4 Exterior algebra

4.1 Lines and 2-vectors

The time has come now to develop some new linear algebra in order to handle the space of lines in a projective space $P(V)$. In the projective plane we have seen that duality can deal with this but lines in higher dimensional spaces behave differently. From the point of view of linear algebra we are looking at 2-dimensional vector subspaces $U \subset V$.

To motivate what we shall do, consider how in Euclidean geometry we describe a 2-dimensional subspace of \mathbf{R}^{3}. We could describe it through its unit normal \mathbf{n}, which is also parallel to $\mathbf{u} \times \mathbf{v}$ where \mathbf{u} and \mathbf{v} are linearly independent vectors in the space and $\mathbf{u} \times \mathbf{v}$ is the vector cross product. The vector product has the following properties:

- $\mathbf{u} \times \mathbf{v}=-\mathbf{v} \times \mathbf{u}$
- $\left(\lambda_{1} \mathbf{u}_{1}+\lambda_{2} \mathbf{u}_{2}\right) \times \mathbf{v}=\lambda_{1} \mathbf{u}_{1} \times \mathbf{v}+\lambda_{2} \mathbf{u}_{2} \times \mathbf{v}$

We shall generalize these properties to vectors in any vector space V - the difference is that the product will not be a vector in V, but will lie in another associated vector space.

Definition 12 An alternating bilinear form on a vector space V is a map $B: V \times$ $V \rightarrow F$ such that

- $B(v, w)=-B(w, v)$
- $B\left(\lambda_{1} v_{1}+\lambda_{2} v_{2}, w\right)=\lambda_{1} B\left(v_{1}, w\right)+\lambda_{2} B\left(v_{2}, w\right)$

This is the skew-symmetric version of the symmetric bilinear forms we used to define quadrics. Given a basis $\left\{v_{1}, \ldots, v_{n}\right\}, B$ is uniquely determined by the skew symmetric matrix $B\left(v_{i}, v_{j}\right)$. We can add alternating forms and multiply by scalars so they form a vector space, isomorphic to the space of skew-symmetric $n \times n$ matrices. This has dimension $n(n-1) / 2$, spanned by the basis elements $E^{a b}$ for $a<b$ where $E_{i j}^{a b}=0$ if $\{a, b\} \neq\{i, j\}$ and $E_{a b}^{a b}=-E_{b a}^{a b}=1$.

Definition 13 The second exterior power $\Lambda^{2} V$ of a finite-dimensional vector space is the dual space of the vector space of alternating bilinear forms on V. Elements of $\Lambda^{2} V$ are called 2-vectors.

This definition is a convenience - there are other ways of defining $\Lambda^{2} V$, and for most purposes it is only its characteristic properties which one needs rather than what its objects are. A lot of mathematics is like that - just think of the real numbers.

Given this space we can now define our generalization of the cross-product, called the exterior product or wedge product of two vectors.

Definition 14 Given $u, v \in V$ the exterior product $u \wedge v \in \Lambda^{2} V$ is the linear map to F which, on an alternating bilinear form B, takes the value

$$
(u \wedge v)(B)=B(u, v)
$$

From this definition follows some basic properties:

- $(u \wedge v)(B)=B(u, v)=-B(v, u)=-(v \wedge u)(B)$ so that

$$
v \wedge u=-u \wedge v
$$

and in particular $u \wedge u=0$.

- $\left(\left(\lambda_{1} u_{1}+\lambda_{2} u_{2}\right) \wedge v\right)(B)=B\left(\lambda_{1} u_{1}+\lambda_{2} u_{2}, v\right)=\lambda_{1} B\left(u_{1}, v\right)+\lambda_{2} B\left(u_{2}, v\right)$ which implies

$$
\left(\lambda_{1} u_{1}+\lambda_{2} u_{2}\right) \wedge v=\lambda_{1} u_{1} \wedge v+\lambda_{2} u_{2} \wedge v .
$$

- if $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V then $v_{i} \wedge v_{j}$ for $i<j$ is a basis for $\Lambda^{2} V$.

This last property holds because $v_{i} \wedge v_{j}\left(E^{a b}\right)=E_{i j}^{a b}$ and in facts shows that $\left\{v_{i} \wedge v_{j}\right\}$ is the dual basis to the basis $\left\{E^{a b}\right\}$.

