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Abstract

A (bounded) manifold of circular type is a complex manifold M of dimension n admitting a (bounded)
exhaustive real function u, defined on M minus a point xo, so that: (a) it is a smooth solution on M \ {xo}
to the Monge–Ampère equation (ddcu)n = 0; (b) xo is a singular point for u of logarithmic type and
eu extends smoothly on the blow up of M at xo; (c) ddc(eu) > 0 at any point of M \ {xo}. This class
of manifolds naturally includes all smoothly bounded, strictly linearly convex domains and all smoothly
bounded, strongly pseudoconvex circular domains of Cn.

A set of modular parameters for bounded manifolds of circular type is considered. In particular, for each
biholomorphic equivalence class of them it is proved the existence of an essentially unique manifold in
normal form. It is also shown that the class of normalizing maps for an n-dimensional manifold M is a new
holomorphic invariant with the following property: it is parameterized by the points of a finite dimensional
real manifold of dimension n2 when M is a (non-convex) circular domain while it is of dimension n2 + 2n

when M is a strictly linearly convex domain. New characterizations of the circular domains and of the unit
ball are also obtained.
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1. Introduction

In this paper we consider the moduli spaces of a family of complex manifolds, which includes
the smoothly bounded strictly linearly convex domains and the smoothly bounded strictly pseu-
doconvex circular domains in Cn. For these complex manifolds, we prove the existence of normal
forms and of modular parameters that generalize those introduced by Bland and Duchamp in [6].

More precisely, we consider a larger class of manifolds, called (bounded) manifolds of circular
type, which naturally includes the previous two families of domains and are characterized by the
property of admitting a (bounded) exhaustive real function u, defined on M minus a point xo, so
that: (a) it is a smooth solution on M \ {xo} to the Monge–Ampère equation (ddcu)n = 0; (b) xo

is a singular point for u of logarithmic type and eu extends smoothly on the blow up of M at xo;
(c) ddc(eu) > 0 at any point of M \ {xo}.

In any biholomorphic equivalence class of such domains, we prove the existence of an essen-
tially unique manifold in normal form, consisting of the unit ball Bn together with a non-standard
complex structure J , which satisfies some suitable conditions. One of them consists of requir-
ing that the non-standard CR structures induced on the spheres S2n−1(r) = {|z| = r}, 0 < r < 1,
have the same real distribution of the standard ones as underlying distribution of J -invariant real
subspaces. The other conditions imply that J is uniquely determined by only one of such CR
structures. This CR structure is completely determined by a sequence {φk}∞k=0 of (1,1)-tensor
fields on CP n−1 � S2n−1(ro)/S

1, obtained by expanding in Fourier series the tensor field φ that
gives the complex structure of the CR structure as a deformation of the standard one. As appli-
cations, we use these results to obtain new characterizations of the circular domains in Cn and of
the unit ball.

The normal forms considered in this paper are essentially the same of the normal forms con-
structed in [5,7] by Bland and Duchamp only for domains that are small deformations of the unit
ball. The major improvement consists in showing that such normal forms exist for any bounded
manifold of circular type, i.e. for any complex manifold which admits a solution to the described
Monge–Ampère differential problem. Such result has been obtained by methods and techniques
that are substantially different from those of [5] and [7].

We should also mention that our normal forms can be also considered as alternative to the
normal forms constructed by Lempert and Bland and Duchamp in [17,6], where equivalence
classes of pointed strictly linearly convex domains were studied; furthermore we complete the
description of the moduli giving an explicit treatment of the dependence of the invariants of the
domains on the choice of the distinguished point (see Section 5).

In many regards, the properties of normal forms of manifolds of circular type recall those of
the well-known Chern–Moser normal forms for Levi non-degenerate real hypersurfaces [10]. For
instance, if D is a domain of circular type in a Stein manifold, it turns out that the class N (D) of
the diffeomorphisms f :D → Bn, which map D into a normal form (Bn, J ), is naturally param-
eterized by a subset of the automorphism group Aut(Bn, Jo) of the standard unit ball (Bn, Jo).
As for Chern–Moser normal forms, this fact determines a natural embedding of Aut(D) as a
subgroup of Aut(Bn, Jo).

