4 Exterior algebra

4.1 Lines and 2-vectors

The time has come now to develop some new linear algebra in order to handle the
space of lines in a projective space P(V'). In the projective plane we have seen that
duality can deal with this but lines in higher dimensional spaces behave differently.
From the point of view of linear algebra we are looking at 2-dimensional vector sub-
spaces U C V.

To motivate what we shall do, consider how in Euclidean geometry we describe a
2-dimensional subspace of R®. We could describe it through its unit normal n, which
is also parallel to uxv where u and v are linearly independent vectors in the space
and uxv is the vector cross product. The vector product has the following properties:

® UXV = —vXu

° (/\1111 -+ )\QUQ)XV = /\1111 XV + /\QUQXV

We shall generalize these properties to vectors in any vector space V' — the difference
is that the product will not be a vector in V', but will lie in another associated vector
space.

Definition 12 An alternating bilinear form on a vector space V' is a map B : 'V X
V' — F such that

e B(v,w) =—B(w,v)
[} B()\lvl + )\2?)2, 'UJ) = )\13(?]1,’(1]) -+ )\QB(’UQ,’UJ)

This is the skew-symmetric version of the symmetric bilinear forms we used to define
quadrics. Given a basis {vy,...,v,}, B is uniquely determined by the skew symmetric
matrix B(v;,vj). We can add alternating forms and multiply by scalars so they form
a vector space, isomorphic to the space of skew-symmetric n x n matrices. This has
dimension n(n — 1)/2, spanned by the basis elements E* for a < b where EY = 0 if

{(I, b} 7& {7'7]} and Egll; = _E!()l(? =1

Definition 13 The sccond exterior power A*V of a finite-dimensional vector space
1s the dual space of the vector space of alternating bilinear forms on V. Elements of
A%V are called 2-vectors.
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This definition is a convenience — there are other ways of defining A%V, and for most
purposes it is only its characteristic properties which one needs rather than what its
objects are. A lot of mathematics is like that — just think of the real numbers.

Given this space we can now define our generalization of the cross-product, called the
exterior product or wedge product of two vectors.

Definition 14 Given u,v € V the exterior product u Av € A%V is the linear map to
F which, on an alternating bilinear form B, takes the value

(u Av)(B) = B(u,v).
From this definition follows some basic properties:
e (uAv)(B)= B(u,v) = —B(v,u) = —(v Au)(B) so that

VAU=—UuANv

and in particular u A u = 0.

[} ((/\1U1 + )\2U2> VAN ’U)(B) = B()\lul + /\QUQ,’U) = )\1B(U,1,U) + /\QB(UQ,U) which
implies
(Alul + )\QUQ) NV = )\1U1 AU+ )\QUQ A.

e if {v1,...,v,} is a basis for V then v; A v; for i < j is a basis for A*V.

This last property holds because v; A v;(E*) = Ef and in facts shows that {v; A v;}
is the dual basis to the basis {E£}.

Another important property is:

Proposition 15 Let u € V be a non-zero vector. Then u Av = 0 if and only if
v = Au for some scalar \.

Proof: If v = Au, then

uNv=uA (M) =AuAu)=0.

Conversely, if v # Au, u and v are linearly independent and can be extended to a
basis, but then u A v is a basis vector and so is non-zero. O
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It is the elements of A2V of the form u A v which will concern us, for suppose U C V
is a 2-dimensional vector subspace, and {u,v} is a basis of U. Then any other basis
is of the form {au + bv, cu + dv}, so, using u Au =v Av =0, we get

(au + bv) A (cu + dv) = (ad — be)u A v

(¢ 4)

is invertible ad — be # 0. It follows that the 1-dimensional subspace of A2V spanned
by u A v for a basis of U is well-defined by U itself and is independent of the choice
of basis. To each line in P(V') we can therefore associate a point in P(A?V).

and since the matrix

The problem is, not every vector in A2V can be written as u A v for vectors u,v € V.
In general it is a linear combination of such expressions. The task, in order to describe
the space of lines, is to characterize such decomposable 2-vectors.