Another important property is:

Proposition 15 Let $u \in V$ be a non-zero vector. Then $u \wedge v=0$ if and only if $v=\lambda u$ for some scalar λ.

Proof: If $v=\lambda u$, then

$$
u \wedge v=u \wedge(\lambda u)=\lambda(u \wedge u)=0
$$

Conversely, if $v \neq \lambda u, u$ and v are linearly independent and can be extended to a basis, but then $u \wedge v$ is a basis vector and so is non-zero.

It is the elements of $\Lambda^{2} V$ of the form $u \wedge v$ which will concern us, for suppose $U \subset V$ is a 2 -dimensional vector subspace, and $\{u, v\}$ is a basis of U. Then any other basis is of the form $\{a u+b v, c u+d v\}$, so, using $u \wedge u=v \wedge v=0$, we get

$$
(a u+b v) \wedge(c u+d v)=(a d-b c) u \wedge v
$$

and since the matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

is invertible $a d-b c \neq 0$. It follows that the 1 -dimensional subspace of $\Lambda^{2} V$ spanned by $u \wedge v$ for a basis of U is well-defined by U itself and is independent of the choice of basis. To each line in $P(V)$ we can therefore associate a point in $P\left(\Lambda^{2} V\right)$.

The problem is, not every vector in $\Lambda^{2} V$ can be written as $u \wedge v$ for vectors $u, v \in V$. In general it is a linear combination of such expressions. The task, in order to describe the space of lines, is to characterize such decomposable 2 -vectors.

Example: Consider $v_{1} \wedge v_{2}+v_{3} \wedge v_{4}$ in a 4 -dimensional vector space V. Suppose we can write this as

$$
v_{1} \wedge v_{2}+v_{3} \wedge v_{4}=\left(a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}+a_{4} v_{4}\right) \wedge\left(b_{1} v_{1}+b_{2} v_{2}+b_{3} v_{3}+b_{4} v_{4}\right)
$$

Equating the coefficient of $v_{1} \wedge v_{2}$ gives

$$
a_{1} b_{2}-a_{2} b_{1}=1
$$

and so $\left(a_{1}, b_{1}\right)$ is non-zero. On the other hand the coefficients of $v_{1} \wedge v_{3}$ and $v_{1} \wedge v_{4}$ give

$$
\begin{aligned}
& a_{1} b_{3}-a_{3} b_{1}=0 \\
& a_{1} b_{4}-a_{4} b_{1}=0
\end{aligned}
$$

and since $\left(a_{1}, b_{1}\right) \neq 0, b_{3} a_{4}-a_{3} b_{4}=0$. But the coefficient of $v_{3} \wedge v_{4}$ gives $a_{4} b_{3}-a_{3} b_{4}=1$ which is a contradiction. This 2 -vector is not therefore decomposable. We shall find an easier method of seeing this by working with p-vectors and exterior products.

4.2 Higher exterior powers

Definition 15 An alternating multilinear form of degree p on a vector space V is a map $M: V \times \ldots \times V \rightarrow F$ such that

- $M\left(u_{1}, \ldots, u_{i}, \ldots, u_{j}, \ldots, u_{p}\right)=-M\left(u_{1}, \ldots, u_{j}, \ldots, u_{i}, \ldots, u_{p}\right)$
- $M\left(\lambda_{1} v_{1}+\lambda_{2} v_{2}, u_{2}, \ldots, u_{p}\right)=\lambda_{1} M\left(v_{1}, u_{2}, \ldots, u_{p}\right)+\lambda_{2} M\left(v_{2}, u_{2}, \ldots, u_{p}\right)$

Example: Let u_{1}, \ldots, u_{n} be column vectors in \mathbf{R}^{n}. Then

$$
M\left(u_{1}, \ldots, u_{n}\right)=\operatorname{det}\left(u_{1} u_{2} \ldots u_{n}\right)
$$

is an alternating multilinear form of degree n.