On the other hand, in contrast with what occurs for Chern–Moser normal forms, the parameter
set for the class N (D) is not independent of D and it represents an important biholomorphic
invariant for the domain (we recall that, on the contrary, the Chern–Moser normalizing maps are
always parameterized by the isotropy Autxo(B

n, Jo) of a fixed boundary point xo ∈ ∂Bn).
For example, if D is a smoothly bounded, strictly linearly convex domain in Cn, then N (D) �

Aut(Bn, Jo), while if D is a generic (non-convex) strongly pseudoconvex circular domain, then
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N (D) � Un � Aut(Bn, Jo). These facts motivate the following question: Is it true that a domain
of circular type D is biholomorphic to a smoothly bounded, strictly linearly convex domains in
Cn if and only if N (D) � Aut(Bn, Jo)?

We conjecture that the answer is “yes”, at least when n � 3 and some boundary regularity
conditions are assumed. However, besides such conjecture, there is another reason of interest
for the domains of circular type for which N (D) � Aut(Bn, Jo), namely the abundance of so-
lutions to the quoted Monge–Ampère problem that there exists on any such domain (there is at
least one such solution for any point xo ∈ D—see remarks after Theorem 5.5). In addition, any
such domain is endowed with a biholomorphically invariant complex Finsler metric, namely the
infinitesimal Kobayashi metric (e.g. [12,21,25,1,27]).

Some applications of the theory of normal forms we developed here can be found in the
last section. We obtain f.i. the following result (Theorem 5.9): a bounded manifold of circular
type M , with u :M \ {xo} → [0, r2) satisfying (a), (b), (c), is biholomorphic to a circular domain
in Cn if and only if there exists at least two subdomains M<c = {u < c}, M<c′ = {u < c′},
0 < c < c′ < r2, which are biholomorphic one to the other by a map fixing xo. This theorem
represents a generalization to any manifold of circular type of results in [18] and [1], originally
proved only for smoothly bounded, strictly linearly convex domains in Cn or complex Finsler
manifolds. Such generalization is obtained by an approach which is quite different from the ones
in [18] and [1]. By a result in [23], our Theorem 5.9 has also an immediate corollary which gives
a new characterization of the unit ball (Corollary 5.11).

The structure of the paper is as follows. Section 2 is devoted to preliminaries and to the so-
called circular representation of a manifold of circular type, a generalization of the standard
circular representation of strictly linearly convex domains (see [23,6]). In Section 3, the normal
forms of domains of circular type is defined and the existence of normalizing maps is proved. In
Section 4, it is shown that the complex structure of a manifold in normal form is completely de-
termined by the associated “deformation tensor” φ. In the same section, the Bland and Duchamp
invariants φ(k), determined by Fourier series expansion of φ, are defined. In Section 5 we give a
geometrical interpretation of the Bland and Duchamp invariant φ(0), we establish the parameter-
ization by elements of Aut(Bn) of the family of normalizing maps of a manifold of circular type
and we prove the mentioned characterizations of circular domains and of the unit ball.

2. Preliminaries

2.1. Notation, first definitions and some basic properties

In all the following, Jo is the standard complex structure of Cn, Bn ⊂ Cn the unit ball and
Δ = B1 the unit disc in C. A CR structure D1,0 ⊂ T CM on a manifold M will be often indicated
by the associated pair (D, J ) of the underlying real distribution D ⊂ T M and the family of
complex structures Jx : Dx → Dx .

We recall that a CR structure (D, J ) of hypersurface type (i.e. with codim D = 1) is Levi
non-degenerate if and only if the underlying real distribution D is a contact distribution i.e. so
that for any 1-form θ with Ker θ = D, one has that dθx |Dx×Dx

is non-degenerate. This definition
is completely equivalent to the classical notion of “Levi non-degeneracy”. For any Levi non-
degenerate real hypersurface S ⊂ Cn, the induced CR structure (Do, Jo) will be called standard
CR structure and Do standard contact distribution.