Example: Consider v; A vy + v3 A v4 in a 4-dimensional vector space V. Suppose
we can write this as

v1 N\ Uy + V3 Nvg = (CL1U1 + asve + agvs + CL4’U4) N (bl’Ul + bQUQ + b3U3 + b4U4).
Equating the coefficient of vy A vy gives
a162 — CLle =1

and so (a,by) is non-zero. On the other hand the coefficients of vy A v and vy A vy
give

albg—a3b1 =0

a1b4 — a41)1 =0
and since (a1, b1) # 0, bsay—azby = 0. But the coefficient of vgAvy gives agbs—azby = 1
which is a contradiction. This 2-vector is not therefore decomposable. We shall find
an easier method of seeing this by working with p-vectors and exterior products.

4.2 Higher exterior powers

Definition 15 An alternating multilinear form of degree p on a vector space V' is a
map M :V x ... xV — F such that
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o M(up, ... Uy .oy, ty) = —M(Up, .oy Ujy e Uy, Up)

[ ] M()\ﬂ)l + /\QUQ,UQ, Ce ,Up) = >\1M(U1,U2, e ,up) + AQM(UQ,UQ, Ce ,up)

Example: Let uq,...,u, be column vectors in R". Then
M(uy, ..., u,) = det(uqus . .. uy)
is an alternating multilinear form of degree n.
The set of all alternating multilinear forms on V' is a vector space, and M is uniquely

determined by the values
M(’(}il,’l)i2, Ce >Uip)

for a basis {vy,...,v,}. But the alternating property allows us to change the order
so long as we multiply by —1 for each transposition of variables. This means that M
is uniquely determined by the values of indices for

i1<i2<...<ip.

The number of these is the number of p-element subsets of n, i.e. (Z), so this is the
dimension of the space of such forms. In particular if p > n this space is zero. We
define analogous constructions to those above for a pair of vectors:

Definition 16 The p-th exterior power APV of a finite-dimensional vector space is
the dual space of the vector space of alternating multilinear forms of degree p on V.
Elements of APV are called p-vectors.

and

Definition 17 Given uy,...,u, € V the exterior product uy Aua A\ ... Nu, € APV is
the linear map to F which, on an alternating multilinear form M takes the value

(ug Aug Ao oo Auy) (M) = M(uy, ug, . .., up).
The exterior product u; A ug A ... A u, has two defining properties

e it is linear in each variable u; separately

e interchanging two variables changes the sign of the product
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e if two variables are the same the exterior product vanishes.

We have a useful generalization of Proposition 15:

Proposition 16 The exterior product uy Aus A ... Ay, of p vectors u; € V' vanishes
if and only if the vectors are linearly dependent.

Proof: If there exists a linear relation
)\1U1+...)\pup:()

with \; # 0, then w; is a linear combination of the other vectors
U; = Z,ujuj
i
but then
u1/\U/Q/\.../\up:u1/\.../\(ZMjUj)/\UZ‘+1/\.../\Up
J#i
and expand this out by linearity, each term has a repeated variable u; and so vanishes.

Conversely, if uy, ..., u, are linearly independent they can be extended to a basis and
ur Aug A ... A, is a basis vector for APV and is thus non-zero. O

The exterior powers APV have natural properties with respect to linear transforma-
tions: given a linear transformation 7' : V' — W, and an alternating multilinear form
M on W we can define an induced one T*M on V by

T*M(vy,...,vp) = M(Twvy,...,Tv,)
and this defines a dual linear map
APT : APV — APW
with the property that
NPT (v ANvg Ao Avy) =Tog ATva Ao AT,

One such map is very familiar: take p = n, so that A"V is one-dimensional and
spanned by vy Avg A ... Av, for a basis {v1,...,v,}. A linear transformation from a
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1-dimensional vector space to itself is just multiplication by a scalar, so AT is some
scalar in the field. In fact it is the determinant of T'. To see this, observe that

ATy Ao Avy) =Tog Ao AT,

and the right hand side can be written using the matrix 7;; of 1" as

E Ellvil VANPIRAN ﬂnnvin E Ell Znnvll AN Vi, -

Ulsensin Ulsensin

Each of the terms vanishes if any two of iq,...,4, are equal by the property of the
exterior product, so we need only consider the case where (iy, .. .,14,) is a permutation
of (1,...,n). Any permutation is a product of transpositions, and any transposition
changes the sign of the exterior product, so

AnT(Ul VANIAAN Un Z sgn 1TU(2)2 Tg(n)n’Ul VANIVANY %

oESH

which is the definition of the determinant of 7;;. From our point of view the deter-
minant is naturally defined for a linear transformation 7 : V' — V| and what we just
did was to see how to calculate it from the matrix of 7.