The set of all alternating multilinear forms on V is a vector space, and M is uniquely determined by the values

$$
M\left(v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{p}}\right)
$$

for a basis $\left\{v_{1}, \ldots, v_{n}\right\}$. But the alternating property allows us to change the order so long as we multiply by -1 for each transposition of variables. This means that M is uniquely determined by the values of indices for

$$
i_{1}<i_{2}<\ldots<i_{p}
$$

The number of these is the number of p-element subsets of n, i.e. $\binom{n}{p}$, so this is the dimension of the space of such forms. In particular if $p>n$ this space is zero. We define analogous constructions to those above for a pair of vectors:

Definition 16 The p-th exterior power $\Lambda^{p} V$ of a finite-dimensional vector space is the dual space of the vector space of alternating multilinear forms of degree p on V. Elements of $\Lambda^{p} V$ are called p-vectors.
and
Definition 17 Given $u_{1}, \ldots, u_{p} \in V$ the exterior product $u_{1} \wedge u_{2} \wedge \ldots \wedge u_{p} \in \Lambda^{p} V$ is the linear map to F which, on an alternating multilinear form M takes the value

$$
\left(u_{1} \wedge u_{2} \wedge \ldots \wedge u_{p}\right)(M)=M\left(u_{1}, u_{2}, \ldots, u_{p}\right)
$$

The exterior product $u_{1} \wedge u_{2} \wedge \ldots \wedge u_{p}$ has two defining properties

- it is linear in each variable u_{i} separately
- interchanging two variables changes the sign of the product
- if two variables are the same the exterior product vanishes.

We have a useful generalization of Proposition 15:

Proposition 16 The exterior product $u_{1} \wedge u_{2} \wedge \ldots \wedge u_{p}$ of p vectors $u_{i} \in V$ vanishes if and only if the vectors are linearly dependent.

Proof: If there exists a linear relation

$$
\lambda_{1} u_{1}+\ldots \lambda_{p} u_{p}=0
$$

with $\lambda_{i} \neq 0$, then u_{i} is a linear combination of the other vectors

$$
u_{i}=\sum_{j \neq i} \mu_{j} u_{j}
$$

but then

$$
u_{1} \wedge u_{2} \wedge \ldots \wedge u_{p}=u_{1} \wedge \ldots \wedge\left(\sum_{j \neq i} \mu_{j} u_{j}\right) \wedge u_{i+1} \wedge \ldots \wedge u_{p}
$$

and expand this out by linearity, each term has a repeated variable u_{j} and so vanishes. Conversely, if u_{1}, \ldots, u_{p} are linearly independent they can be extended to a basis and $u_{1} \wedge u_{2} \wedge \ldots \wedge u_{p}$ is a basis vector for $\Lambda^{p} V$ and is thus non-zero.

The exterior powers $\Lambda^{p} V$ have natural properties with respect to linear transformations: given a linear transformation $T: V \rightarrow W$, and an alternating multilinear form M on W we can define an induced one $T^{*} M$ on V by

$$
T^{*} M\left(v_{1}, \ldots, v_{p}\right)=M\left(T v_{1}, \ldots, T v_{p}\right)
$$

and this defines a dual linear map

$$
\Lambda^{p} T: \Lambda^{p} V \rightarrow \Lambda^{p} W
$$

with the property that

$$
\Lambda^{p} T\left(v_{1} \wedge v_{2} \wedge \ldots \wedge v_{p}\right)=T v_{1} \wedge T v_{2} \wedge \ldots \wedge T v_{p}
$$

One such map is very familiar: take $p=n$, so that $\Lambda^{n} V$ is one-dimensional and spanned by $v_{1} \wedge v_{2} \wedge \ldots \wedge v_{n}$ for a basis $\left\{v_{1}, \ldots, v_{n}\right\}$. A linear transformation from a

1-dimensional vector space to itself is just multiplication by a scalar, so $\Lambda^{n} T$ is some scalar in the field. In fact it is the determinant of T. To see this, observe that

$$
\Lambda^{n} T\left(v_{1} \wedge \ldots \wedge v_{n}\right)=T v_{1} \wedge \ldots \wedge T v_{n}
$$

and the right hand side can be written using the matrix $T_{i j}$ of T as

$$
\sum_{i_{1}, \ldots, i_{n}} T_{i_{1} 1} v_{i_{1}} \wedge \ldots \wedge T_{i_{n} n} v_{i_{n}}=\sum_{i_{1}, \ldots, i_{n}} T_{i_{1} 1} \ldots T_{i_{n} n} v_{i_{1}} \wedge \ldots \wedge v_{i_{n}}
$$