We recall that a domain D ⊂ Cn is called circular if it is invariant under any transformation
z 	→ eiθ · z, for all θ ∈ R, while it is called circular and complete if it is invariant under all



G. Patrizio, A. Spiro / Advances in Mathematics 223 (2010) 174–197 177
transformations z 	→ ζ ·z for all ζ ∈ Δ̄. The Minkowski function μD : Cn+1 → R�0 of a complete
circular domain is defined by

μD(z) = 1

tz
, where tz = sup{s ∈ R: s · z ∈ D}. (2.1)

For instance, μBn(z) = |z|. Notice that, μD(ζ · z) = |ζ |μD(z) and, if D is smoothly bounded,
the function τ = μ2

D − 1 is a defining function for D which is smooth on Cn+1 \ {0}. In this case,
D is strictly linearly convex if and only if τ = μ2

D − 1 has strictly positive Hessian at any x 
= 0.
Given a complete circular domain D with smooth boundary and v ∈ T0Cn = Cn, we call stan-

dard radial disc tangent to v the map f
(μ)
v : Δ̄ → D defined by f

(μ)
v (ζ ) = ζ v

μD(v)
. Any standard

radial disc is indeed a stationary disc for D (see [15,22]; for stationary discs of hypersurfaces,
see also [30]).

We denote by π̃ : C̃n → Cn and by π̃ : D̃ → D the blow ups at the origin of Cn and D ⊂ Cn,
respectively. In fact, D̃ = π̃−1(D) ⊂ C̃n. We recall that C̃n is the total space of the tautological
line bundle π : C̃n = E → CP n−1 and that the exceptional divisor of the blow up coincides with
the image of the zero section of π : E → CP n−1. For any point ([v], z) of π−1 ({zi 
= 0}) ⊂ E,
we denote by (v1, . . . , vn−1, ζ ) the complex coordinates defined by([v], z) = ([

v1, . . . , 1
i-th place

, . . . , vn−1], ζ · v1, . . . , ζ
i-th place

, . . . , ζ · vn−1). (2.2)

Any standard radial disc fv :Δ → Bn admits a unique lifted map f̃v :Δ → B̃n with
π ◦ f̃v = fv . It can be checked that any map f̃v is a stationary disc for the sphere S2n−1, con-
sidered as real hypersurface in C̃n, and the image is the fiber π−1([v]) ⊂ B̃n. In particular, the
images of the standard radial discs of B̃n determine a holomorphic foliation. The same claim
holds for the lifts in C̃n of the radial discs f

(μ)
v of a complete circular domain D.

2.2. Manifolds of circular type, Monge–Ampère foliations, indicatrices

We recall now the definition of “manifolds of circular type” introduced in [24] and a few other
related concepts, essential for studying the moduli of such manifolds. For a function τ :M → R,
we denote Mτ=0 = τ−1(0) and Mτ 
=0 = M \ Mτ=0.

Definition 2.1. We say that a non-compact complex manifold M of complex dimension n is
a manifold of circular type if it admits an exhaustion function τ :M → [0, r2), for some r2 ∈
(0,∞], such that Mτ=0 = {xo} and

(a) τ ∈ C 0(M) ∩ C∞(Mτ 
=0);
(b) on Mτ 
=0, τ is so that ddcτ > 0 and ddc log τ � 0;
(c) on Mτ 
=0, (ddc log τ)n ≡ 0;
(d) if π : M̃ → M is the blow up of M at xo, then τ ◦π : M̃ → R is smooth and, in any coordinate

system centered at xo, there exist two positive constant C1,C2 so that C1‖x −xo‖2 � τ(x) �
C2‖x − xo‖2 for x near xo.

The point xo is called center of M w.r.t. τ and τ :M → [0, r2) is called parabolic exhaustion.
If r < ∞ (i.e. τ is bounded), we call M bounded. We denote a manifold of circular type with
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parabolic exhaustion τ with (M, τ) and we use the notation (M,J, τ ) if we need to indicate also
the complex structure J .

A manifold of circular type is called domain of circular type if it is a domain D in a complex
manifold, admitting one parabolic exhaustion τ , which is smooth up to the boundary and satis-
fying (b) also on ∂D. For such domains, we consider only these exhaustions and by “parabolic
exhaustions” we will always mean such functions.

Any strictly pseudoconvex, complete circular domain D ⊂ Cn is a domain of circular
type with center xo = 0 and parabolic exhaustion τ = μ2

D . Other examples are given by all
bounded, strictly linearly convex domain D ⊂ Cn with smooth boundary (see [15,16,24]).
In fact, if κD is the Kobayashi pseudo-distance of D, for any point xo ∈ D, the function
τxo(x) = tanh2(κD(x, xo)) is a parabolic exhaustion, smooth up to the boundary. In particular,
any point xo of a smoothly bounded, strictly linearly convex domain D is a center for D.

