
STATIONARY DISKS AND GREEN FUNCTIONS

IN ALMOST COMPLEX DOMAINS

G. PATRIZIO AND A. SPIRO

Abstract. Using generalized Riemann maps, normal forms for almost
complex domains (D, J) with singular foliations by stationary disks are
defined. Such normal forms are used to construct counterexamples and
to determine intrinsic conditions, under which the stationary disks are
extremal disks for the Kobayashi metric or determine solutions to almost
complex Monge-Ampère equation.

1. Introduction

Let D ⊂ M be a domain of an almost complex manifold (M,J) with

smooth boundary ∂D and J̃ the canonical almost complex structure of T ∗M
determined by J . We recall that a smooth, proper J-holomorphic embedding
f : ∆→ D of the unit disk into D is called stationary disk if there exists a

map f̃ : ∆ → T ∗M \ {zero section}, which is J̃-holomorphic, projects onto

f and is such that, for any ζ ∈ ∂∆, the 1-form ζ−1 · f̃(ζ) ∈ T ∗f(ζ)M vanishes

identically on Tf(ζ)∂D (see §2).
The stationary disks of almost complex domains have been introduced by

Coupet, Gaussier and Sukhov in [4, 5] (see also [6]). They are useful bi-
holomorphic invariants of almost complex domains and constitute a natural
generalization of the stationary disks of strictly linearly convex domains of
Cn, considered for the first time in celebrated Lempert’s papers on extremal
disks and Kobayashi metrics ([12, 14]).

Existence and uniqueness results on stationary disks, with prescribed cen-
ter and direction, has been established in various contexts, both in the inte-
grable and non-integrable case (see e.g. [12, 16, 24, 4, 22, 21, 6]). Moreover,
when J is integrable and D ⊂ (M,J) is equivalent to a strictly linearly con-

vex domain in Cn, the family F (xo) of stationary disks centered at a fixed
xo ∈ D, determines a smooth foliation of D \ {xo} with several important
properties ([12, 13]):
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a) it determines a natural diffeomorphism Φ : B
n −→ D, which gener-

alizes the usual Riemann map between ∆ and any other smoothly
bounded domain of C;

b) it consists of disks that are extremal for the Kobayashi metric of D;
c) it can be used to determine a Green pluripotential for D with pole in
xo, i.e. a plurisubharmonic function that solves the classical complex
Monge-Ampère equation and has a logarithmic pole at xo.

When J is not integrable, there are several cases, in which the family F (xo) of
stationary disks, centered at a fixed xo ∈ D, gives a smooth foliation for D \
{xo} (e.g. when (D,J) is equivalent with a strictly linearly convex domain
of Cn and J is a small deformation of Jst). In these cases, it is still true

that F (xo) determines a J-biholomorphically invariant, generalized Riemann
map Φ : B

n −→ D. But in general, it is no longer true that the disks of
F (xo) are extremal disks for the Kobayashi metric nor that they can be used
to solve the almost complex Monge-Ampère equation. Here, by “almost-
complex Monge-Ampère equation” we mean the differential equation that
characterizes the maximal J-plurisubharmonic functions of class C2 of an
almost complex, strongly pseudoconvex domain. By comparison with usual
complex Monge-Ampère equation, it can be considered as a very appropriate
analogue in almost complex settings.

There are many reasons which justify these phenomena. In case of non-
integrable complex structures, the great abundance of J-holomorphic curves,
which gives an advantage in many geometrical considerations, turns into a
drawback in considering objects as the Kobayashi metric, which reveals to
be a weaker and more elusive invariant. In particular, it is natural to expect
that the notions of stationary and extremal disks, which involve fine (and
different!) properties, become equivalent only when the almost complex
structure satisfies appropriate restrictions. In fact, in [10] it is shown that,
in general, these notions are different.

As for the construction of Green pluripotentials, additional difficulties
emerge. In fact, if one has the integrable setting in mind, the behavior of
plurisubharmonic functions in the non-integrable case is quite unexpected.
For instance, there are arbitrarily small deformations J of the standard com-
plex structure, w.r.t. which the logarithm of squared norm log | · |2 of Cn is
not J-plurisubharmonic. Furthermore, the kernel distribution of an almost-
complex Monge-Ampère operator, even if appropriate non-degenericity con-
ditions is assumed, is usually neither integrable, nor J-invariant. Since all
this is in clear contrast with the classical setting, it cannot be expected
that for completely arbitrary non-integrable structures one can reproduce
the whole pattern of fruitful properties, which relate regular solutions of
complex Monge-Ampère equations and Monge-Ampère foliations.

In this paper, with the help of generalized Riemann maps, we determine
“normal forms” for almost complex domains (D,J) with singular foliations
by stationary disks. We use such normal form to construct examples and
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determine intrinsic conditions, under which the disks of the foliations are
extremal disks for the Kobayashi metric or give solutions to the almost
complex Monge-Ampère equation. In fact, we are able to determine suffi-
cient conditions on the almost complex structure, which ensure the existence
of almost complex Green pluripotential and the equality between the two
notions of stationary disks and of extremal disks. It is interesting to note
that the class of such structures (called nice or very nice almost complex
structures) is very large in many regards, in fact determined by a finite set
of conditions (it is finite-codimensional) in an infinite dimensional space.
We hope that such notions will be fruitful also for other questions in almost
complex analysis and geometry.

The paper is organized as follows. After a preliminary section, in §3 we
introduce the notion of almost complex domains of circular type in normal
form. They are pairs (Bn, J), formed by the unit ball Bn ⊂ Cn and an
almost complex structure J , which satisfies conditions that guarantee that
any radial disk through the origin is stationary for (Bn, J). Since any al-
most complex domain, admitting a singular foliation by stationary disks, is
biholomorphic to a domain in normal form, any problem on such foliations
can be reduced to questions on the radial disks of normal forms. In §4, we
study conditions on J , under which the radial disks of a normal form (Bn, J)
are extremal. In §5, we define the almost complex Monge-Ampère equation,
we prove that it characterize maximal C2 plurisubharmonic functions and we
determine conditions on normal forms (Bn, J), under which the stationary
foliation by radial disks determines a Green pluripotential.

Notation. The standard complex structure of Cn is denoted by Jst, the unit
ball { |z| < 1 } ⊂ Cn is denoted by Bn and, when n = 1, by ∆ = B1.

For any α > 0 and ε ∈]0, 1[, a map f : ∆ −→ M into a manifold M
is said of class Cα,ε if there are coordinates ξ = (x1, . . . , xN ) : U −→ RN
on a neighborhood of f(∆), such that ξ ◦ f : ∆ −→ Rn is of class Cα
on ∆ and Hölder continuous of class Cε on ∆. If Y = Y j

i
∂
∂xj
⊗ dxi is

a tensor field of type (1, 1) on Rm and U is a subset of Rm, we denote

‖Y ‖U ,Ck
def
=
∑
|J |≤k

sup
x∈U

∣∣∣∣∣∂|J |Y i
j

∂xJ
(x)

∣∣∣∣∣.
2. Preliminaries

2.1. Canonical lifts of almost complex structures. Let (M,J) be an
n-dimensional complex manifold with integrable complex structure J . In
this case, TM and T ∗M are naturally endowed with integrable complex

structures J and J̃, respectively, corresponding to the atlases of complex

charts ξ̂ : TM |U −→ TCn ' C2n, ξ̃ : TM∗|U −→ T ∗Cn ' C2n, determined
by charts ξ = (zi) : U ⊂ M −→ Cn of the atlas of the complex manifold
structure of (M,J).
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When (M,J) is an almost complex manifold, there is no canonical atlas
of complex charts on M and the above construction is meaningless. Nev-

ertheless, there are natural almost complex structures J and J̃ on TM and
T ∗M , respectively, also in this more general case (see [26], §I.5 and §VII.7).
Using coordinates they are defined as follows . For a given a system of real
coordinates ξ = (x1, . . . , x2n) : U ⊂M −→ R2n, we denote by

ξ̂ = (x1, . . . , x2n, q1, . . . , q2n) : π−1(U) ⊂ TM −→ R4n , (2.1)

ξ̃ = (x1, . . . , x2n, p1, . . . , p2n) : π̃−1(U) ⊂ T ∗M −→ R4n , (2.2)

the associated coordinates on TM |U and T ∗M |U , determined by the com-
ponents qi of vectors v = qi ∂

∂xi
and the components pj of the covectors

α = pjdx
j . If J ij = J ij(x) denote the components of J = J ij

∂
∂xi
⊗ dxj , the

almost complex structures J and J̃ are defined by the expressions

J = Jai
∂

∂xa
⊗ dxi + Jai

∂

∂qa
⊗ dqi + qbJai,b

∂

∂qa
⊗ dxi , (2.3)

J̃ = Jai
∂

∂xa
⊗ dxi + Jai

∂

∂pi
⊗ dpa +

+
1

2
pa

(
−Jai,j + Jaj,i + Ja`

(
J `i,mJ

m
j − J `j,mJmi

)) ∂

∂pj
⊗ dxi . (2.4)

These tensor fields can be checked to be independent on the chart (xi) and:

i) the standard projections π : T ∗M −→ M , π̃ : T ∗M −→ M are

(J, J)-holomorphic and (J̃, J)-holomorphic, respectively;
ii) given a (J, J ′)-biholomorphism f : (M,J) −→ (N, J ′) between al-

most complex manifolds, the tangent and cotangent maps

f∗ : TM −→ TN and f∗ : T ∗N −→ T ∗M

are (J, J′)- and (J̃′, J̃)-holomorphic, respectively;

iii) when J is integrable, J and J̃ coincide with above described inte-
grable complex structures of TM and T ∗M , respectively (in the in-
tegrable case, all derivatives Jai,j are 0 in holomorphic coordinates).