Each of the terms vanishes if any two of i_{1}, \ldots, i_{n} are equal by the property of the exterior product, so we need only consider the case where $\left(i_{1}, \ldots, i_{n}\right)$ is a permutation of $(1, \ldots, n)$. Any permutation is a product of transpositions, and any transposition changes the sign of the exterior product, so

$$
\Lambda^{n} T\left(v_{1} \wedge \ldots \wedge v_{n}\right)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) T_{\sigma(1) 1} T_{\sigma(2) 2} \ldots T_{\sigma(n) n} v_{1} \wedge \ldots \wedge v_{n}
$$

which is the definition of the determinant of $T_{i j}$. From our point of view the determinant is naturally defined for a linear transformation $T: V \rightarrow V$, and what we just did was to see how to calculate it from the matrix of T.

We now have vector spaces $\Lambda^{p} V$ of dimension $\binom{n}{p}$ naturally associated to V. The space $\Lambda^{1} V$ is by definition the dual space of the space of linear functions on V, so $\Lambda^{1} V=V^{\prime \prime} \cong V$ and by convention we set $\Lambda^{0} V=F$. Given p vectors $v_{1}, \ldots, v_{p} \in V$ we also have a corresponding vector $v_{1} \wedge v_{2} \wedge \ldots \wedge v_{p} \in \Lambda^{p} V$ and the notation suggests that there should be a product so that we can remove the brackets:

$$
\left(u_{1} \wedge \ldots \wedge u_{p}\right) \wedge\left(v_{1} \wedge \ldots v_{q}\right)=u_{1} \wedge \ldots \wedge u_{p} \wedge v_{1} \wedge \ldots v_{q}
$$

and indeed there is. So suppose $a \in \Lambda^{p} V, b \in \Lambda^{q} V$, we want to define $a \wedge b \in \Lambda^{p+q} V$. Now for fixed vectors $u_{1}, \ldots, u_{p} \in V$,

$$
M\left(u_{1}, u_{2}, \ldots, u_{p}, v_{1}, v_{2}, \ldots, v_{q}\right)
$$

is an alternating multilinear function of v_{1}, \ldots, v_{q}, so if

$$
b=\sum_{j_{1}<\ldots<j_{q}} \lambda_{j_{1} \ldots j_{q}} v_{j_{1}} \wedge \ldots \wedge v_{j_{q}}
$$

then

$$
\sum_{j_{1}<\ldots<j_{q}} \lambda_{j_{1} \ldots j_{q}} M\left(u_{1}, \ldots, u_{p}, v_{j_{1}}, \ldots, v_{j_{q}}\right)
$$

only depends on b and not on the particular way it is written in terms of a basis $\left\{v_{1}, \ldots, v_{n}\right\}$. Similarly if

$$
a=\sum_{i_{1}<\ldots<i_{p}} \mu_{i_{1} \ldots i_{p}} u_{i_{1}} \wedge \ldots \wedge u_{i_{p}}
$$

then

$$
\sum_{i_{1}<\ldots<i_{p}} \mu_{i_{1} \ldots i_{p}} M\left(u_{i_{1}}, \ldots, u_{i_{p}}, v_{1}, \ldots, v_{q}\right)
$$

only depends on a. We can therefore unambiguously define $a \wedge b$ by its value on an alternating $p+q$-form M as

$$
(a \wedge b)(M)=\sum_{i_{1}<. .<i_{p} ; j_{i}, . .<j_{q}} \mu_{i_{1} \ldots i_{p}} \lambda_{j_{1} \ldots j_{q}} M\left(u_{i_{1}}, \ldots, u_{i_{p}}, v_{j_{1}}, \ldots, v_{j_{q}}\right) .
$$

The product just involves linearity and removing the brackets.