Let (M,J, τ ) be a bounded manifold of circular type with center xo ∈ M and M̃ the blow up
of M at xo. It is well known (see e.g. [2,29,24,31]) that the distribution Z defined by

Zx = kerddc log τ |x (2.3)

is a J -invariant integrable distribution on M \ {xo}, generated over the reals by Z and JZ, where
Z is the vector field defined by the condition

ddcτ (Z,JX) = X(τ) for any X ∈ T
(
M \ {xo}

)
. (2.4)

The associated foliation is usually called Monge–Ampère foliation. Using the Monge–Ampère
equation, one can check that

ddcτ (Z,JZ)|x = dτ(Z)|x = τ(x). (2.5)

We also consider the J -invariant distribution H on M \ {xo}, called normal distribution to the
Monge–Ampère foliation, defined by

Hx = (Zx)
⊥ def= {

X ∈ TxM: ddcτ (Z,X) = ddcτ (JZ,X) = 0
}
. (2.6)

Clearly TxM = Zx ⊕ Hx and by (2.6), (2.4) and J -invariance, Hx coincides with the holomor-
phic tangent space to S = {y: τ(y) = τ(x)}. In particular, for any c > 0, the pair (H|Sc , J ) is the
CR structure of the level hypersurface Sc = {τ = c}.

The distributions Z and H are defined just on M \ {xo} but extend as smooth J -invariant
distributions on the blow up M̃ and the extension depends uniquely on the real manifold structure
of M̃ . The distribution Z is integrable everywhere and, after identification of a neighborhood of
π−1(xo) ⊂ M̃ with an open neighborhood of CP n−1 in E = C̃n, the integral leaves of Z coincide
with the fibers of the projection π :E → CP n−1. On the other hand, H is not integrable, except
only when restricted on CP n−1 = π−1(xo), where H|CPn−1 = T CP n−1.

The smooth extendibility of Z follows directly from (2.7) and (2.10) of [24], written in a
system of coordinates (v1, . . . , vn−1, ζ ) as described in (2.2). For what concerns H, standard
computations on Monge–Ampère equations (see e.g. [31]) show that H is preserved by the flows
of Z and JZ. This allows to extend smoothly H on CP n−1 = π−1(xo) by setting H|CPn−1 =
T CP n−1.
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Standard considerations (see f.i. [20]) imply that any manifold of circular type is a Stein
manifold. Furthermore if τ, τ ′ are two parabolic exhaustions of a domain of circular type D with
the same center xo, then D is a hyperconvex domain and, as a consequence of Theorem 4.3
in [11], there exists a unique plurisubharmonic function u so that u|∂D = 0, (ddcu)n ≡ 0 and
u(z) ∼ log|z − xo| for z → xo. This implies that log τ = u+ c and log τ ′ = u + c′ where c and c′
are the constant values c = log τ |∂D , c′ = log τ |∂D . From this we get the following

Proposition 2.2. (i) If D is a domain of circular type and τ, τ ′ are two parabolic exhaustions
with the same center, then τ ′ = kτ for some constant k > 0.

(ii) If M is a manifold of circular type and τ, τ ′ are parabolic exhaustions with the same
center with {τ = c} = {τ ′ = c′} for some c, c′, then τ ′ = kτ , for some k > 0.

The first claim is direct consequence of the uniqueness property mentioned above. The second
claim follows from the fact that by (i) we have that τ |D = kτ ′|D on D = {τ < c} = {τ ′ < c′} and
from the uniqueness of τ along the leaves of the Monge–Ampère foliation.

We now give the following technical lemma, needed later. Let (M,J, τ ) be a bounded mani-
fold of circular type and π : M̃ → M the blow up at the center xo. Let also (J ′, τ ′) another pair
so that also (M,J ′, τ ′) is a domain of circular type with the same center xo and let π : M̃ ′ → M

the new blow up at xo. Then, we have the following:

Lemma 2.3. If (J, τ ) and (J ′, τ ′) determine the same vector field Z via (2.4), then M̃ = M̃ ′
(as real differentiable manifolds), τ = τ ′ and the normal distributions of the Monge–Ampère
foliations H = H′ of (M,J, τ ) and (M,J ′, τ ′) are the same. In particular, the CR structures
induced by J and J ′ on any hypersurface Sc = {τ = τ ′ = c} have the same underlying real
distributions.

