
4 Exterior algebra

4.1 Lines and 2-vectors

The time has come now to develop some new linear algebra in order to handle the
space of lines in a projective space P (V ). In the projective plane we have seen that
duality can deal with this but lines in higher dimensional spaces behave differently.
From the point of view of linear algebra we are looking at 2-dimensional vector sub-
spaces U ⊂ V .

To motivate what we shall do, consider how in Euclidean geometry we describe a
2-dimensional subspace of R3. We could describe it through its unit normal n, which
is also parallel to u×v where u and v are linearly independent vectors in the space
and u×v is the vector cross product. The vector product has the following properties:

• u×v = −v×u

• (λ1u1 + λ2u2)×v = λ1u1×v + λ2u2×v

We shall generalize these properties to vectors in any vector space V – the difference
is that the product will not be a vector in V , but will lie in another associated vector
space.

Definition 12 An alternating bilinear form on a vector space V is a map B : V ×
V → F such that

• B(v, w) = −B(w, v)

• B(λ1v1 + λ2v2, w) = λ1B(v1, w) + λ2B(v2, w)

This is the skew-symmetric version of the symmetric bilinear forms we used to define
quadrics. Given a basis {v1, . . . , vn}, B is uniquely determined by the skew symmetric
matrix B(vi, vj). We can add alternating forms and multiply by scalars so they form
a vector space, isomorphic to the space of skew-symmetric n× n matrices. This has
dimension n(n− 1)/2, spanned by the basis elements Eab for a < b where Eab

ij = 0 if
{a, b} 6= {i, j} and Eab

ab = −Eab
ba = 1.

Definition 13 The second exterior power Λ2V of a finite-dimensional vector space
is the dual space of the vector space of alternating bilinear forms on V . Elements of
Λ2V are called 2-vectors.
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This definition is a convenience – there are other ways of defining Λ2V , and for most
purposes it is only its characteristic properties which one needs rather than what its
objects are. A lot of mathematics is like that – just think of the real numbers.

Given this space we can now define our generalization of the cross-product, called the
exterior product or wedge product of two vectors.

Definition 14 Given u, v ∈ V the exterior product u∧ v ∈ Λ2V is the linear map to
F which, on an alternating bilinear form B, takes the value

(u ∧ v)(B) = B(u, v).

From this definition follows some basic properties:

• (u ∧ v)(B) = B(u, v) = −B(v, u) = −(v ∧ u)(B) so that

v ∧ u = −u ∧ v

and in particular u ∧ u = 0.

• ((λ1u1 + λ2u2) ∧ v)(B) = B(λ1u1 + λ2u2, v) = λ1B(u1, v) + λ2B(u2, v) which
implies

(λ1u1 + λ2u2) ∧ v = λ1u1 ∧ v + λ2u2 ∧ v.

• if {v1, . . . , vn} is a basis for V then vi ∧ vj for i < j is a basis for Λ2V .

This last property holds because vi ∧ vj(E
ab) = Eab

ij and in facts shows that {vi ∧ vj}
is the dual basis to the basis {Eab}.

Another important property is:

Proposition 15 Let u ∈ V be a non-zero vector. Then u ∧ v = 0 if and only if
v = λu for some scalar λ.

Proof: If v = λu, then

u ∧ v = u ∧ (λu) = λ(u ∧ u) = 0.

Conversely, if v 6= λu, u and v are linearly independent and can be extended to a
basis, but then u ∧ v is a basis vector and so is non-zero. 2
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It is the elements of Λ2V of the form u∧ v which will concern us, for suppose U ⊂ V
is a 2-dimensional vector subspace, and {u, v} is a basis of U . Then any other basis
is of the form {au + bv, cu + dv}, so, using u ∧ u = v ∧ v = 0, we get

(au + bv) ∧ (cu + dv) = (ad− bc)u ∧ v

and since the matrix (
a b
c d

)
is invertible ad− bc 6= 0. It follows that the 1-dimensional subspace of Λ2V spanned
by u ∧ v for a basis of U is well-defined by U itself and is independent of the choice
of basis. To each line in P (V ) we can therefore associate a point in P (Λ2V ).