We call J, J̃ canonical lifts of J on TM and T ∗M .

2.2. Blow-ups of almost complex manifolds. Given a point xo of an
almost complex manifold (M,J), we call blow-up at xo the topological man-

ifold M̃ obtained as follows ([21]).
Consider a system of complex coordinates ξ = (z1, . . . , zn) : V −→ U ⊂

Cn on a neighborhood V of xo, with ξ(xo) = 0 and which maps J |xo into

the standard complex structure Jst|0 of T0Cn ' C2n. The manifold M̃ is

obtained by gluing M \ {xo} with the blow up Ũ at 0 of U ⊂ Cn = R2n,
identifying V \ {0} with U \ {0} by means of the map ξ = (zi). As it was

remarked in [21], the smooth manifold structure of M̃ does not depend on
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the choice of the coordinates ξ = (zi). Hence, this manifold M̃ can be
considered as canonically associated with (M,J) and xo.

Since M \ {0} ≡ M̃ \ π−1(xo) and π−1(V) ≡ π−1(Ũ) ⊂ B̃n, we may

consider the tensor field J of type (1, 1) on M̃ , with Jx : TxM̃ → TxM̃ equal

to the almost complex structure of M for any point x ∈ M̃ \π−1(xo) and to

the standard complex structure of B̃n for any x ∈ π−1(xo) ≡ π−1(0) ⊂ B̃n.
Such tensor field is obviously smooth on M \π−1(xo) and, in our discussions,
there will be no need to know whether it is smooth also on π−1(xo). It is
however possible to check that it is in fact smooth at all points.

3. Normal forms of almost complex domains of circular type

In what follows, D ⊂ M denotes a domain in a 2n-dimensional almost
complex manifold (M,J) with smooth boundary Γ = ∂D.

3.1. Almost complex domains of circular type. LetN be the conormal
bundle of Γ = ∂D, i.e. the subset of T ∗M |Γ

N = { β ∈ T ∗xM , x ∈ Γ : kerβ ⊂ TxΓ } .

We recall that, given α ≥ 1 and ε > 0, a Cα,ε-stationary disk of D is a map
f : ∆ −→M such that

i) f |∆ is a J-holomorphic embedding and f(∂∆) ⊂ ∂D;

ii) there exists a J̃-holomorphic map f̃ : ∆ −→ T ∗M with π ◦ f̃ = f , so
that

ζ−1 · f̃(ζ) ∈ N \ {zero section} for any ζ ∈ ∂∆ (3.1)

and ξ̃ ◦ f̃ ∈ Cα,ε(∆,C2n) for some complex coordinates ξ̃ = (zi, wj)

around f̃(∆).

In (3.1) “ · ” denotes the usual C-action on T ∗M , i.e. the action (1)

ζ · α def
= Re(ζ)α− Im(ζ)J∗α for any α ∈ T ∗M, ζ ∈ C . (3.2)

If f is stationary, the maps f̃ satisfying (ii) are called stationary lifts of f .

In this paper we are concerned with domains D in an almost complex
manifold (M,J), admitting singular foliations by stationary disks with the
same properties of the singular foliations by Kobayashi extremal disks of the
domains of circular type in Cn. Here is the definition of such domains.

Definition 3.1. [21] For any point xo of an almost complex domain D ⊂
(M,J), we denote by F (xo) the family of stationary disks of D with f(0) =

xo. We say the F (xo) is a foliation of circular type if:

1We follow Besse’s convention on signs, for which J∗α(v) = −α(Jv) ([2]; see also §5.1).
Due to this, on Cn we have J∗

stdx
j = dyj , dzj = dxj + iJ∗

stdx
j and idzj = −J∗

stdz
j .
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i) for any v ∈ TxoD, there exists a unique disk f (v) ∈ F (xo) with

f
(v)
∗
(
∂
∂x

∣∣
0

)
= µ · v for some 0 6= µ ∈ R;

ii) for a fixed identification (TxoD,Jxo) ' (Cn, Jst), the map from the

blow up B̃n at 0 of Bn to the blow up D̃ at xo of D

Φ : B̃n ⊂ C̃n −→ D̃ , Φ(v, [v])
def
= f̃ (v)(|v|) (3.3)

is smooth, extends smoothly up to the boundary and determines a
diffeomorphism between the boundaries Φ|∂Bn : ∂Bn −→ ∂D.

The point xo is called center of the foliation and Φ : B̃n −→ D̃ is called
(generalized) Riemann map of (D,xo). Any domain D ⊂ (M,J) admitting
a foliation of circular type is called almost complex domain of circular type.

There exists of a wide class of almost complex domains of circular type.

In fact, any bounded, strictly linearly convex domains D̃ ⊂ Cn, with smooth
boundary and endowed with a small deformation J of the standard complex
structure Jst, admits singular foliations of circular type made of stationary
disks ([21], Thm. 4.1). For such domains, Gaussier and Joo proved in
[10] the same existence result for singular foliations, made of the so-called
J-stationary disks (see later for the definition).

On the other hand, the following fact is well-known (see e.g. [8]).

Lemma 3.2. Let (M,J) be an almost complex manifold and xo ∈ M . For
any integer k ≥ 0 and ε > 0, there exists a neighborhood U of xo, such that
(U , J) is (J, J ′)-biholomorphic to (Bn, J ′) for some almost complex structure

J ′ on a neighborhood of B
n ⊂ Cn with ‖J ′ − Jst‖Bn, Ck < ε.

This and previous remarks imply that any point xo of an almost complex
domain (M,J) admits a neighborhood U containing a domain D ⊂⊂ U of
circular type with center xo.

3.2. Normal forms. By definitions, for any almost complex domain (D,J)

of circular type with center xo, the map Φ : B̃n ⊂ C̃n −→ D̃ is a biholomor-

phism between (D̃, J) and (B̃n, J̃), where J̃
def
= Φ−1

∗ (J).

If we denote by π : B̃n −→ Bn, π′ : D̃ −→ D the natural blow down maps

and by J ′ = π∗(J̃) the projected almost complex structure on Bn \ {0}, we
have that the map E = π ◦ Φ ◦ π′−1 : D \ {0}) −→ Bn \ {0} is a (J, J ′)-
biholomorphism. In general, the tensor field J ′ does not extend smoothly at
0 ∈ Bn. Nonetheless such singularity is “removable” in the following sense.

First of all, we remark that the map E extends uniquely to a homeo-
morphism E : D −→ Bn by setting E(xo) = 0. So, we may consider the
atlas A on Bn, formed by the charts η = ξ ◦ E−1 determined by charts
ξ : U ⊂ D → R2n of the manifold structure of D. Such atlas defines a
smooth manifold structure on Bn, which coincides with the standard one on
Bn \{0}, but contains charts around 0 that in general are non-standard. By
construction, the components of J ′ in the charts of A extend smoothly at 0.
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We call the pair (Bn, J ′) normal form of (D,J) determined by F (xo). If we
endow Bn with the atlas A, by construction (Bn, J ′) is an almost complex

domain of circular type with center 0 and foliation F (0) given by the straight
disks

f (v) : ∆ −→ Bn , f (v)(ζ) = ζ · v , v ∈ Cn . (3.4)

Now, let us give an intrinsic characterization of the almost complex struc-
tures J on Bn \ {0} that correspond to normal forms of domains of circular
type. For this purpose, we need some new notation and the notion of “almost
L-complex structures”.

Let Z
def
= Re

(
zi ∂
∂zi

)
and denote by Z the Jst-invariant distribution on

Bn \ {0} ⊂ Cn defined by Zz
def
=< Zz, JstZz > at any z 6= 0. We recall that

Zz = ker ddcst log τo|x , where τo(z)
def
= |z|2 , dcst

def
= J∗st ◦ d ◦ J∗st (3.5)

and that ddcstτo(Z,X) = X(τo) for any X ∈ TBn \ {0}. One can check that
Z is integrable and that its integral leaves are the (images of the) disks (3.4).