Proof. Consider the identity map between M̃ \π−1(xo) = M \ {xo} = M̃ ′ \π ′−1(xo) and extend
it continuously along each integral curve of Z. From the uniqueness of the extension of Z , such
map is unique and smooth w.r.t. the real manifold structures of M̃ and M̃ ′ and shows that M̃ = M̃ ′
as differentiable manifolds. On the other hand, τ |π−1(xo)

= τ ′|π−1(xo)
= 0 and hence, by (2.5), for

any x of the form x = ΦZ
t (y), y ∈ π−1(xo), where ΦZ

t is the flow of Z, we have τ(x) = τ ′(x).
Finally, as Hy = H′

y = TyCP n−1 for y ∈ CP n−1 = π−1(xo), the invariance of H, H′ under the
flow of Z implies as before that Hx = H′

x at any x.

2.3. Circular representations

Here, we illustrate that any manifold of circular type admits a circular representation as
it is known for the strictly linearly convex domains. For a bounded manifold of circular type
(M, τ), with center xo, consider a system of complex coordinates z = (z1, . . . , zn), around xo,
with z(xo) = 0. By Lemma 2.1 in [24], there exists a smooth map h :S2n−1 → R>0 such that√

τ(z) = |z|h( z
|z| ) + o(|z|2). We set

κ :TxoM � Cn → R�0, κ(v) =
{ |v| · h( v

|v| ) if v 
= 0,

0 if v = 0.
(2.7)

It can be immediately checked that κ(v) = limto→0
d
dt

√
τ(γt )|t=to for any smooth curve γt with

γ0 = xo and γ̇0 = v and hence it is independent of the coordinates. Furthermore, κ is a smooth
function on TxoM \ {0} and satisfies κ(λv) = |λ|κ(v) for any λ ∈ C.
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Definition 2.4. We call indicatrix of M at the center xo determined by τ the smoothly bounded,
complete circular domain Ixo ⊂ TxoM with κ as Minkowski function, i.e.

Ixo = {
v ∈ TxoM: κ(v) < 1

}
. (2.8)

Remark 2.5. Notice that by [24], Proposition 4.1, ddcκ2 > 0 at all points of Īxo \ {0} and hence
Ixo is strongly pseudoconvex. Furthermore, using the arguments of the proof of the main result
in [25], it follows that κ is the Kobayashi metric of M at xo and Ixo is the Kobayashi indicatrix
of M at xo.

In the next proposition, we collect a few well-known properties, usually stated for strictly
linearly convex domains (see e.g. [6,8,15,17,22,23]), but actually true for all domains of circular
type.

Proposition 2.6. Let (M, τ) be a bounded manifold of circular type with τ :M → [0,1), and
I ⊂ TxoM the indicatrix determined by τ . Then there exists a unique diffeomorphism Ψ : Ĩ → M̃

with the following properties:

(i) Ψ |π−1(0) = Idπ−1(0), provided that we identify the exceptional divisor π−1(0) of T̃xoM with
the exceptional divisor π−1(xo) of M̃;

(ii) for any t ∈ (0,1), the map Φ(t) : ∂Ĩ → M̃ , defined by Φ(t)([v], z) = Ψ ([v], tz) is so that
Φ(t)|

∂Ĩ
is a diffeomorphism between ∂Ĩ and the level hypersurface S(t) = {τ = t2};

(iii) for any t ∈ (0,1), Φ(t)|
∂Ĩ

maps the real distribution of the CR structure of ∂Ĩ onto the real
distribution of the CR structure of S(t);

(iv) for any ([v], z) ∈ ∂Ĩ and t ∈ ]0,1[, the map f̃
(t)
([v],z) :Δ → M̃ , defined by f̃

(t)
([v],z)(ζ ) =

Ψ ([v], tζ z), is proper holomorphic and injective, and so that f̃
(t)
([v],z)(∂Δ) ⊂ S(t) and

f̃
(t)
([v],z)(Δ) is equal to an integral leaf of the Monge–Ampère foliation of M̃<t2 = {τ̃ < t2}.

In case M is a domain of circular type, then Ψ extends smoothly up to the boundary with
Ψ (∂Ĩ ) ⊂ ∂M̃ and (iii), (iv) are valid also for t = 1.

The proof of (i)–(iv) is indeed contained in [24]. The last claim can be checked observing that,
by the properness of the maps f̃

(t)
([v],z), one can infer that Ψ extends smoothly up to the boundary

with Ψ (∂Ĩ ) = ∂M̃ . Properties (iii) and (iv) when t = 1 are obtained with the same arguments
used for t < 1 in [24].