The problem is, not every vector in Λ2V can be written as u∧ v for vectors u, v ∈ V .
In general it is a linear combination of such expressions. The task, in order to describe
the space of lines, is to characterize such decomposable 2-vectors.

Example: Consider v1 ∧ v2 + v3 ∧ v4 in a 4-dimensional vector space V . Suppose
we can write this as

v1 ∧ v2 + v3 ∧ v4 = (a1v1 + a2v2 + a3v3 + a4v4) ∧ (b1v1 + b2v2 + b3v3 + b4v4).

Equating the coefficient of v1 ∧ v2 gives

a1b2 − a2b1 = 1

and so (a1, b1) is non-zero. On the other hand the coefficients of v1 ∧ v3 and v1 ∧ v4

give

a1b3 − a3b1 = 0

a1b4 − a4b1 = 0

and since (a1, b1) 6= 0, b3a4−a3b4 = 0. But the coefficient of v3∧v4 gives a4b3−a3b4 = 1
which is a contradiction. This 2-vector is not therefore decomposable. We shall find
an easier method of seeing this by working with p-vectors and exterior products.

4.2 Higher exterior powers

Definition 15 An alternating multilinear form of degree p on a vector space V is a
map M : V × . . .× V → F such that
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• M(u1, . . . , ui, . . . , uj, . . . , up) = −M(u1, . . . , uj, . . . , ui, . . . , up)

• M(λ1v1 + λ2v2, u2, . . . , up) = λ1M(v1, u2, . . . , up) + λ2M(v2, u2, . . . , up)

Example: Let u1, . . . , un be column vectors in Rn. Then

M(u1, . . . , un) = det(u1u2 . . . un)

is an alternating multilinear form of degree n.

The set of all alternating multilinear forms on V is a vector space, and M is uniquely
determined by the values

M(vi1 , vi2 , . . . , vip)

for a basis {v1, . . . , vn}. But the alternating property allows us to change the order
so long as we multiply by −1 for each transposition of variables. This means that M
is uniquely determined by the values of indices for

i1 < i2 < . . . < ip.

The number of these is the number of p-element subsets of n, i.e.
(

n
p

)
, so this is the

dimension of the space of such forms. In particular if p > n this space is zero. We
define analogous constructions to those above for a pair of vectors:

Definition 16 The p-th exterior power ΛpV of a finite-dimensional vector space is
the dual space of the vector space of alternating multilinear forms of degree p on V .
Elements of ΛpV are called p-vectors.

and

Definition 17 Given u1, . . . , up ∈ V the exterior product u1 ∧ u2 ∧ . . .∧ up ∈ ΛpV is
the linear map to F which, on an alternating multilinear form M takes the value

(u1 ∧ u2 ∧ . . . ∧ up)(M) = M(u1, u2, . . . , up).

The exterior product u1 ∧ u2 ∧ . . . ∧ up has two defining properties

• it is linear in each variable ui separately

• interchanging two variables changes the sign of the product
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• if two variables are the same the exterior product vanishes.

We have a useful generalization of Proposition 15:

Proposition 16 The exterior product u1 ∧ u2 ∧ . . .∧ up of p vectors ui ∈ V vanishes
if and only if the vectors are linearly dependent.

Proof: If there exists a linear relation

λ1u1 + . . . λpup = 0

with λi 6= 0, then ui is a linear combination of the other vectors

ui =
∑
j 6=i

µjuj

but then
u1 ∧ u2 ∧ . . . ∧ up = u1 ∧ . . . ∧ (

∑
j 6=i

µjuj) ∧ ui+1 ∧ . . . ∧ up

and expand this out by linearity, each term has a repeated variable uj and so vanishes.

Conversely, if u1, . . . , up are linearly independent they can be extended to a basis and
u1 ∧ u2 ∧ . . . ∧ up is a basis vector for ΛpV and is thus non-zero. 2

The exterior powers ΛpV have natural properties with respect to linear transforma-
tions: given a linear transformation T : V → W , and an alternating multilinear form
M on W we can define an induced one T ∗M on V by

T ∗M(v1, . . . , vp) = M(Tv1, . . . , T vp)

and this defines a dual linear map

ΛpT : ΛpV → ΛpW

with the property that

ΛpT (v1 ∧ v2 ∧ . . . ∧ vp) = Tv1 ∧ Tv2 ∧ . . . ∧ Tvp.