Consider the blow up B̃n of Bn at 0, the standard identification of B̃n

with an open subset of the tautological bundle π : E −→ CPn−1 and the

coordinates ξ : U ⊂ E −→ Cn, U def
= { ([v], v) : vn 6= 0 }, defined by

ξ−1(z0, . . . , zn−1)
def
=

def
=

z1 : · · · : zn−1 :

√√√√1−
n−1∑
i=1

|zi|2

 ; z0·

z1, . . . , zn−1,

√√√√1−
n−1∑
i=1

|zi|2

.
(3.6)

In these coordinates, ZC
z = SpanC

{
∂
∂z0

∣∣
z
, ∂

∂z0

∣∣∣
z

}
and J

(
∂
∂z0

∣∣
z

)
= i ∂

∂z0

∣∣
z
.

Now, let us use capital letters A,B,C, . . . for indices that might be in-
differently of the form a or a, so that we may denote the complex co-

ordinates and their conjugates by (zA) = (za, za
def
= za). Let also de-

note by (pA) = (pa, pa
def
= pa) the complex components of real 1-forms

ω = padz
a + padz

a ∈ T ∗Bn. Using these conventions, the canonical lift

J̃ of an almost complex structure J on Bn \ {0} is of the form

J̃ = JBA

(
∂

∂zB
⊗ dzA +

∂

∂pA
⊗ dpB

)
+

+
1

2
pC
(
−JCA,B + JCB,A + JCL

(
JLA,MJ

M
B − JLB,MJMA

)) ∂

∂pB
⊗ dzA ,

where JAB are the components of J w.r.t. the complex vector fields
(

∂
∂zA

)
.

One way to recover such formula is, for instance, to look at the expression of

J̃ in terms of Nijenhuis tensor and tautological form of T ∗M ([26, 23]) and
write all terms using the complex coordinates (zA, pB). Again, we remark
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that, when J is integrable and (z1, . . . , zn) are holomorphic coordinates,

J̃ = JBA

(
∂
∂zB
⊗ dzA + ∂

∂pA
⊗ dpB

)
We can now introduce the “almost L-complex structures”: as we will

shortly see, a pair (Bn, J) is a domain of circular type in normal form if and
only it J is an almost complex structure of this kind (Theorem 3.7). We
will also see that these structures are characterized by a finite collection of
equations in the space of almost complex structures (Proposition 3.4).

Definition 3.3. We call almost L-complex structure any almost complex
structure J on Bn \ {0}, smoothly extendible at ∂Bn, such that:

i) Z is J-stable and J |Z = Jst|Z ;
ii) for any v ∈ S2n−1, the following differential problem on 2n − 2 C-

valued maps gα, gᾱ : ∆ −→ C of class Cα,ε is solvable (in (3.7), A, B
denote indices of the form α, ᾱ, β, β̄, respectively, with 1 ≤ α, β ≤
n− 1)

(
δBA − i(JBA

∣∣
ζ·v)
)
gB,ζ+

+

(
− i

2

(
JB
A,0

+ iJBL J
L
A,0

)∣∣∣
ζ·v

)
gB+

−
(
i
2

(
J0
A,0

+ iJ0
LJ

L
A,0

+ J 0̄
A,0

+ iJ 0̄
LJ

L
A,0

)∣∣∣
ζ·v

)
= 0 when ζ ∈ ∆ ,

(
(Re ζ)δBA − (Im ζ) JBA

∣∣
ζ·v

)
gB−

− (Im ζ)
(
J0
A + J 0̄

A

)∣∣∣
ζ·v

= 0 when ζ ∈ ∂∆ ,

(3.7)
where (JBA ) are the components of J in coordinates of the form (3.6);

iii) there exists a homeomorphism ξ : U −→ V between neighborhoods
of 0 ∈ Cn, which is C∞ on U\{0} and such that ξ∗(J)|V\{ξ(0)} extends
smoothly at 0; in particular, J admits a smooth extension at 0 if Bn

is endowed with a (non-standard) atlas containing ξ;

iv) the blow-up B̃n of Bn, determined by J and the non-standard
smooth manifold structure described in (iii), is diffeomorphic to the
usual blow-up of Bn determined by Jst.

Unless explicitly stated, for any almost L-complex structure, we will always
assume Bn endowed with the smooth manifold structure described in (iii).

It is useful to remark that condition (ii) of the above definition is satisfied
by a very large class of almost complex structures. Moreover, in the inte-
grable case, (ii) is automatically satisfied by the complex structures of the
normal forms of domains of circular types (see [20]).

Proposition 3.4. Let J be an almost complex structure J on Bn \{0} such
that, for any v ∈ S2n−1 and ζ ∈ ∂∆, the matrices

C =
[(
δBA − i(JBA

∣∣
ζ·v)
)]

, D =
[(

(Re ζ)δBA − (Im ζ) JBA
∣∣
ζ·v

)]
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are invertible. Let also F ∈ Cα−1,ε(∆,C2n−2) and G ∈ Cε(∂∆,R4n−4) defined
by

F(ζ) = C−1(ζ) ·
(
i

2

(
J0
A,0

+ iJ0
LJ

L
A,0

+ J 0̄
A,0

+ iJ 0̄
LJ

L
A,0

)∣∣∣
ζ·v

)
,

G(ζ) = (Im ζ)
(
J0
A + J 0̄

A

)∣∣∣
ζ·v

.

Then, (3.7) is solvable if and only if (F,G) is in the (finite codimensional)
range of the Fredholm operator described in formula (3.9) below.

Proof. The system (3.7) is equivalent to the “generalized Riemann-Hilbert
problem” on maps g : ∆ −→ C2n−2

g,ζ̄ +(C−1A) · g = F on ∆ ,

D · g = G on ∂∆ ,
(3.8)

where A : ∆ → M2n−2(C) is A(ζ)
def
=

[
− i

2

(
JB
A,0

+ iJBL J
L
A,0

)∣∣∣
ζ·v

]
. The

operator

R : Cα,ε(∆,C2n−2) −→ Cα−1,ε(∆,C2n−2)× Cε(∂∆,R4n−4)

R(h)
def
=

(
∂h

∂ζ
+ A · h, (Re (D · h) , Im (D · h))

)
(3.9)

is known to be Fredholm if and only if D is invertible at all points ([25] §3.2
and [15] §VII.3). The claim follows immediately.

Remark 3.5. Notice that if the components J0
A, J 0̄

A, appearing in (3.7),
are identically equal to 0 along the considered disk, the system (3.7) always
admits the trivial solutions gα ≡ 0 ≡ gᾱ, regardless on the invertibility of C
and D. This fact turns out to be quite useful to produce examples.

The interest for almost L-complex structure is motivated by the following.

Lemma 3.6. If J is an almost L-complex structure on Bn, any straight
disk through 0 is stationary w.r.t. J .

Proof. Using coordinates (3.6), since J satisfies (i) of Definition 3.3 , then

JA0 = iδA0 , JA
0

= −iδA
0
, JA0,B = 0 , JA

0,B
= 0 . (3.10)

Given v = (v1, . . . , vn−1) ∈ Cn−1, consider the straight disk f : ∆ −→ Bn,

with tangent direction at 0 given by

[
v1 : · · · : vn−1 :

√
1−

∑n−1
i=1 |vi|2

]
, i.e.

f(ζ)
def
= ξ−1(ζ, v1, . . . , vn−1) for any ζ 6= 0 .

Recall that f is stationary if and only if there is

f̃ : ∆ −→ T ∗B̃n , f̃(ζ) = (ζ, v1, . . . , vn−1; gA(ζ)A=0,0̄,1,1̄,...,n−1,n−1)
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such that: a) ζ−1 · f̃(ζ) is in the conormal bundle N \{zero section} of ∂Bn

for any ζ ∈ ∂∆; b) f̃ is J̃-holomorphic, i.e. f̃∗

(
Jst

∂
∂ζ

)
= J̃

(
f̃∗

(
∂
∂ζ

))
.