The diffeomorphism Ψ : Ĩ → M̃ will be called circular representation of M associated with τ .
It should be viewed as the lift at the level of the blow ups of the circular representation defined
in [24]. When M is a smoothly bounded, strictly linearly convex domain in Cn, Ψ is the circular
representation considered in [8].

3. Normal forms for manifolds of circular type

In the following, we insert the tilde “˜” on top of symbols of manifolds, domains or maps,
when we indicate blow ups or lifts of maps on blow ups, and B̃n is the blow up of Bn at 0. Also
τo : Cn → [0,∞) is the standard exhaustion τo(z) = |z|2.
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3.1. Complex structures of Lempert type and manifolds in normal form

Definition 3.1. Let I ⊂ Cn be a strictly pseudoconvex complete circular domain with Minkowski
function μ, and let π : Ĩ → I be the blow up of I at 0 and μ̃ = μ ◦ π . A complex structure J on
Ĩ is called of Lempert type if

(a) on any hypersurface Sc = {z ∈ Ĩ : μ̃(z) = c}, 0 < c < 1, the distribution D of the CR structure
(D, J ) coincides with the distribution Do of the standard CR structure (Do, Jo);

(b) the projection π : Ĩ → I induces a complex manifold structure on I \ {0}, whose charts are
smoothly overlapping with the charts of the standard manifold structure of Cn \ {0}, i.e. the
projected complex structure is given by a smooth tensor field J of type (1,1) on I \ {0};

(c) the restriction of J on any tangent space of a standard radial disc of I preserves that tangent
space and it coincides with the standard complex structure Jo.

Notice that, from (a), the level hypersurfaces Sc of the function τ̃
def= μ2 ◦ π are Levi non-

degenerate. When they are strictly pseudoconvex (for instance, when J is L-isotopic to Jo; see
next definition), τ̃ is indeed plurisubharmonic on Ĩ and strictly plurisubharmonic on the com-
plement of the exceptional set. By Narasimhan’s result in [20], if I is endowed with a suitable
complex manifold structure, this implies that Ĩ is a proper modification of I . Such complex struc-
ture coincides with the one described in (b) on I \ {0}, but need not to smoothly overlap with the
standard complex structure at 0.

We call such complex structure the projected complex structure of Lempert type on I and it
will be indicated by the associated tensor field J , even if such tensor is a smooth tensor w.r.t. the
standard coordinates of Cn only at the points of I \ {0}.

Two complex structures J and J ′ of Lempert type are called Lempert isotopic (or, shortly,
L-isotopic) if there exists a smooth family Jt , t ∈ [0,1], of complex structures of Lempert type
on Ĩ , such that J0 = J and J1 = J ′.

Theorem 3.2. Any complex structure J on B̃n, which is of Lempert type and L-isotopic to Jo,
projects onto a non-standard complex manifold structure J on Bn which makes (Bn, J, τo)

a bounded manifold of circular type.

Proof. Since (Bn, Jo, τo) is a domain of circular type, we only need to prove that condi-
tions (b) and (c) of Definition 2.1 are still true after replacing Jo with J . Let Zo and Ho

be the tangent and normal distributions of the Monge–Ampère foliation of B̃n determined by
(Jo, τo) and Z the vector field defined in (2.4). By (a) of Definition 3.1, the distribution Ho

is J -invariant. Let dc′ = − 1
4π

J−1 ◦ d ◦ J be the J -twisted differential (see e.g. [3, p. 68]).

Now, ddc′
τo|Zo×Zo

= ddcτo|Zo×Zo
> 0, because (Bn, Jo, τo) satisfies (b) of Definition 2.1 and

J |Zo
= Jo|Zo

. On the other hand, recall that ddc′
τo|Ho×Ho

coincides with the Levi form (w.r.t. J )
of the hypersurfaces {τo = const.}. Since Ho is also the real distribution underlying the CR struc-
ture induced by Jo and the hypersurfaces {τo = const.} are strongly pseudo-convex (they are
spheres), Ho is a contact distribution over each such hypersurface (see Section 2.1). This implies
that, at any point, ddc′

τo|Ho×Ho
is a non-degenerate J -Hermitian form. The same claim is true

for all complex structures Jt of an L-isotopy between J and Jo. A trivial continuity argument
implies that ddc′