Example: Suppose $a=v_{1}+v_{2}, b=v_{1} \wedge v_{3}-v_{3} \wedge v_{2}$, with $v_{1}, v_{2}, v_{3} \in V$ then

$$
\begin{aligned}
a \wedge b & =\left(v_{1}+v_{2}\right) \wedge\left(v_{1} \wedge v_{3}-v_{3} \wedge v_{2}\right) \\
& =v_{1} \wedge v_{1} \wedge v_{3}-v_{1} \wedge v_{3} \wedge v_{2}+v_{2} \wedge v_{1} \wedge v_{3}-v_{2} \wedge v_{3} \wedge v_{2} \\
& =-v_{1} \wedge v_{3} \wedge v_{2}+v_{2} \wedge v_{1} \wedge v_{3} \\
& =v_{1} \wedge v_{2} \wedge v_{3}-v_{1} \wedge v_{2} \wedge v_{3}=0
\end{aligned}
$$

where we have used the basic rules that a repeated vector from V in an exterior product gives zero, and the interchange of two vectors changes the sign.

Note that

$$
u_{1} \wedge u_{2} \wedge \ldots \wedge u_{p} \wedge v_{1} \wedge \ldots \wedge v_{q}=(-1)^{p} v_{1} \wedge u_{1} \wedge u_{2} \wedge \ldots \wedge u_{p} \wedge v_{2} \wedge \ldots \wedge v_{q}
$$

because we have to interchange v_{1} with each of the $p u_{i}$'s to bring it to the front, and then repeating

$$
u_{1} \wedge u_{2} \wedge \ldots \wedge u_{p} \wedge v_{1} \wedge \ldots \wedge v_{q}=(-1)^{p q} v_{1} \wedge \ldots \wedge v_{q} \wedge u_{1} \wedge u_{2} \wedge \ldots \wedge u_{p}
$$

This extends by linearity to all $a \in \Lambda^{p} V, b \in \Lambda^{q} V$. We then have the basic properties of the exterior product;

- $a \wedge(b+c)=a \wedge b+a \wedge c$
- $(a \wedge b) \wedge c=a \wedge(b \wedge c)$
- $a \wedge b=(-1)^{p q} b \wedge a$ if $a \in \Lambda^{p} V, b \in \Lambda^{q} V$

What we have done may seem rather formal, but it has many concrete applications. For example if $a=x \wedge y$ then $a \wedge a=x \wedge y \wedge x \wedge y=0$ because $x \in V$ is repeated. So it is much easier to determine that $a=v_{1} \wedge v_{2}+v_{3} \wedge v_{4}$ from the Exercise above is not decomposable:

$$
\left(v_{1} \wedge v_{2}+v_{3} \wedge v_{4}\right) \wedge\left(v_{1} \wedge v_{2}+v_{3} \wedge v_{4}\right)=2 v_{1} \wedge v_{2} \wedge v_{3} \wedge v_{4} \neq 0
$$

4.3 Decomposable 2-vectors

A line in $P(V)$ defines a point in $P\left(\Lambda^{2} V\right)$ defined by a decomposable 2-vector

$$
a=x \wedge y .
$$

We need to characterize algebraically this decomposability, and the following theorem does just that:

Theorem 17 Let $a \in \Lambda^{2} V$ be a non-zero element. Then a is decomposable if and only if $a \wedge a=0 \in \Lambda^{4} V$.

Proof: If $a=x \wedge y$ for two vectors x and y then

$$
a \wedge a=x \wedge y \wedge x \wedge y=0
$$

because of the repeated factor x (or y).
We prove the converse by induction on the dimension of V. If $\operatorname{dim} V=0,1$ then $\Lambda^{2} V=0$, so the first case is $\operatorname{dim} V=2$. In this case $\operatorname{dim} \Lambda^{2} V=1$ and $v_{1} \wedge v_{2}$ is a non-zero element if v_{1}, v_{2} is a basis for V, so any a is decomposable.

We consider the case $\operatorname{dim} V=3$ separately now. Given a non-zero $a \in \Lambda^{2} V$, define $A: V \rightarrow \Lambda^{3} V$ by

$$
A(v)=a \wedge v
$$

Since $\operatorname{dim} \Lambda^{3} V=1, \operatorname{dim} \operatorname{ker} A \geq 2$, so let u_{1}, u_{2} be linearly independent vectors in the kernel and extend to a basis u_{1}, u_{2}, u_{3} of V. We can then write

$$
a=\lambda_{1} u_{2} \wedge u_{3}+\lambda_{2} u_{3} \wedge u_{1}+\lambda_{3} u_{1} \wedge u_{2}
$$

Now by definition $0=a \wedge u_{1}=\lambda_{1} u_{2} \wedge u_{3} \wedge u_{1}$ so $\lambda_{1}=0$ and similarly $0=a \wedge u_{2}$ implies $\lambda_{2}=0$. It follows that $a=\lambda_{3} u_{1} \wedge u_{2}$, which is decomposable.