We claim that a map f̃ of the above form and satisfying (a) and (b),
exists. In fact, by (3.10), condition (b) is equivalent to (here indices A, B
might assume any value, 0, 0̄ included)

−igA,ζ − (JBA
∣∣
f
)gB,ζ −

1

2
gB

((
JB
A,0

+ iJBL J
L
A,0

)∣∣∣
f

)
= 0 . (3.11)

By (3.10), in case A = 0 equation (3.11) reduces to 2ig0,ζ = 0, i.e. to the

requirement of holomorphicity for g0 : ∆ −→ C. On the other hand, since
the conormal bundle N is generated at any point by ω = z0dz0 + z0dz0, (a)
is equivalent to the existence of a continuous λ : ∂∆ −→ R \ {0} such that

ζ−1g0(ζ) = ζλ(ζ) for any ζ ∈ ∂∆ , (3.12)

(and hence g0 ≡ 1 ≡ g0) and to the requirement that gα|∂∆, gᾱ|∂∆, α 6= 0,
satisfy the boundary conditions of (3.7). Therefore, inserting g0 = g0̄ = 1
into (3.11), by condition (ii) of Definition 3.3, we conclude that there always

exists a stationary lift f̃(ζ) = (ζ, v1, . . . , vn−1; gA(ζ)) for f .

By Lemma 3.6, if J is an almost L-complex structure, (Bn, J) is an al-
most complex domain of circular type that coincides with its normal form.
Conversely, one can directly check that if (Bn, J) is a domain of circular
type in normal form, then J satisfies all conditions of Definition 3.3. We
have therefore the following intrinsic characterizations of normal forms.

Theorem 3.7. A pair (Bn, J) is a domain of circular type in normal form
if and only if J is an almost L-complex structure.

3.3. Deformation tensors of normal forms. Consider now the Jst-
invariant distribution H on Bn \ {0} defined by

Hz
def
= { X ∈ TxM : ddcstτo(Z,X) = ddcstτo(JstZ,X) = 0 } . (3.13)

One can directly check that TzM = Zz ⊕ Hz and that Hz coincides with
the holomorphic tangent space to the sphere S|z| = { w : |w| = |z| }. In
particular, for any 0 < c < 1, the pair (H|Sc , Jst) is the CR structure of the
sphere Sc = { τo = c }. It is known that the distributions Z and H extend

smoothly on the blow up B̃ and that also such extensions are Jst-invariant
(see e.g. [17, 18, 20]).

Recall that any complex structure Jz on a tangent space TzB
n is uniquely

determined by its −i-eigenspaces (TzB
n)01
J in TC

z B
n. If ZC

z = Z10
z +Z01

z and

HC
z = H10

z +H01
z are decompositions into Jst-eigenspaces, a generic complex

structure Jz : TzB
n −→ TzB

n is completely determined by the tensors

φZz ∈ Hom(Z01
z ,Z10

z ) , φHz ∈ Hom(H01
z ,H10

z ) , φZ,Hz ∈ Hom(Z01
z ,H10

z ) ,

φH,Zz ∈ Hom(H01
z ,Z10

z ) ,
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which determine the −i-eigenspace (TzB
n)01
J as the complex subspace

(TzB
n)01
J =

(
Z01 + φZz (Z01) + φZ,Hz (Z01)

)
+
(
H01 + φHz (H01) + φH,Zz (H01)

)
.

(3.14)
We call deformation tensor of J w.r.t. to Jst the tensor field φ ∈ (T 01∗ ⊗
T 10)(Bn \{0}), defined at any point by φz

def
= φZz +φZ,Hz +φHz +φH,Zz . From

Definition 3.3 (i), it follows immediately that

Proposition 3.8. A generic almost L-complex structure J is uniquely de-
termined by a deformation tensor of the form

φz = φHz + φH,Zz for any z ∈ Bn \ {0} . (3.15)

and, conversely, any deformation tensor as in (3.15) gives an almost L-
complex structure, provided that the corresponding J extends to ∂Bn and 0
as required in (ii) - (iv) of of Definitions 3.3.

Remark 3.9. Conditions (iii) - (iv) of Definition 3.3 are requirements that
might be hard to check. However, to construct examples, it is often sufficient
to observe that, given a deformation tensor φo that satisfy those conditions
(e.g. φo ≡ 0), also the deformation tensors of the form φ = φo+δφ, in which
δφ vanishes identically on some neighborhood U of 0, satisfy them.

Notice also that if J is an almost complex structure, determined by a
deformation tensor of the form φ = φH, for any given disk f(ζ) = ζ · v,
we may choose coordinates of the form (3.6), in which v = (0, . . . , 0, 1)

and hence the components J0
A, J 0̄

A, appearing in (3.7), are identically equal
to 0 along the disk. In this case, (3.7) always admits the trivial solutions
gα ≡ 0 ≡ gᾱ. On the other hand, condition (ii) corresponds to the solvability
of the system that determines stationary lifts and hence it is independent
on the choice of the coordinate system. All this implies that when φ = φH,
condition (ii) of Definition 3.3 is always automatically satisfied.

4. Extremal disks and critical foliations

4.1. Critical and extremal disks. In this section, we recall the notion
of “critical disks”, recently introduced by Gaussier and Joo in [10] in their
studies on the extremality w.r.t. the Kobayashi metric of J-holomorphic
disks. We have to point out that “critical disks” is not the name used in
[10]. In that paper, such disks are called “disks vanishing the first order
variations”.

For this, we first need to remind of a few concepts related with the ge-
ometry of the tangent bundle of a manifold M . We recall that the vertical
distribution in T (TM) is the subbundle of T (TM) defined by

T V (TM) =
⋃

(x,v)∈TM

T V(x,v)M , T V(x,v)M = kerπ∗|(x,v) .
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For any x ∈ M , let us denote by (·)V : TxM −→ T V(x,v)M the map(
wi ∂

∂xi

∣∣
x

)V def
= wi ∂

∂qi

∣∣∣
(x,v)

. It is possible to check that this map does not

depend on the choice of coordinates and that it determines a natural map
from TM to T (TM) (see [26]). For any w ∈ TM , the corresponding vector
wV ∈ T (TM) is called vertical lift of w.

Definition 4.1. [11] Let f : ∆ −→M be a Cα,ε, J-holomorphic embedding
with f(∂∆) ⊂ ∂D. We call infinitesimal variation of f any J-holomorphic
map W : ∆ −→ TM of class Cα−1,ε with π ◦W = f (here, π : TM −→M is
the natural projection). An infinitesimal variation W is called attached to
∂D and with fixed center if

a) α(Wζ) = 0 for any α ∈ Nf(ζ), ζ ∈ ∂∆,
b) W |0 = 0.

It is called with fixed central direction if in addition it satisfies

c) W∗

(
∂

∂ Re ζ

∣∣∣
0

)
∈ T VW0

(TM) and it is equal to λ
(
f∗

(
∂

∂ Re ζ

∣∣∣
0

))V
for

some λ ∈ R.

The disk f is called critical if for any infinitesimal variation W , attached to

∂D and with fixed central direction, one has W∗

(
∂

∂ Re ζ

∣∣∣
0

)
= 0.

Remark 4.2. The previous definition is motivated by the following facts.
When f (t) : ∆ −→ M , t ∈] − a, a[, is a smooth 1-parameter family of J-

holomorphic disks of class Cα,ε with f (0) = f , it is simple to check that

W
def
= df (t)

dt

∣∣∣
t=0

is a variational field on f . Moreover, if f (t) is such that, for

all t ∈]a, a[

f (t)(∂∆) ⊂ ∂D , f (t)(0) = f(0) , f
(t)
∗

(
∂

∂ Re ζ

∣∣∣∣
0

)
∈ Rf∗

(
∂

∂ Re ζ

∣∣∣∣
0

)
,

(4.1)
then W satisfies (a) - (c). On the other hand, a disk f is a locally extremal
disk if for any J-holomorphic disk g : ∆ −→ M of class Cα,ε, with image
contained in some neighborhood of f(∆) and such that, for some λ ∈ R,

g(∂∆) ⊂ ∂D , g(0) = f(0) = xo , g∗

(
∂

∂ Re ζ

∣∣∣∣
0

)
= λf∗

(
∂

∂ Re ζ

∣∣∣∣
0

)
,

then λ ≤ 1. One can directly check that any locally extremal disk f , with
f(∂∆) ⊂ ∂D, is critical (see [11], proof of Thm. 4.3). Conversely, by §5
and Thm. 6.4 of [10], in case D ⊂ Cn is strictly convex on a neighborhood
of f(∆) (in suitable cartesian coordinates) and J is sufficiently close to Jst,
any critical disk f is locally extremal.

Notice that, when J is close to Jst, the critical disks are characterized
by properties that are closely resembles to those that define the stationary
disks. Disks with such properties are called J-stationary disks ([10]).
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It is well-known that, when J is integrable, the disks that are stationary
coincide with the disks that are critical (see e.g. [12, 16]). This equality
is no longer valid for generic non-integrable complex structures. In [10],
counterexamples are given.

Next theorem gives conditions that imply the equality between stationary
and critical disks and will be used in the sequel. The claim and the proof
are refinements of a result and arguments given in [9]. In the statement,
f : ∆ −→M is a J-holomorphic embedding, of class Cα,ε with f(∂∆) ⊂ ∂D,
and Varo(f) denotes the class of infinitesimal variations of f attached to
∂D and with fixed center.