We now have vector spaces APV of dimension (Z) naturally associated to V. The

space A'V is by definition the dual space of the space of linear functions on V, so
A'V = V" 2V and by convention we set A°V = F. Given p vectors vy,...,v, € V
we also have a corresponding vector v1 Ava A...Av, € APV and the notation suggests
that there should be a product so that we can remove the brackets:

U AN NANU) NI Ao vg) =ur Ao ANuy, Nog AL
P q P q

and indeed there is. So suppose a € APV, b € A1V, we want to define a A b € APTIV,
Now for fixed vectors uy,...,u, € V,

M (uq,ug, ..., Up, U1, 02, ..., 0)
is an alternating multilinear function of vy, ..., v, so if
> N Ui A A,
J1<...<Jq

then
g )\j1...qu(u17-"7up7vj17"'7vjq)

J1<...<Jq
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only depends on b and not on the particular way it is written in terms of a basis
{v1,...,v,}. Similarly if

a = Z ,uil...ipuil FANRAN U’ip

11<...<ip

then
E /Lil_ul-p]\/[(uil,...,uip,vl,...,vq)

11<...<ip

only depends on a. We can therefore unambiguously define a A b by its value on an
alternating p + ¢-form M as

(@AD)M) = Y pii Mg MWy, v, 0.

11<..<ip;Ji,.-<Jq

The product just involves linearity and removing the brackets.

Example: Suppose a = v1 + vy, b = v1 A vg — v3 A vy, wWith vy, v9,v3 € V then

aNb = (v1+vy)A (v Avg—v3 Avg)

Ul/\Ul/\U3—Ul/\Ug/\U2+U2/\U1AU3—U2AU3/\UQ

= -V ANU3/A\Vy+ V3 ANV Avs

= 1}1/\1}2/\1)3—1)1/\1)2/\’03:0

where we have used the basic rules that a repeated vector from V in an exterior
product gives zero, and the interchange of two vectors changes the sign.

Note that
Uy ANug Ao oAUy Ay Ao oA = (—1)Pop Aug Aug Ao Ay ANvg A Ay

because we have to interchange v; with each of the p u;’s to bring it to the front, and
then repeating

up Aug Ao AUy Ay Ao ANvg = (—D)Pog Ao A vg Aug Aug A A .

This extends by linearity to all a € APV, b € A?V. We then have the basic properties
of the exterior product;

e aN(b+c)=aNnb+alc
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e (aNb)ANc=aN(bAc)

e aNb=(=1)PbANaifa € APV, be NV

What we have done may seem rather formal, but it has many concrete applications.
For example if a =z Ay thenaAa =2 Ay Az Ay =0 because x € V is repeated.
So it is much easier to determine that a = v; A v + v3 A v4 from the Exercise above
is not decomposable:

(UlAU2+U3AU4)/\<01/\7}2+03/\?}4):2U1/\U2/\1)3/\U47é0.

4.3 Decomposable 2-vectors

A line in P(V') defines a point in P(A?V') defined by a decomposable 2-vector
a=xNYy.

We need to characterize algebraically this decomposability, and the following theorem
does just that:

Theorem 17 Let a € A?V be a non-zero element. Then a is decomposable if and
only ifaNa=0¢€ A*V.

Proof: If a =z Ay for two vectors x and y then
aNa=czANyANxzANy=0
because of the repeated factor x (or y).

We prove the converse by induction on the dimension of V. If dimV = 0,1 then
A%V = 0, so the first case is dimV = 2. In this case dimA?V =1 and v; A vy is a
non-zero element if vy, v is a basis for V', so any a is decomposable.

We consider the case dimV = 3 separately now. Given a non-zero a € A2V, define
AV — A3V by
A(v) =a Av.