Now assume inductively that the theorem is true for $\operatorname{dim} V \leq n-1$ and consider the case $\operatorname{dim} V=n$. Using a basis v_{1}, \ldots, v_{n}, write

$$
\begin{aligned}
a & =\sum_{1 \leq i<j}^{n} a_{i j} v_{i} \wedge v_{j} \\
& =\left(\sum_{i=1}^{n-1} a_{i n} v_{i}\right) \wedge v_{n}+\sum_{1 \leq i<j}^{n-1} a_{i j} v_{i} \wedge v_{j} \\
& =u \wedge v_{n}+a^{\prime}
\end{aligned}
$$

where $u \in U$ and $a^{\prime} \in \Lambda^{2} U$ and U is the ($n-1$)-dimensional space spanned by v_{1}, \ldots, v_{n-1}.

Now

$$
0=a \wedge a=\left(u \wedge v_{n}+a^{\prime}\right) \wedge\left(u \wedge v_{n}+a^{\prime}\right)=2 u \wedge a^{\prime} \wedge v_{n}+a^{\prime} \wedge a^{\prime}
$$

But v_{n} doesn't appear in the expansion of $u \wedge a^{\prime}$ or $a^{\prime} \wedge a^{\prime}$ so we separately obtain

$$
u \wedge a^{\prime}=0, \quad a^{\prime} \wedge a^{\prime}=0
$$

By induction $a^{\prime} \wedge a^{\prime}=0$ implies $a^{\prime}=u_{1} \wedge u_{2}$ and so the first equation reads

$$
u \wedge u_{1} \wedge u_{2}=0
$$

which from Proposition 16 says that there is a linear relation

$$
\lambda u+\mu_{1} u_{1}+\mu_{2} u_{2}=0 .
$$

If $\lambda=0$, then u_{1} and u_{2} are linearly dependent so $a^{\prime}=u_{1} \wedge u_{2}=0$. This means that $u=u \wedge v_{n}$ and is therefore decomposable. If $\lambda \neq 0, u=\lambda_{1} u_{1}+\lambda_{2} u_{2}$, so

$$
a=\lambda_{1} u_{1} \wedge v_{n}+\lambda_{2} u_{2} \wedge v_{n}+u_{1} \wedge u_{2}
$$

and this is the 3-dimensional case which is always decomposable as we showed above. We conclude that a, in each case, is decomposable.

4.4 The Klein quadric

The first case where we can apply Theorem 17 is when $\operatorname{dim} V=4$, to describe the projective lines in the 3 -dimensional space $P(V)$. In this case $\operatorname{dim} \Lambda^{4} V=1$ with a basis vector $v_{0} \wedge v_{1} \wedge v_{2} \wedge v_{3}$ if V is given the basis v_{0}, \ldots, v_{3}.

For $a \in \Lambda^{2} V$ we write

$$
a=\lambda_{1} v_{0} \wedge v_{1}+\lambda_{2} v_{0} \wedge v_{2}+\lambda_{3} v_{0} \wedge v_{3}+\mu_{1} v_{2} \wedge v_{3}+\mu_{2} v_{3} \wedge v_{1}+\mu_{3} v_{1} \wedge v_{2}
$$

and then $a \wedge a=B(a, a) v_{0} \wedge v_{1} \wedge v_{2} \wedge v_{3}$ where

$$
\begin{equation*}
B(a, a)=2\left(\lambda_{1} \mu_{1}+\lambda_{2} \mu_{2}+\lambda_{3} \mu_{3}\right) \tag{8}
\end{equation*}
$$

This is a non-degenerate quadratic form, and so $B(a, a)=0$ defines a nonsingular quadric $Q \subset P\left(\Lambda^{2} V\right)$. Moreover, any other choice of basis rescales B by a non-zero constant and so Q is well defined in projective space.