Theorem 4.3. Assume that D ⊂M is of the form D = { ρ < 0 } for some
J-plurisubharmonic ρ (see §5.1, for definition) and that Varo(f) contains
a (2n − 2)-dimensional J-invariant vector space, generated by infinitesimal
variations ei, Jei, 1 ≤ i ≤ n−1, such that the maps ζ−1 ·ei(ζ) , ζ−1 ·Jei(ζ) :
∆ −→ TM are of class Cα,ε on ∆. Assume also that, for any ζ ∈ ∆, the
set {ei(ζ), Jei(ζ)} ⊂ Tf(ζ)M span a subspace, which is complementary to
Tf(ζ)f(∆) ⊂ Tf(ζ)M . Then f is critical if and only if it is stationary.

Proof. Let e0 : ∆ −→ TM be the map defined by e0(ζ) = f∗

(
∂

∂ Re ζ

∣∣∣
ζ

)
.

By hypotheses, the collection(
e0(ζ), Je0(ζ), ζ−1 · e1(ζ), . . . , ζ−1 · en−1(ζ), ζ−1 · Jen−1(ζ)

)
(4.2)

is a basis for Tf(ζ)M for all ζ ∈ ∆ and we may consider a system of coordi-

nates ξ : (x0, x1, . . . , x2n−2, x2n−1) = (z0, . . . , zn−1) : U −→ R2n = Cn on a
neighborhood U of f(∆) such that

∂

∂x0

∣∣∣∣
f(ζ)

= e0(ζ) ,
∂

∂x1

∣∣∣∣
f(ζ)

= J(e0(ζ)) ,

∂

∂x2i

∣∣∣∣
f(ζ)

= ζ−1 · ei(ζ) ,
∂

∂x2i+1

∣∣∣∣
f(ζ)

= J(ζ−1 · ei(ζ)) for all ζ ∈ ∆ \ {0} .

(4.3)
If we identify U with ξ(U) ⊂ Cn, we have that J |y = Jst|y for all y ∈ f(∆)
and the maps f , ei and Jei are of the form (here, any vector valued map is
denoted by a pair, formed by the base point and the vector components):

f(ζ) = (Re ζ, Im ζ, 0, . . . , 0) ,

ei(ζ) = ((Re ζ, Im ζ, 0, . . . , 0); (0, . . . , Re(ζ)
2i-th place

, . . . , 0)) ,

Jei(ζ) = ((Re ζ, Im ζ, 0, . . . , 0); (0, . . . , Im(ζ)
(2i+ 1)-th place

, . . . , 0)) . (4.4)
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A map W = (f, vj ∂
∂xj

) : ∆ −→ TR2n ' TM is an infinitesimal variation
(i.e. J-holomorphic) if and only if it is solution of the p.d.e. system

∂vi

∂ Re ζ
+ J ij

∣∣
f

∂vj

∂ Im ζ
+
∂J ij
∂xk

∣∣∣∣∣
f

vk
∂f j

∂ Im ζ
=

∂vi

∂ Re ζ
+Jst

i
j

∂vj

∂ Im ζ
+
∂J i1
∂xk

∣∣∣∣
f

vk=0.

(4.5)
By hypotheses, the fields in (4.4) are solutions of (4.5). From this and the
fact that the components J ij |f(∆) = Jst

i
j |f(∆) are constant on f(∆) we get

that

∂J i1
∂xk

=
∂J ij
∂x0

=
∂J ij
∂x1

= 0 at all points of f(∆) . (4.6)

From this and the explicit formulae in coordinates for J and J̃, one can
directly check that a map W = (f, wj ∂

∂zj
+wj ∂

∂zj
) : ∆ −→ TCn ' TM (resp.

f̃ = (f, gidz
i + gidz

i) : ∆ −→ T ∗Cn ' T ∗M) is J- (resp. J̃-) holomorphic
if and only if the functions wj (resp. gi) are holomorphic in the classical

sense. Assume that f is stationary and that f̃ = ((ζ, 0, . . . , 0); gidz
i + gidz

i)
is a stationary lift of f and W : ∆ −→ TM is an infinitesimal variation,
attached to ∂D and with fixed central direction. Then, for any ζ 6= 0, W (ζ)

is the form W (ζ) = ζ · µj(ζ) · ei(ζ) + ζ · µj(ζ) · ei(ζ), for some holomorphic

µj : ∆ −→ C, and W∗

(
∂

∂ Re ζ

∣∣∣
0

)
= µj(0) · ej(0). By Definition 4.1 (c), we

get that µ0(0) ∈ R and µi(0) = 0 for i 6= 0. On the other hand, by Definition
4.1(b), the function

ϕ : ∆ −→ R , ϕ(ζ) = f̃(ζ)
(
ζ−1 ·W (ζ)

)
= Re(µjgj)(ζ) ,

is so that ϕ|∂∆ ≡ 0. Since ϕ is harmonic, ϕ ≡ 0 and in particu-

lar µ0(0) Re(g0(0)) = 0. By [10], Cor. 2.5, f̃
(

∂
∂ Re ζ

∣∣∣
0

)
= g0(0) 6= 0

and µ0(0) = 0, i.e. f is critical. Conversely, assume f critical and let

f̃ : ∆ −→ T ∗M be defined by f̃(ζ) = (ζ, 0 . . . , 0; dz0 + dz0). By previous

observations, f̃ is J̃-holomorphic and it is an embedding. From the fact that

Je0|ζ , ei|ζ , Jei|ζ span the tangent spaces Tf(ζ)∂D, ζ ∈ ∂∆, we get that f̃ is
a stationary lift of f and that f is stationary.

4.2. Critical foliations of normal forms. Let (Bn, J) be an almost com-
plex circular domain in normal form. We recall that, for any v ∈ S2n−1 ⊂
T0B

n, the straight disk f(ζ) = ζ · v is stationary for (Bn, J).

For any w ∈ TvS2n−1 and any smooth curve γ
(w)
t in S2n−1 with γ

(w)
0 = v

and γ̇
(w)
0 = w, we may consider the infinitesimal variation, with fixed center
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and attached to ∂Bn, defined by

W (w) : ∆→ TC2n , W (w)(ζ) =
d
(
ζ · γ(w)

t

)
dt

∣∣∣∣∣∣
t=0

= ζ · w ∈ Tf(ζ)Cn .

(4.7)

These maps form a (2n− 2)-subspace Ṽaro(f) of the vector space of infini-
tesimal variations in Varo(f) such that:

a)
{
W (ζ), W ∈ Ṽaro(f)

}
= Hf(ζ) for any ζ 6= 0;

b) for any W ∈ Ṽaro(f), the map α(ζ)
def
= |ζ|−1|W (ζ)| is constant on

∆ \ {0}.
Moreover,

Lemma 4.4. The space JṼaro(f) is included in Varo(f) if and only if
LZ01J = 0, with Z01 = zi ∂

∂zi
.

Proof. Consider an open subset V ⊂ S2n−1 ⊂ T0B
n and a field of real

frames (eo1(v), J0e
o
1(v) . . . , J0e

o
n−1(v)), v ∈ V, for the holomorphic subspaces

Hv ⊂ TvS2n−1 of S2n−1. We denote by ei(v, ·), (J0ei)(v, ·) the corresponding

infinitesimal variations along f (v)(ζ) = ζ · v, i.e.

e1(v; ζ)
def
= ζ · eo1(v) , . . . , (J0en−1)(v; ζ)

def
= ζ · (J0e

o
n−1(v)) .

Notice that the points f (v)(ζ), with (v, ζ) ∈ V×{∆\{0}}, fill an open subset
U ⊂ Bn \ {0}, that the ordered set of vector fields(
e0(v; ζ)

def
= f

(v)
∗

(
∂

∂x

∣∣∣∣
ζ

)
, Je0(v; ζ)

def
= f

(v)
∗

(
∂

∂y

∣∣∣∣
ζ

)
, e1(v; ζ), . . . , (J0en−1)(v; ζ)

)

is a frame field on U ' V×{∆\{0}} and that the field 1
2 (e0(v; ζ) + iJe0(v; ζ))

= f
(v)
∗

(
∂
∂ζ

∣∣∣
ζ

)
is a generator for Z01. One can also check that

LZ01ei = LZ01(J0ei) = 0 for 1 ≤ i ≤ n− 1 . (4.8)

We claim that LZ01Jei = LZ01J(J0ei) = 0 (or, equivalently, that LZ01J |U =

0) if and only if the fields Jei(v; ζ) and J(J0ei)(v; ζ) are in Varo(f
(v)); by

arbitrariness of V ⊂ S2n−1 this conclude the proof. To check the claim, let us
fix a straight disk f (v)(ζ) = ζ ·v. By construction, the fields ζ−1 ·ei(v; ζ) and
ζ−1 · (J0ei)(v; ζ) are of class C∞ at any ζ ∈ ∆. We may therefore consider
a system of coordinates ξ = (z0 = x0 + ix1, . . . , zn−1 = x2n−2 + ix2n−1)

around f (v)(∆) satisfying (4.3). As in the proof of Theorem 4.3, we have

that a vector field W : ∆ −→ TBn along f (v)(∆) is J-holomorphic if and
only if the complex functions wj : ∆ −→ C such that

Wζ = Re(wj(ζ)) ej(f
(v)(ζ)) + Im(wj(ζ))(J0ej)(f

(v)(ζ))

are holomorphic. By (4.8), such holomorphicity condition is equivalent to
LZ01W = 0. Since, by construction, the fields Jei and J(J0ei) satisfy (a)
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and (b) of Definition 4.1, they are in Varo(f
(v)) if and only if they are

J-holomorphic, i.e. if and only if LZ01Jei = LZ01J(J0ei) = 0.