Since dim A3V = 1, dimker A > 2, so let u;, us be linearly independent vectors in the
kernel and extend to a basis uy, us, ug of V. We can then write

a = AU A us + Aaus A up + Azug A us.
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Now by definition 0 = a A u; = A\jus A uz A up so Ay = 0 and similarly 0 = a A us
implies Ay = 0. It follows that a = A3u; A uy, which is decomposable.

Now assume inductively that the theorem is true for dim V' < n — 1 and consider the

case dim V' = n. Using a basis vy, ..., v,, write
n
a = Z Q35 A\ (%
1<i<j

n—1 n—1

= (Z amvi) N Up + Z a5 A (%
i=1 1<i<j

= ulAv,+d

where v € U and o' € A*U and U is the (n — 1)-dimensional space spanned by
ViyeooyUp—1.

Now
O=aNa=uAv,+d)N(uhv,+d)=2uNd Nv,+ad Nd.

But v,, doesn’t appear in the expansion of u A a’ or a’ A a’ so we separately obtain
uAa =0, a ANd =0.
By induction a’ A ' = 0 implies a’ = u; A us and so the first equation reads
uANug Aug =0
which from Proposition 16 says that there is a linear relation
A+ pug + peus = 0.

If A =0, then u; and usy are linearly dependent so a’ = u; A us = 0. This means that
u = u A v, and is therefore decomposable. If A # 0, u = Aju; + Aguq, SO

a:)\lul/\vn+)\2u2/\vn+u1/\u2

and this is the 3-dimensional case which is always decomposable as we showed above.

We conclude that a, in each case, is decomposable. O
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4.4 The Klein quadric

The first case where we can apply Theorem 17 is when dim V' = 4, to describe the
projective lines in the 3-dimensional space P(V). In this case dim A*V = 1 with a
basis vector vg A vy A vs A vy if V' is given the basis vy, ..., vs.

For a € A?V we write
a = Mg A vy + Aavg A Vg 4+ A3vg A U3 + f1U3 A vg + otz A vy + psvp A vy
and then a A a = B(a,a)vg A vq A vy A vg where
B(a,a) = 2(A1p1 + Agpiz + Asps) (8)

This is a non-degenerate quadratic form, and so B(a,a) = 0 defines a nonsingular
quadric Q C P(A%V). Moreover, any other choice of basis rescales B by a non-zero
constant and so ) is well defined in projective space.

We see then that a line ¢ C P(V') defines a decomposable 2-vector a = z A y, unique
up to a scalar and since a A a = 0, it defines a point L € Q C P(A?V). Conversely,
Theorem 17 tells us that every point in () is represented by a decomposable 2-vector.
Hence

Proposition 18 There is a one-to-one correspondence { « L between lines { in
a 3-dimensional projective space P(V') and points L in the 4-dimensional quadric

Q C P(A?V).

It was Felix Klein (1849-1925), building on the work of his supervisor Julius Pliicker,
who first described this in detail and @ is usually called the Klein quadric. The
equation of the quadric in the form (8) shows that there are linear subspaces inside
it of maximal dimension 2 whatever the field. The linear subspaces all relate to
intersection properties of lines in P(V'). For example:

Proposition 19 Two lines (1,0, C P(V) intersect if and only if the line joining the
two corresponding points Ly, Lo € Q) lies entirely in Q).

Proof: Let U;,U; C V be the two-dimensional subspaces of V' defined by ¢;, (5.
Suppose the lines intersect in X, with representative vector u € V. Then extend to
bases {u, u; } for Uy and {u, us} for Uy. The line in P(A?V) joining L; and L, is then
P(W) where W is spanned by u A u; and u A us.
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Any 2-vector in W is thus of the form
)\17,1, VAN U1l + )\gu N U2 = U A ()\1’&1 + )\QU,Q)
which is decomposable and so represents a point in ().

Conversely, if the lines do not intersect, Uy N Uy = {0} so V' = U; @ Us. In this case
choose bases {uy,v1} of Uy and {ug, vo} of Uy. Then {uy, vy, us, vo} is a basis of V'
and in particular u; A vy A ug A ve # 0. A point on the line joining L;, Lo is now
represented by a = A\ju; A vy + A A v9 so that

aa=2 A u; Avi Aus A vy

which vanishes only if A\; or Ay are zero. Thus the line only meets () in the points L
and LQ. O

Now fix a point X € P(V') and look at the set of lines passing through this point:

Proposition 20 The set of lines £ C P(V') passing through a fized point X € P(V)
corresponds to the set of points L € (Q which lie in a fized plane contained in Q).

