinomio caratteristico di T.
- b) Dimostrare che uno scalare λ_0 è un autovalore di T se e solo se è radice del polinomio caratteristico di T.

3) RISPONDERE, MOTIVANDO, ALLE SEGUENTI DOMANDE CIASCUNA.

3) VALE 7 PUNTI. Sia $Mat(2,\mathbf{R})$ lo spazio vettoriale delle matrici reali quadrate di ordine 2 e $A=\begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix} \in Mat(2,\mathbf{R})$. Al variare del parametro $u \in \mathbf{R}$ si consideri l'applicazione $T_u: Mat(2,\mathbf{R}) \longrightarrow Mat(2,\mathbf{R})$ definita da

$$T_u(M) = AM + uM.$$

- (i) Verificare che T_u è lineare per ogni valore del parametro u.
- (ii) Trovare la matrice associata all'endomorfismo T_u rispetto alla base standard di V

$$\mathcal{B} = \left\{ E_{1,1} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \qquad E_{1,2} = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \qquad E_{2,1} = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right), \qquad E_{2,2} = \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \right\}$$

- (iii) Dire per quali valori del parametro u l'applicazione T_u è iniettiva.
- (iv) Al variare del parametro u calcolare gli autovalori di T_u .
- (v) Stabilire per quali valori del parametro u l'applicazione T_u è diagonalizzabile.
- 4) VALE 5 PUNTI. Sia C la parabola che ha per vertice V = (0,1), l'asse parallela al vettore v = (1,1) e passante per il punto P = (1,1).
- i) Trovare l'equazione di \mathcal{C} .
- ii) Trovare la forma canonica metrica di C.