Let us introduce the following definition.

Definition 4.5. Let (Bn, J) be an almost complex domain of circular type
in normal form. We call it nice if the distribution H defined in (3.13) is
J-invariant. We call it very nice if for any straight disk f(ζ) = ζ · v, the

associated vector space Ṽaro(f) is J-invariant.
An almost complex domain (D,J) of circular type with center xo is called

nice (resp. very nice) if it has a nice (resp. very nice) normal form.

Motivation for considering such notions comes from the following

Proposition 4.6. The stationary disks of the circular type foliation F (xo)

of a very nice almost complex domain (D,J) of the form D = { ρ < 0 } for
some J-plurisubharmonic ρ, are critical.

Proof. With no loss of generality, assume that (D,J) = (Bn, J) is in
normal form and that its foliation of circular type is given by the straight
disks f(ζ) = ζ · v, v ∈ S2n−1 ⊂ T0B

n ' Cn. Fix v ∈ S2n−1 and let
Hv ⊂ TvS

2n−1 be the holomorphic tangent space at v and (eo1, . . . , e
o
n−1) a

basis over C for Hv. Consider the infinitesimal variations in Ṽaro(f) defined
in (4.8)

e1(ζ)
def
= ζ · eo1 , . . . , en−1(ζ)

def
= ζ · eon−1 , ζ ∈ ∆ .

By construction, the fields ζ−1 · ei and ζ−1 · Jei, defined at the points of ∆,
are of class C∞. Being (Bn, J) very nice, they span Hz ⊂ Tf(ζ)Cn, which is

complementary to Tϕ(ζ)f(∆). By Theorem 4.3, the conclusion follows.

By definitions any very nice domain is nice. The converse is not true, as
next proposition and example show.

Proposition 4.7. Let (Bn, J) be an almost complex domain of circular type
in normal form, with J given by a deformation tensor φ = φH+ φH,Z . It is
nice if and only if φH,Z ≡ 0, while it is very nice if and only if

φH,Z ≡ 0 and LZ01φH = 0 . (4.9)

Proof. It follows from definitions and Lemma 4.4.

Example 4.8. Let φ = φH be a deformation tensor in Hom(H01
z ,H10

z ) at
any z ∈ Bn, which is non zero only on a relatively compact subset, whose
closure does not contain the origin. By Remark 3.9 and Proposition 4.7,
φ = φH determines an almost complex structure J such that (Bn, J) is
nice. On the other hand, by assumptions, there are straight disks f with
φH|f(∆) 6≡ 0 and with φH|V ≡ 0 on some open subset of V ⊂ f(∆). Due to

this, the equality LZ01φH = 0 is not satisfied and (Bn, J) is not very nice.
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5. Almost complex Monge-Ampère operators

5.1. Plurisubharmonic functions and pseudoconvex manifolds. Let
(M,J) be an almost complex manifold and Ωk(M), k ≥ 0, the space of
k-forms of M . We denote by dc : Ωk(M) −→ Ωk+1(M) the classical dc-
operator

dcα = (−1)k(J∗ ◦ d ◦ J∗)(α) ,

where J∗ denotes the usual action of J on k-forms, i.e. J∗β(v1, . . . , vk)
def
=

(−1)kβ(Jv1, . . . , Jvk) (see e.g. [2]). If J is integrable, it is well known that

dc = i(∂ − ∂) , ∂∂ =
1

2i
ddc , ddc = −dcd

and that ddcu is a J-Hermitian 2-form for any C2-function u. Unfortunately,
when J is not integrable, dcd 6= −ddc and the 2-forms ddcu, with u ∈ C2(M),
are usually not J-Hermitian. In fact, one has that

ddcu(JX1, X2) + ddcu(X1, JX2) = 4NX1X2(u) , (5.1)

where NX1X2 is the Nijenhuis tensor evaluated on X1, X2 and is in general
non zero. This fact suggests the following definition.

Definition 5.1. Let u : U ⊂M −→ R be of class C2. We call J-Hessian of
u at x the symmetric form Hess(u)x ∈ S2TxM , whose associated quadratic
form is L(u)x(v) = ddcu(v, Jv)x. By polarization formula and (5.1), one has
that, for any v, w ∈ TxM ,

Hess(u)x(v, w) =
1

2
(ddcu(v, Jw) + ddcu(w, Jv))

∣∣∣∣
x

=

= ddcu(v, Jw)x − 2Nvw(u) . (5.2)

We remark that Hess(u)x is not only symmetric, but also J-Hermitian,
i.e. Hess(u)x(Jv, Jw) = Hess(u)x(v, w) for any v, w. It is therefore associ-
ated with the Hermitian antisymmetric tensor

Hess(u)(J ·, ·) =
1

2
(ddcu(·, ·) + ddcu(J ·, J ·)) =

1

2
(ddcu+ J∗ddcu) . (5.3)

The quadratic form L(u)x(v) = ddcu(v, Jv)|x is the so-called Levi form
of u at x (see e.g. [6]) and it is tightly related with the notion of J-
plurisubharmonicity. On this regard, we recall that an upper semicontin-
uous function u : U ⊂ M −→ R is called J-plurisubharmonic if, for any
J-holomorphic disk f : ∆ −→ U ⊂ M , the composition u ◦ f : ∆ −→ R
is subharmonic. By simple arguments (similar to those used for complex
manifolds), whenever u is in C2(U) one has that u is J-plurisubharmonic if
and only if L(u)x(v) = Hess(u)x(v, v) ≥ 0 for any x ∈ U and v ∈ TxM .

This motivates the following generalizations of classical notions (see e.g.
[7]). In the following, for any U ⊂M , the symbol Psh(U) denotes the class
of J-plurisubharmonic functions on U .
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Definition 5.2. Let (M,J) be an almost complex manifold and U ⊂M an
open subset. We say that u ∈ Psh(U) is strictly J-plurisubharmonic if:

a) u ∈ L1
loc(U);

b) for any xo ∈ U there exists a neighborhood V of xo and v ∈ C2(V) ∩
Psh(V) for which Hess(v)x is positive definite at all points and u−v
is in Psh(V).

In particular, u ∈ Psh(U)∩ C2(U) is strictly plurisubharmonic if and only if
Hess(u)x is positive definite at any x ∈ U .

The almost complex manifold (M,J) is called weakly (resp. strongly)
pseudoconvex if it admits a C2 exhaustion τ : M −→] − ∞,∞[, which is
plurisubharmonic (resp. strictly plurisubharmonic) (2).

5.2. Maximal plurisubharmonic functions. J-plurisubharmonic func-
tions share most of the basic properties of classical plurisubharmonic func-
tions. For instance, for any open domain U ⊂ M , the class Psh(U) is a
convex cone and a lattice, as for domains in complex manifolds. In fact,
given ui ∈ Psh(U) and λi ∈ R, also the functions u =

∑n
i=1 λiui and

u′ = max{ u1, . . . , un } are in Psh(U).
It is therefore natural to consider the following notion of “maximal” J-

plurisubharmonic functions. This and next theorem indicate which opera-
tor should be considered as natural generalization of the classical complex
Monge-Ampère operator.

Definition 5.3. Let D be a domain in a strongly pseudoconvex almost
complex manifold (M,J). A function u ∈ Psh(D) is called maximal if for
any open U ⊂⊂ D and h ∈ Psh(U) satisfying the condition

lim sup
z→x

h(z) ≤ u(x) for all x ∈ ∂U , (5.4)

one has that h ≤ u|U .