Proof: Let = be a representative vector for X. The line P(U) passes through X if
and only if x € U, so P(U) is represented in the Klein quadric by a 2-vector of the
form

T A u.

Extend x to a basis {z, v, vs,v3} of V, then any decomposable 2-vector of the form
x Ay can be written as

T A (px + Avp + Agvg + Agv3) = M A vg + Ao A vg + A3z A 3.

Thus any line passing through X is represented by a 2-vector in the 3-dimensional
space of decomposables spanned by x A vy, x A vg, x A v3, which is a projective plane
in (). Conversely any point in this plane defines a line in P(V') through X. O

A plane in @) defined by a point X € P(V) like this is called an a-plane. There are
other planes in Q:

Proposition 21 Let P(W) C P(V) be a plane. The set of lines ¢ C P(W) corre-
sponds to the set of points L € Q) which lie in a fized plane contained in Q).
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A plane of this type contained in @ is called a G-plane.

Proof: We just use duality here: if U C V is 2-dimensional, then its annihilator
U C V'is 4 — 2 = 2-dimensional, so there is a one-to-one correspondence between
lines in P(V') and lines in P(V’). A point in @ therefore defines a line in either the
projective space or its dual. Now the dual of the set of lines passing through a point
is the set of lines lying in a (hyper)-plane. So applying Proposition 20 to P(V") gives
the result. a

In fact there are no more planes:

Proposition 22 Any plane in the Klein quadric QQ is either an a-plane or a (3-plane.
Proof: Take a plane in ) and three non-collinear points Ly, Lo, L3 on it. We get
three lines ¢y, 05,03 in P(V). Since the line joining L; to Lo lies in the plane and
hence in @), it follows from Proposition 19 that each pair of ¢y, {5, /3 intersect. There

are two possibilities:

e the three lines are concurrent:

e the three lines meet in three distinct points:

In the first case the three lines pass through a single point and so L1, Lo, L3 lie in an
a-plane. But this must be the original plane since the three representative vectors
for Ly, Lo, L3 are linearly independent as the points are not collinear.
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In the second case, if uq,us,us3 are representative vectors for the three points of
intersection of ¢, f5, (3, then Lq, Lo, Ls are represented by us A us, uz A uq, up Aug. A
general point on the plane is then given by

)\1’LL2 N usg + )\2U3 N up + )\1@63 N Uy
which is a general element of AU where U is spanned by w, us, us. Thus ¢;, ls, {5 all

lie in the plane P(U) C P(V). O

The existence of these two families of linear subspaces of maximal dimension is char-
acteristic of even-dimensional quadrics — it is the generalization of the two families of
lines we saw on the “cooling tower” quadric surface. In the case of the Klein quadric,
two different a-planes intersect in a point, since there is a unique line joining two
points. Similarly (and by duality) two 3 planes meet in a point. An a-plane and a 3
plane in general have empty intersection — if X is a point and 7 a plane with X ¢ 7,
there is no line in m which passes through X. If X € 7, then the intersection is a line.

4.5 Exercises

1. If a € APV and p is odd, show that a A a = 0.

2. Calculate a A b in the following cases:

[ a:b:vl/\v2+vg/\v3+v3/\v1
OCL:U1/\’U2—|—U3/\’U1, b:’UQ/\Ug/\U4

OCL:U1+U2+U3, b:vl/\vg—i-vz/\vg—i—vg/\vl.

[v1, 2, V3,4 are linearly independent|

3. Which of the following 2-vectors is decomposable?

® Uy AUy + Uy A U3
® Uy AUy + Uy AUg+ U3 AUy

® U AUy + vy Avg + U3 Avg+ vy Ay
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[v1, V9, V3,04 are linearly independent]
4. If dim V = n shown that every a € A" 'V is decomposable.

5. Let £ C P(V) be a line and m another such that the corresponding point M € @
lies on the polar hyperplane to L € (). Show that ¢ and m intersect.
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