One such map is very familiar: take p = n, so that ΛnV is one-dimensional and
spanned by v1 ∧ v2 ∧ . . . ∧ vn for a basis {v1, . . . , vn}. A linear transformation from a
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1-dimensional vector space to itself is just multiplication by a scalar, so ΛnT is some
scalar in the field. In fact it is the determinant of T . To see this, observe that

ΛnT (v1 ∧ . . . ∧ vn) = Tv1 ∧ . . . ∧ Tvn

and the right hand side can be written using the matrix Tij of T as∑
i1,...,in

Ti11vi1 ∧ . . . ∧ Tinnvin =
∑

i1,...,in

Ti11 . . . Tinnvi1 ∧ . . . ∧ vin .

Each of the terms vanishes if any two of i1, . . . , in are equal by the property of the
exterior product, so we need only consider the case where (i1, . . . , in) is a permutation
of (1, . . . , n). Any permutation is a product of transpositions, and any transposition
changes the sign of the exterior product, so

ΛnT (v1 ∧ . . . ∧ vn) =
∑
σ∈Sn

sgn(σ)Tσ(1)1Tσ(2)2 . . . Tσ(n)nv1 ∧ . . . ∧ vn

which is the definition of the determinant of Tij. From our point of view the deter-
minant is naturally defined for a linear transformation T : V → V , and what we just
did was to see how to calculate it from the matrix of T .

We now have vector spaces ΛpV of dimension
(

n
p

)
naturally associated to V . The

space Λ1V is by definition the dual space of the space of linear functions on V , so
Λ1V = V ′′ ∼= V and by convention we set Λ0V = F . Given p vectors v1, . . . , vp ∈ V
we also have a corresponding vector v1∧v2∧ . . .∧vp ∈ ΛpV and the notation suggests
that there should be a product so that we can remove the brackets:

(u1 ∧ . . . ∧ up) ∧ (v1 ∧ . . . vq) = u1 ∧ . . . ∧ up ∧ v1 ∧ . . . vq

and indeed there is. So suppose a ∈ ΛpV, b ∈ ΛqV , we want to define a ∧ b ∈ Λp+qV .
Now for fixed vectors u1, . . . , up ∈ V ,

M(u1, u2, . . . , up, v1, v2, . . . , vq)

is an alternating multilinear function of v1, . . . , vq, so if

b =
∑

j1<...<jq

λj1...jqvj1 ∧ . . . ∧ vjq

then ∑
j1<...<jq

λj1...jqM(u1, . . . , up, vj1 , . . . , vjq)
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only depends on b and not on the particular way it is written in terms of a basis
{v1, . . . , vn}. Similarly if

a =
∑

i1<...<ip

µi1...ipui1 ∧ . . . ∧ uip

then ∑
i1<...<ip

µi1...ipM(ui1 , . . . , uip , v1, . . . , vq)

only depends on a. We can therefore unambiguously define a ∧ b by its value on an
alternating p + q-form M as

(a ∧ b)(M) =
∑

i1<..<ip;ji,..<jq

µi1...ipλj1...jqM(ui1 , . . . , uip , vj1 , . . . , vjq).

The product just involves linearity and removing the brackets.

Example: Suppose a = v1 + v2, b = v1 ∧ v3 − v3 ∧ v2, with v1, v2, v3 ∈ V then

a ∧ b = (v1 + v2) ∧ (v1 ∧ v3 − v3 ∧ v2)

= v1 ∧ v1 ∧ v3 − v1 ∧ v3 ∧ v2 + v2 ∧ v1 ∧ v3 − v2 ∧ v3 ∧ v2

= −v1 ∧ v3 ∧ v2 + v2 ∧ v1 ∧ v3

= v1 ∧ v2 ∧ v3 − v1 ∧ v2 ∧ v3 = 0

where we have used the basic rules that a repeated vector from V in an exterior
product gives zero, and the interchange of two vectors changes the sign.