We see then that a line $\ell \subset P(V)$ defines a decomposable 2-vector $a=x \wedge y$, unique up to a scalar and since $a \wedge a=0$, it defines a point $L \in Q \subset P\left(\Lambda^{2} V\right)$. Conversely, Theorem 17 tells us that every point in Q is represented by a decomposable 2-vector. Hence

Proposition 18 There is a one-to-one correspondence $\ell \leftrightarrow L$ between lines ℓ in a 3-dimensional projective space $P(V)$ and points L in the 4-dimensional quadric $Q \subset P\left(\Lambda^{2} V\right)$.

It was Felix Klein (1849-1925), building on the work of his supervisor Julius Plücker, who first described this in detail and Q is usually called the Klein quadric. The equation of the quadric in the form (8) shows that there are linear subspaces inside it of maximal dimension 2 whatever the field. The linear subspaces all relate to intersection properties of lines in $P(V)$. For example:

Proposition 19 Two lines $\ell_{1}, \ell_{2} \subset P(V)$ intersect if and only if the line joining the two corresponding points $L_{1}, L_{2} \in Q$ lies entirely in Q.

Proof: Let $U_{1}, U_{2} \subset V$ be the two-dimensional subspaces of V defined by ℓ_{1}, ℓ_{2}. Suppose the lines intersect in X, with representative vector $u \in V$. Then extend to bases $\left\{u, u_{1}\right\}$ for U_{1} and $\left\{u, u_{2}\right\}$ for U_{2}. The line in $P\left(\Lambda^{2} V\right)$ joining L_{1} and L_{2} is then $P(W)$ where W is spanned by $u \wedge u_{1}$ and $u \wedge u_{2}$.

Any 2-vector in W is thus of the form

$$
\lambda_{1} u \wedge u_{1}+\lambda_{2} u \wedge u_{2}=u \wedge\left(\lambda_{1} u_{1}+\lambda_{2} u_{2}\right)
$$

which is decomposable and so represents a point in Q.
Conversely, if the lines do not intersect, $U_{1} \cap U_{2}=\{0\}$ so $V=U_{1} \oplus U_{2}$. In this case choose bases $\left\{u_{1}, v_{1}\right\}$ of U_{1} and $\left\{u_{2}, v_{2}\right\}$ of U_{2}. Then $\left\{u_{1}, v_{1}, u_{2}, v_{2}\right\}$ is a basis of V and in particular $u_{1} \wedge v_{1} \wedge u_{2} \wedge v_{2} \neq 0$. A point on the line joining L_{1}, L_{2} is now represented by $a=\lambda_{1} u_{1} \wedge v_{1}+\lambda_{2} u_{2} \wedge v_{2}$ so that

$$
a \wedge a=2 \lambda_{1} \lambda_{2} u_{1} \wedge v_{1} \wedge u_{2} \wedge v_{2}
$$

which vanishes only if λ_{1} or λ_{2} are zero. Thus the line only meets Q in the points L_{1} and L_{2}.

Now fix a point $X \in P(V)$ and look at the set of lines passing through this point:

Proposition 20 The set of lines $\ell \subset P(V)$ passing through a fixed point $X \in P(V)$ corresponds to the set of points $L \in Q$ which lie in a fixed plane contained in Q.

Proof: Let x be a representative vector for X. The line $P(U)$ passes through X if and only if $x \in U$, so $P(U)$ is represented in the Klein quadric by a 2 -vector of the form

$$
x \wedge u
$$

Extend x to a basis $\left\{x, v_{1}, v_{2}, v_{3}\right\}$ of V, then any decomposable 2 -vector of the form $x \wedge y$ can be written as

$$
x \wedge\left(\mu x+\lambda_{1} v_{1}+\lambda_{2} v_{2}+\lambda_{3} v_{3}\right)=\lambda_{1} x \wedge v_{1}+\lambda_{2} x \wedge v_{2}+\lambda_{3} x \wedge v_{3} .
$$

Thus any line passing through X is represented by a 2 -vector in the 3 -dimensional space of decomposables spanned by $x \wedge v_{1}, x \wedge v_{2}, x \wedge v_{3}$, which is a projective plane in Q. Conversely any point in this plane defines a line in $P(V)$ through X.

A plane in Q defined by a point $X \in P(V)$ like this is called an α-plane. There are other planes in Q :

Proposition 21 Let $P(W) \subset P(V)$ be a plane. The set of lines $\ell \subset P(W)$ corresponds to the set of points $L \in Q$ which lie in a fixed plane contained in Q.