Theorem 5.4. Let D ⊂M be a domain of a strongly pseudoconvex almost
complex manifold (M,J) of dimension 2n. A function u ∈ Psh(D) ∩ C2(D)
is maximal if and only if it satisfies

(ddcu+ J∗(ddcu))n = 0 . (5.5)

Proof. Let τ : M −→] − ∞,+∞[ be a C2 strictly plurisubharmonic ex-
haustion for M and assume that u satisfies (5.5). We need to show that for
any h ∈ Psh(U) on an U ⊂⊂ D that satisfies (5.4), one has that h ≤ u|U .
Suppose not and pick U ⊂⊂ D and h ∈ Psh(U), so that (5.4) is true but
there exists xo ∈ U with u(xo) < h(xo). Let λ > 0 so small that

h(xo) + λ (τ(xo)−M) > u(xo) , where M = max
y∈U

τ(y) ,

2Strongly pseudoconvex manifolds are called almost complex Stein manifolds in [8].
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and denote by ĥ the function

ĥ
def
= h+ λ(τ −M)|U . (5.6)

By construction, ĥ ∈ Psh(U), satisfies (5.4) and (ĥ−u)(xo) > 0. In particu-

lar, ĥ−u achieves its maximum at some inner point yo ∈ U . Now, we remark
that (5.5) is equivalent to say that, for any x ∈ D, there exists 0 6= v ∈ TxM
so that

(ddcu+ J∗(ddcu))x (v, Jv) = Hessx(u)(v, v) = 0 . (5.7)

Let 0 6= vo ∈ TyoM be a vector for which (5.7) is true and let f : ∆ −→ M
be a J-holomorphic disk so that f(0) = yo and with

f∗

(
∂

∂x

∣∣∣∣
0

)
= vo , f∗

(
∂

∂y

∣∣∣∣
0

)
= f∗

(
Jst

∂

∂x

∣∣∣∣
0

)
= Jvo .

Then, consider the function G : ∆ −→ R defined by

G
def
= ĥ ◦ f − u ◦ f = h ◦ f + (λτ − λM − u) ◦ f . (5.8)

We claim that there exists a disk ∆r = {|ζ| < r} such that G|∆r is
subharmonic. In fact, since τ is C2 and strictly plurisubharmonic and
Hess(u)yo(vo, vo) = 0, we have that

0 < Hess((λτ − λM − u))yo(vo, vo) = 2i ∂∂((λτ − λM − u) ◦ f)
∣∣
0
.

Hence, by continuity, there exists r > 0 so that

0 < 2i ∂∂((λτ − λM − u) ◦ f)
∣∣
ζ

for any ζ ∈ ∆r .

It follows that (λτ −λM −u)◦f |∆r is strictly subharmonic and that G|∆r is
subharmonic, being sum of subharmonic functions. At this point, it suffices

to observe that, since yo is a point of maximum for ĥ−u on f(∆) ⊂ U , then
0 = f−1(yo) ∈ ∆r is an inner point of maximum for G|∆r . In fact, from
this and the maximum principle, we get that G|∆r is constant and hence
that h◦f |∆r is C2 with 2i ∂∂(h ◦ f)

∣∣
∆r

< 0, contradicting the hypothesis on

subharmonicity of h ◦ f .

Conversely, assume that u ∈ C2(D)∩Psh(D) is maximal, but that (5.5) is
not satisfied, i.e. that there exists yo ∈ D for which Hessyo(u)(v, v) > 0 for
any 0 6= v ∈ TyoM . By Lemma 3.2, there exist a relatively compact neigh-
borhood U of yo and a (J, J ′)-biholomorphism between (U , J) and (Bn, J ′),
with J ′ arbitrarily close in C2 norm to the standard complex structure. Due
to this, we may assume that τ = τo ◦ϕ, with τo(z) = |z|2, is a C2 strictly J-
plurisubharmonic exhaustion on U , tending to 1 at the points of ∂U . Hence,
there is a constant c > 0 such that

Hessx(u+ c(1− τ))(v, v) = Hessx(u)(v, v)− cHessx(τ)(v, v) ≥ 0 ,

for all x ∈ U and v ∈ TxM ' R2n with |v| = 1. This means that

ĥ
def
= (u+ c(1− τ))|Byo (r)
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is in C2(U)∩Psh(U), satisfies (5.4) and, by maximality of u, satisfies ĥ ≤ u at
all points of U . But there is also an ε > 0 such that ∅ 6= τ−1([0, 1− ε[) ( U
and hence such that, on this subset, ĥ ≥ u + cε > u, contradicting the
maximality of u.

5.3. Green functions of nice circular domains. The results of previous
section show that (5.5) is a natural analogue of classical complex Monge-
Ampère equation for domains in Cn and that the solutions of (5.5) are in-
teresting biholomorphic invariants of strongly pseudoconvex domains. This
motivates the following generalized notion of Green functions (see e.g. [1]).

Definition 5.5. Let D be a domain in a strongly pseudoconvex, almost
complex manifold (M,J). We call almost pluricomplex Green function with
pole at xo ∈ D an exhaustion u : D −→ [−∞, 0] such that

i) u|∂D = 0 and u(x) ' log ‖x− xo‖ when x→ xo, for some Euclidean
metric ‖ · ‖ on a neighborhood of xo;

ii) it is J-plurisubharmonic;
iii) it is a solution of the generalized Monge-Ampere equation

(ddcu+ J∗(ddcu))n = 0 on D \ {xo}.

Notice that, if a Green function with pole xo exists, by a direct conse-
quence of property of maximality (Theorem 5.4) it is unique.

Consider now an almost complex domain D of circular type in (M,J)

with center xo. Denoting by Φ : B̃n −→ D̃ the corresponding Riemann
map, we call standard exhaustion of D the map

τ(xo) : D −→ [0, 1[ , τ(x) =

|Φ
−1(x)|2 if x 6= 0 ,

0 if x = xo .

When D is in normal form, i.e. D = (Bn, J) with J almost L-complex
structure, its standard exhaustion is just τo(z) = |z|2.

Proposition 5.6. Let D be a domain of circular type in (M,J) with center
xo and standard exhaustion τ(xo). If u = log τ(xo) is J-plurisubharmonic,
then u is an almost pluricomplex Green function with pole at xo.

Proof. With no loss of generality, we may assume that the domain is in
normal form, i.e. D = (Bn, J) and τ(xo)(z) = τo(x) = |x|2. Since τo is
smooth on Bn \ {0} and u = log τo is J-plurisubharmonic, we have that
Hess(u)x ≥ 0 for any x 6= 0. On the other hand, for any straight disk
f : ∆ −→ Bn of the form f(ζ) = v · ζ, we have that u ◦ f is harmonic and
Hess(u)f(ζ)(v, v) = 0 for any ζ 6= 0. This means that Hess(u)x ≥ 0 has at
least one vanishing eigenvalue at any point of Bn \{0} and means that (5.5)
is satisfied. Other conditions of Definition 5.5 can be checked directly.

When J is integrable, the standard exhaustion u = log τ(xo) of the normal
form of a domain of circular type is automatically plurisubharmonic ([20]).
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In the almost complex case, this is no longer true, as the following example
shows.

Example 5.7. Consider a quadruple of vector fields (Z, JstZ,E, JstE) on

B̃2, determined as follows. The field Z has been defined in §3.2 and, in coor-

dinates (3.6), is of the form Zz = Re
(
z0 ∂

∂z0

∣∣
z

)
at any z ∈ B̃2 \π−1(0). The

field E is any vector field in the distribution H that satisfies the conditions

[Z,E] = [JstZ,E] = 0 , [E, JstE] = −JstZ . (5.9)

It is uniquely determined, up to a smooth family of unitary transformations

of the subspaces Hz ⊂ TzB̃2. Notice that the standard holomorphic bundle

T 10B̃2 is generated at all points by the complex vector fields Z10 = Z−iJstZ,
E10 = E− iJstE. In the following, we denote by (E10∗, E01∗, Z10∗, Z01∗) the

field of complex coframes, which is dual to (E10, E01 = E10, Z10, Z01 = Z10)
at all points.

Consider a deformation tensor φ ∈ Hom(H01,Z10 + H10) of the form

φz = h(z)Z10
z ⊗ E01∗

z for some smooth real valued function h : B̃n −→ R,
which is constant on all spheres Sc = { τo(z) = c } (i.e. h = h(|z0|)) and is
equal to 0 on an open neighborhood of π−1(0) = CP 1.

By definitions and Remark 3.9, the deformation tensor φ determines an

almost complex structure J , with J-holomorphic spaces T 10
JzB̃

n = CZ10
z ⊕

CẼ10
z , Ẽ10

z
def
= E10

z +h(z)Z01
z , that satisfies (i), (iii) and (iv) of Definition 3.3.