Note that

u1 ∧ u2 ∧ . . . ∧ up ∧ v1 ∧ . . . ∧ vq = (−1)pv1 ∧ u1 ∧ u2 ∧ . . . ∧ up ∧ v2 ∧ . . . ∧ vq

because we have to interchange v1 with each of the p ui’s to bring it to the front, and
then repeating

u1 ∧ u2 ∧ . . . ∧ up ∧ v1 ∧ . . . ∧ vq = (−1)pqv1 ∧ . . . ∧ vq ∧ u1 ∧ u2 ∧ . . . ∧ up.

This extends by linearity to all a ∈ ΛpV, b ∈ ΛqV . We then have the basic properties
of the exterior product;

• a ∧ (b + c) = a ∧ b + a ∧ c
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• (a ∧ b) ∧ c = a ∧ (b ∧ c)

• a ∧ b = (−1)pqb ∧ a if a ∈ ΛpV, b ∈ ΛqV

What we have done may seem rather formal, but it has many concrete applications.
For example if a = x ∧ y then a ∧ a = x ∧ y ∧ x ∧ y = 0 because x ∈ V is repeated.
So it is much easier to determine that a = v1 ∧ v2 + v3 ∧ v4 from the Exercise above
is not decomposable:

(v1 ∧ v2 + v3 ∧ v4) ∧ (v1 ∧ v2 + v3 ∧ v4) = 2v1 ∧ v2 ∧ v3 ∧ v4 6= 0.

4.3 Decomposable 2-vectors

A line in P (V ) defines a point in P (Λ2V ) defined by a decomposable 2-vector

a = x ∧ y.

We need to characterize algebraically this decomposability, and the following theorem
does just that:

Theorem 17 Let a ∈ Λ2V be a non-zero element. Then a is decomposable if and
only if a ∧ a = 0 ∈ Λ4V .

Proof: If a = x ∧ y for two vectors x and y then

a ∧ a = x ∧ y ∧ x ∧ y = 0

because of the repeated factor x (or y).

We prove the converse by induction on the dimension of V . If dim V = 0, 1 then
Λ2V = 0, so the first case is dim V = 2. In this case dim Λ2V = 1 and v1 ∧ v2 is a
non-zero element if v1, v2 is a basis for V , so any a is decomposable.

We consider the case dim V = 3 separately now. Given a non-zero a ∈ Λ2V , define
A : V → Λ3V by

A(v) = a ∧ v.

Since dim Λ3V = 1, dim ker A ≥ 2, so let u1, u2 be linearly independent vectors in the
kernel and extend to a basis u1, u2, u3 of V . We can then write

a = λ1u2 ∧ u3 + λ2u3 ∧ u1 + λ3u1 ∧ u2.
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Now by definition 0 = a ∧ u1 = λ1u2 ∧ u3 ∧ u1 so λ1 = 0 and similarly 0 = a ∧ u2

implies λ2 = 0. It follows that a = λ3u1 ∧ u2, which is decomposable.

Now assume inductively that the theorem is true for dim V ≤ n− 1 and consider the
case dim V = n. Using a basis v1, . . . , vn, write

a =
n∑

1≤i<j

aijvi ∧ vj

= (
n−1∑
i=1

ainvi) ∧ vn +
n−1∑

1≤i<j

aijvi ∧ vj

= u ∧ vn + a′

where u ∈ U and a′ ∈ Λ2U and U is the (n − 1)-dimensional space spanned by
v1, . . . , vn−1.

Now
0 = a ∧ a = (u ∧ vn + a′) ∧ (u ∧ vn + a′) = 2u ∧ a′ ∧ vn + a′ ∧ a′.

But vn doesn’t appear in the expansion of u ∧ a′ or a′ ∧ a′ so we separately obtain

u ∧ a′ = 0, a′ ∧ a′ = 0.

By induction a′ ∧ a′ = 0 implies a′ = u1 ∧ u2 and so the first equation reads

u ∧ u1 ∧ u2 = 0

which from Proposition 16 says that there is a linear relation

λu + µ1u1 + µ2u2 = 0.