A plane of this type contained in Q is called a β-plane.
Proof: We just use duality here: if $U \subset V$ is 2-dimensional, then its annihilator $U^{0} \subset V^{\prime}$ is $4-2=2$-dimensional, so there is a one-to-one correspondence between lines in $P(V)$ and lines in $P\left(V^{\prime}\right)$. A point in Q therefore defines a line in either the projective space or its dual. Now the dual of the set of lines passing through a point is the set of lines lying in a (hyper)-plane. So applying Proposition 20 to $P\left(V^{\prime}\right)$ gives the result.

In fact there are no more planes:
Proposition 22 Any plane in the Klein quadric Q is either an α-plane or a β-plane.
Proof: Take a plane in Q and three non-collinear points L_{1}, L_{2}, L_{3} on it. We get three lines $\ell_{1}, \ell_{2}, \ell_{3}$ in $P(V)$. Since the line joining L_{1} to L_{2} lies in the plane and hence in Q, it follows from Proposition 19 that each pair of $\ell_{1}, \ell_{2}, \ell_{3}$ intersect. There are two possibilities:

- the three lines are concurrent:

- the three lines meet in three distinct points:

In the first case the three lines pass through a single point and so L_{1}, L_{2}, L_{3} lie in an α-plane. But this must be the original plane since the three representative vectors for L_{1}, L_{2}, L_{3} are linearly independent as the points are not collinear.

In the second case, if u_{1}, u_{2}, u_{3} are representative vectors for the three points of intersection of $\ell_{1}, \ell_{2}, \ell_{3}$, then L_{1}, L_{2}, L_{3} are represented by $u_{2} \wedge u_{3}, u_{3} \wedge u_{1}, u_{1} \wedge u_{2}$. A general point on the plane is then given by

$$
\lambda_{1} u_{2} \wedge u_{3}+\lambda_{2} u_{3} \wedge u_{1}+\lambda_{1} u_{3} \wedge u_{1}
$$

which is a general element of $\Lambda^{2} U$ where U is spanned by u_{1}, u_{2}, u_{3}. Thus $\ell_{1}, \ell_{2}, \ell_{3}$ all lie in the plane $P(U) \subset P(V)$.

The existence of these two families of linear subspaces of maximal dimension is characteristic of even-dimensional quadrics - it is the generalization of the two families of lines we saw on the "cooling tower" quadric surface. In the case of the Klein quadric, two different α-planes intersect in a point, since there is a unique line joining two points. Similarly (and by duality) two β planes meet in a point. An α-plane and a β plane in general have empty intersection - if X is a point and π a plane with $X \notin \pi$, there is no line in π which passes through X. If $X \in \pi$, then the intersection is a line.

4.5 Exercises

1. If $a \in \Lambda^{p} V$ and p is odd, show that $a \wedge a=0$.
2. Calculate $a \wedge b$ in the following cases:

- $a=b=v_{1} \wedge v_{2}+v_{2} \wedge v_{3}+v_{3} \wedge v_{1}$
- $a=v_{1} \wedge v_{2}+v_{3} \wedge v_{1}, \quad b=v_{2} \wedge v_{3} \wedge v_{4}$
- $a=v_{1}+v_{2}+v_{3}, \quad b=v_{1} \wedge v_{2}+v_{2} \wedge v_{3}+v_{3} \wedge v_{1}$.
$\left[v_{1}, v_{2}, v_{3}, v_{4}\right.$ are linearly independent $]$

3 . Which of the following 2 -vectors is decomposable?

- $v_{1} \wedge v_{2}+v_{2} \wedge v_{3}$
- $v_{1} \wedge v_{2}+v_{2} \wedge v_{3}+v_{3} \wedge v_{4}$
- $v_{1} \wedge v_{2}+v_{2} \wedge v_{3}+v_{3} \wedge v_{4}+v_{4} \wedge v_{1}$.
$\left[v_{1}, v_{2}, v_{3}, v_{4}\right.$ are linearly independent $]$

4. If $\operatorname{dim} V=n$ shown that every $a \in \Lambda^{n-1} V$ is decomposable.
5. Let $\ell \subset P(V)$ be a line and m another such that the corresponding point $M \in Q$ lies on the polar hyperplane to $L \in Q$. Show that ℓ and m intersect.