We claim that the system (3.7) is alway solvable, so that J is an almost L-

complex structure and (B̃n, J) is an almost complex domain of circular type
in normal form. This claim can be checked observing that the components
of J in coordinates (3.6) along the disk f(ζ) = ζ · v with v = (0, 1), are such
that

J1
1 = i = −J 1̄

1̄ , J1
1̄ = J 1̄

1 = 0

and J0
A = J0

A(|z0|), J 0̄
A = J 0̄

A(|z0|) for any A = 1, 1̄. So, (3.7) reduces to
g1,ζ̄ = F1 on ∆ ,

g1 = k(ζ2 − 1) on ∂∆ ,
(5.10)

with F1 : ∆ −→ C depending only on ρ = |ζ| and k constant. Consider the
map

F̃1 : ∆ −→ C , F̃1
def
= − 1

π

∫
∆

F1(|w|)
w − ζ

dw ∧ dw̄ .

It is such that

F̃1,ζ̄ = F1 and

∫
∂∆

F̃1ζ
ndζ = 2i

∫
∆
F1(ρ)ρn+1einϑdρ ∧ dϑ = 0

for any n ≥ 0. Hence, if h1 : ∆ −→ C is a holomorphic map such that

h1|∂∆ = F̃1|∂∆, the map g1 = F̃1 − h1 + k(ζ2 − 1) is a solution to (5.10).
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Since the solvability of (3.7) is independent on the choice of coordinates,
this concludes the proof of the claim.

Now, we want to show that if h 6≡ 0, the function u = log τo is not J-
plurisubharmonic. For this, we first observe that, for any pair of real vector
fields X,Y , if we set X10 = X − iJX, Y 01 = Y + iJY

Hess(u)(X,Y ) =
1

2
Im ddcu(X10, Y 01) =

=
1

2
Im
(
iX10(Y 01(u)) + iY 01(X10(u)) + J [X10, Y 01](u)

)
(5.11)

We also recall that (here, (·)Z
def
= Z(·) denotes derivation along Z)

Z10(u) = 1 = Z01(u) , E10(u) = 0 , Ẽ10(u) = h = Ẽ01(u) , (5.12)

Ẽ10(Ẽ01(u)) = hhZ = Ẽ01(Ẽ10(u)) , (5.13)

[E10, E01] = −2i[E, JE] = −i2JZ , (5.14)

J [Ẽ10, Ẽ01](u) = J [E10, E01](u)+ihhZ(Z10+Z01)(u) = i2(1+hhZ) , (5.15)

J [Ẽ10, Z01](u) = ihZZ
01(u) = ihZ . (5.16)

Hence, if we set Ẽ = Re(Ẽ10) and JẼ = Re(iẼ10), using (5.11) - (5.16) we
may conclude that

Hess(Ẽ, Ẽ) = 1 + 2hhZ , Hess(Ẽ, JẼ) = 0 ,

Hess(Ẽ, Z) = hZ , Hess(Ẽ, JZ) = Hess(Z,Z) = Hess(Z, JZ) = 0 ,

so that the matrix H, with entries given by the components of Hess(u)z in

the basis B = (e1 = Ẽz, e2 = JẼz, e3 = Zz, e4 = JZz), is

H =


1 + 2hhZ 0 hZ 0

0 1 + 2hhZ 0 hZ
hZ 0 0 0
0 hZ 0 0

 .

Since the eigenvalues of H are λ± =
(1+2hhZ)±

√
(1+2hhZ)2+4h2Z
2 , we conclude

that u is J-plurisubharmonic if and only if hZ ≡ 0, i.e. if and only if h ≡ 0.

From previous example, we see that the standard exhaustion τ(xo) of an
almost complex domain (D,J) of circular type is in general not a Green
function, independently on how J is close to an integrable complex structure.
However, the property remains valid if one restricts to the class of nice
domains and to small deformations of integrable structures, as it is shown in
next theorem. This property nicely relates to Thm. 6.4 [10] (see also Remark
4.2) on the existence of extremal disks for domains with small deformations
of an integrable complex structure.

Theorem 5.8. Let D be a nice circular domain with standard exhaustion
τ(xo) and normal form (Bn, J). If J is a sufficiently small C1-deformation
of Jst, then u = log τ(xo) is the Green function with pole at xo.
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Proof. By Proposition 5.6, it suffices to show that, when J is sufficiently
close to Jst, then u = log |z|2 is J-pseudoconvex on Bn \ {0}. For this, we
first claim that if (Bn, J) is nice, then Hess(u)z(Z,H) = 0 at any z 6= 0.
Since Z and H are both J-invariant, this is equivalent to claim that, that
for any z 6= 0,

(ddcu+ J∗(ddcu))z (Z,X) = 0 , Z
def
= Re

(
zi

∂

∂zi

)
, X ∈ H . (5.17)

But this follows from the fact that X and JX are tangent to the level sets
of u = log τo, that [Z,H] ⊂ H and hence that

ddcu(Z,X) = −Z(JX(u)) +X(JZ(u)) + (J [Z,X])(u) = X(JstZ(u)) = 0

J∗ddcu(Z,X)=JZ(X(u))−JX(Z(u))+(J [JZ, JX])(u) = −JX(Z(u)) =0.

Since Hess(u)|Z×Z = 0, it remains to check that Hess(u)|Hz×Hz ≥ 0. Since
any sphere S2n−1

c = { z ∈ Bn , τo(z) = c }, c ∈]0, 1], is strongly Jst-
pseudoconvex and its (real) holomorphic tangent distribution distribution is
H|S2n−1

c
, if J is sufficiently close to Jst, the sphere S2n−1

c is strongly pseudo-
convex also w.r.t. J by a continuity argument. This is the same of saying
that Hess(u)|Hz×Hz ≥ 0 for any z 6= 0, as needed.

5.4. Concluding remarks. It is well known that on (integrable!) com-
plex manifolds there is a tight connection between the existence of regular
plurisubharmonic solutions u of maximal rank for homogeneous complex
Monge-Ampère equations and existence of foliations by Riemann surfaces.
In fact, such foliation is given by the complex curves along which the solution
u is harmonic.

This idea was exploited by Lempert in his work on strictly convex domains
in Cn ([12]). In this case, the foliation is made of the extremal disks for the
Kobayashi metric through a fixed point xo, which coincide with stationary
disks through xo. The function u is the pull-back on each disk of the standard
Green function with pole at 0 of ∆ ⊂ C, so that any strictly convex domain is
a domain of circular type. Conversely, the singular foliation by holomorphic
disks, determined by the exhaustion u of a domain of circular type, is a
foliation by Kobayashi extremal disks ([19]).

Also for almost complex domains, the plurisubharmonic C2 functions,
which are harmonic along the leaves of a foliation of circular type F (xo), are
solutions of an almost complex Monge-Ampère equation:

Proposition 5.9. Let D ⊂ M be a domain in a strongly pseudoconvex
manifold (M,J) with a foliation of circular type F (xo) of (D,xo). Let also
u : D −→] −∞,+∞[ be a function which is in Psh(D) ∩ C2(D \ {xo}) and

so that u ◦ f : ∆ \ {0} −→ R is harmonic for any f ∈ F (xo). Then u is a
solution of the generalized Monge-Ampère equation (5.5) su D \ {xo}.
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Proof. First of all, we claim that u satisfies the generalized Monge-Ampere
equation (5.5) at all points of D \ {xo}. In fact, by (ii) of Definition 3.1,

for any y ∈ D we know that there exists a disk f : ∆ −→ D in F (xo)

with y = f(ζ) for some ζ ∈ ∆. Since u ◦ f is harmonic, if we denote by

v = f∗

(
∂

∂(Re ζ)

)
, we have that

H(u)y(v, v) = (ddcu+ J∗(ddcu))y(v, Jv) = ∆(u ◦ f)ζ = 0 , (5.18)

from which it follows immediately that (ddcu + J∗(ddcu))ny = 0. The con-
clusion follows immediately from Theorem 5.4.

Notice that, by Example 5.7, the previous remark is not so useful to
determine almost pluricomplex Green functions, since in general the function
u = log τ(xo), which is determined by the geometric construction, is not
plurisubharmonic. Furthermore, we know that, in general, stationary disks
of an almost complex domain D are not extremal disks for the Kobayashi
metric of D ([10]). Nevertheless, the above properties of strictly convex
domains of Cn remain valid in a large class of almost complex domains, as
it is illustrated in the following theorem, which is direct consequence of our
results.

Theorem 5.10. Let D be an almost complex domain of circular type with
center xo in (M,J) strongly pseudoconvex. If the normal form (Bn, J ′) of
(D,J) is very nice with J ′ sufficiently close to Jst, then

a) the stationary foliation F (xo) consists of extremal disks w.r.t.
Kobayashi metric;

b) the function u = log τ(xo) is the almost pluricomplex Green function
of D with pole xo;

c) the distribution Zz = kerHess(u)z is integrable and the closures of

its integral leaves are the disks in F (xo).
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