If λ = 0, then u1 and u2 are linearly dependent so a′ = u1 ∧ u2 = 0. This means that
u = u ∧ vn and is therefore decomposable. If λ 6= 0, u = λ1u1 + λ2u2, so

a = λ1u1 ∧ vn + λ2u2 ∧ vn + u1 ∧ u2

and this is the 3-dimensional case which is always decomposable as we showed above.

We conclude that a, in each case, is decomposable. 2
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4.4 The Klein quadric

The first case where we can apply Theorem 17 is when dim V = 4, to describe the
projective lines in the 3-dimensional space P (V ). In this case dim Λ4V = 1 with a
basis vector v0 ∧ v1 ∧ v2 ∧ v3 if V is given the basis v0, . . . , v3.

For a ∈ Λ2V we write

a = λ1v0 ∧ v1 + λ2v0 ∧ v2 + λ3v0 ∧ v3 + µ1v2 ∧ v3 + µ2v3 ∧ v1 + µ3v1 ∧ v2

and then a ∧ a = B(a, a)v0 ∧ v1 ∧ v2 ∧ v3 where

B(a, a) = 2(λ1µ1 + λ2µ2 + λ3µ3) (8)

This is a non-degenerate quadratic form, and so B(a, a) = 0 defines a nonsingular
quadric Q ⊂ P (Λ2V ). Moreover, any other choice of basis rescales B by a non-zero
constant and so Q is well defined in projective space.

We see then that a line ` ⊂ P (V ) defines a decomposable 2-vector a = x ∧ y, unique
up to a scalar and since a ∧ a = 0, it defines a point L ∈ Q ⊂ P (Λ2V ). Conversely,
Theorem 17 tells us that every point in Q is represented by a decomposable 2-vector.
Hence

Proposition 18 There is a one-to-one correspondence ` ↔ L between lines ` in
a 3-dimensional projective space P (V ) and points L in the 4-dimensional quadric
Q ⊂ P (Λ2V ).

It was Felix Klein (1849–1925), building on the work of his supervisor Julius Plücker,
who first described this in detail and Q is usually called the Klein quadric. The
equation of the quadric in the form (8) shows that there are linear subspaces inside
it of maximal dimension 2 whatever the field. The linear subspaces all relate to
intersection properties of lines in P (V ). For example:

Proposition 19 Two lines `1, `2 ⊂ P (V ) intersect if and only if the line joining the
two corresponding points L1, L2 ∈ Q lies entirely in Q.

Proof: Let U1, U2 ⊂ V be the two-dimensional subspaces of V defined by `1, `2.
Suppose the lines intersect in X, with representative vector u ∈ V . Then extend to
bases {u, u1} for U1 and {u, u2} for U2. The line in P (Λ2V ) joining L1 and L2 is then
P (W ) where W is spanned by u ∧ u1 and u ∧ u2.
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Any 2-vector in W is thus of the form

λ1u ∧ u1 + λ2u ∧ u2 = u ∧ (λ1u1 + λ2u2)

which is decomposable and so represents a point in Q.

Conversely, if the lines do not intersect, U1 ∩ U2 = {0} so V = U1 ⊕ U2. In this case
choose bases {u1, v1} of U1 and {u2, v2} of U2. Then {u1, v1, u2, v2} is a basis of V
and in particular u1 ∧ v1 ∧ u2 ∧ v2 6= 0. A point on the line joining L1, L2 is now
represented by a = λ1u1 ∧ v1 + λ2u2 ∧ v2 so that

a ∧ a = 2λ1λ2u1 ∧ v1 ∧ u2 ∧ v2

which vanishes only if λ1 or λ2 are zero. Thus the line only meets Q in the points L1

and L2. 2

Now fix a point X ∈ P (V ) and look at the set of lines passing through this point:

Proposition 20 The set of lines ` ⊂ P (V ) passing through a fixed point X ∈ P (V )
corresponds to the set of points L ∈ Q which lie in a fixed plane contained in Q.

Proof: Let x be a representative vector for X. The line P (U) passes through X if
and only if x ∈ U , so P (U) is represented in the Klein quadric by a 2-vector of the
form

x ∧ u.

Extend x to a basis {x, v1, v2, v3} of V , then any decomposable 2-vector of the form
x ∧ y can be written as

x ∧ (µx + λ1v1 + λ2v2 + λ3v3) = λ1x ∧ v1 + λ2x ∧ v2 + λ3x ∧ v3.

Thus any line passing through X is represented by a 2-vector in the 3-dimensional
space of decomposables spanned by x ∧ v1, x ∧ v2, x ∧ v3, which is a projective plane
in Q. Conversely any point in this plane defines a line in P (V ) through X. 2

A plane in Q defined by a point X ∈ P (V ) like this is called an α-plane. There are
other planes in Q:

Proposition 21 Let P (W ) ⊂ P (V ) be a plane. The set of lines ` ⊂ P (W ) corre-
sponds to the set of points L ∈ Q which lie in a fixed plane contained in Q.
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A plane of this type contained in Q is called a β-plane.

Proof: We just use duality here: if U ⊂ V is 2-dimensional, then its annihilator
U0 ⊂ V ′ is 4 − 2 = 2-dimensional, so there is a one-to-one correspondence between
lines in P (V ) and lines in P (V ′). A point in Q therefore defines a line in either the
projective space or its dual. Now the dual of the set of lines passing through a point
is the set of lines lying in a (hyper)-plane. So applying Proposition 20 to P (V ′) gives
the result. 2

In fact there are no more planes:

Proposition 22 Any plane in the Klein quadric Q is either an α-plane or a β-plane.

Proof: Take a plane in Q and three non-collinear points L1, L2, L3 on it. We get
three lines `1, `2, `3 in P (V ). Since the line joining L1 to L2 lies in the plane and
hence in Q, it follows from Proposition 19 that each pair of `1, `2, `3 intersect. There
are two possibilities:

• the three lines are concurrent:

• the three lines meet in three distinct points:

In the first case the three lines pass through a single point and so L1, L2, L3 lie in an
α-plane. But this must be the original plane since the three representative vectors
for L1, L2, L3 are linearly independent as the points are not collinear.
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In the second case, if u1, u2, u3 are representative vectors for the three points of
intersection of `1, `2, `3, then L1, L2, L3 are represented by u2 ∧ u3, u3 ∧ u1, u1 ∧ u2. A
general point on the plane is then given by

λ1u2 ∧ u3 + λ2u3 ∧ u1 + λ1u3 ∧ u1

which is a general element of Λ2U where U is spanned by u1, u2, u3. Thus `1, `2, `3 all
lie in the plane P (U) ⊂ P (V ). 2

The existence of these two families of linear subspaces of maximal dimension is char-
acteristic of even-dimensional quadrics – it is the generalization of the two families of
lines we saw on the “cooling tower” quadric surface. In the case of the Klein quadric,
two different α-planes intersect in a point, since there is a unique line joining two
points. Similarly (and by duality) two β planes meet in a point. An α-plane and a β
plane in general have empty intersection – if X is a point and π a plane with X 6∈ π,
there is no line in π which passes through X. If X ∈ π, then the intersection is a line.

4.5 Exercises

1. If a ∈ ΛpV and p is odd, show that a ∧ a = 0.

2. Calculate a ∧ b in the following cases:

• a = b = v1 ∧ v2 + v2 ∧ v3 + v3 ∧ v1

• a = v1 ∧ v2 + v3 ∧ v1, b = v2 ∧ v3 ∧ v4

• a = v1 + v2 + v3, b = v1 ∧ v2 + v2 ∧ v3 + v3 ∧ v1.

[v1, v2, v3, v4 are linearly independent]

3. Which of the following 2-vectors is decomposable?

• v1 ∧ v2 + v2 ∧ v3

• v1 ∧ v2 + v2 ∧ v3 + v3 ∧ v4

• v1 ∧ v2 + v2 ∧ v3 + v3 ∧ v4 + v4 ∧ v1.
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[v1, v2, v3, v4 are linearly independent]

4. If dim V = n shown that every a ∈ Λn−1V is decomposable.

5. Let ` ⊂ P (V ) be a line and m another such that the corresponding point M ∈ Q
lies on the polar hyperplane to L ∈ Q. Show that ` and m intersect.
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