τo|H ×H > 0. Moreover, for any vector field X in Ho,

o o
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ddc′
τo(Z,X) = 1

4π

{
Z

(
JX(τo)

) − X
(
JZ(τo)

) − J
([X,Z])(τo)

} = 0, (3.1)

since Ho is preserved by the flow of Z and, by (b) of Definition 3.1, JZ(= JoZ) and JX are
both tangent to the level hypersurfaces of τo. From this we conclude that ddc′

τo > 0. Since
τ 2
o ddc′

log τo = τoddc′
τo − dτo ∧ dc′

τo and the structures Jo and J coincide along Z , one has
ddc′

log τo|Z ×Z = 0, so that ddc′
log τo � 0 and (ddc′

log τo)
n = 0, i.e. (b) and (c) of Defini-

tion 2.1 are true also when Jo is replaced by J . �
Definition 3.3. We call manifold of circular type in normal form any bounded manifold of circu-
lar type of the form (Bn, J, τo), where τo is the standard exhaustion τo = | · |2 and J is a complex
structure of Lempert type that is L-isotopic to Jo.

For a bounded manifold of circular type (M,J, τ ) with center xo, a biholomorphism
Φ : M̃ → B̃n between the blow up (M̃, J ) at xo and the blow up (B̃n, J ′) of a manifold in normal
form (Bn, J ′, τo) is called normalizing map w.r.t. τ and xo if:

(a) Φ induces a diffeomorphism between the exceptional divisors;
(b) τ̃ = τ̃o ◦ Φ , where τ̃ and τ̃o are the lifts of τ and τo at the blow ups.

3.2. Existence and uniqueness of normalizing maps

Theorem 3.4. Let (M,J, τ ) be a bounded manifold of circular type, with xo center of M asso-
ciated with τ and blow up π : M̃ → M at xo. Then, there exists at least one normalizing map
Φ : (M̃, J ) → (B̃, J ′) relative to τ and xo. Moreover, any two normalizing maps Φ and Φ ′, both
relative to τ and xo, are equal if and only if (Φ ′ ◦ Φ−1)|π−1(xo)

= Id and (Φ ′ ◦ Φ−1)∗ induces
the identity map on the tangent spaces of the leaves of the Monge–Ampère foliation at the points
of π−1(xo).

If (M,J, τ ) is a domain of circular type and τ extends up to the boundary, then there exists a
normalizing map which extends smoothly up to the boundary.

Proof. Fix a complex basis (e0, . . . , en−1) for TxoM and consider the unique isomorphism of
complex vector spaces ı :TxoM → Cn which maps each vector ei into the corresponding vector
of the standard basis eo

i = ı(ei) of Cn. In what follows, we constantly identify TxoM with Cn

by means of such isomorphism. In particular, use such isomorphism in order to identify the
indicatrix I ⊂ TxoM associated with τ with the corresponding circular domain I ⊂ Cn with
Minkowski function κ .

Let Ψ : Ĩ ⊂ C̃n → M̃ be the circular representation associated with τ and consider the com-
plex structure JM = Ψ −1∗ (J ) on Ĩ . Keep in mind that, by (i) of Proposition 2.6 and definition
of JM , the blow up at the origin of (I, JM) is precisely the blow up at the origin of (I, Jo) and that
JM |CPn = Jo|CPn . Moreover, by construction of Ψ (it is the map Ψ (v) = F( v

|v| , κ(v)), where F

is the map defined in Theorem 3.4 in [24]) and by property (d) in the proof of Proposition 2.6, it
follows immediately that τ ◦Ψ = κ2 and hence that (I, JM,κ2) is a bounded manifold of circular
type. Moreover, using the proof of (iii) in Proposition 2.6 and by (iv) of the same proposition,
it is quite direct to check that JM satisfies all three conditions for being a complex structure of
Lempert type on I . We claim that JM is also L-isotopic to Jo. For this, it suffices to consider the
diffeomorphisms

Ψ (t) : Ĩ → M̃<t = {
τ < t2}, Ψ (t)

([v], z) = Ψ
([v], tz), 0 < t < 1,
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and the complex structures J (t) = Ψ
(t)−1∗ (J ) on Ĩ . The same arguments of before show that each

complex structure J (t) is of Lempert type. If we set J (0) = Jo and J (1) = JM , using explicit
coordinate expressions for the maps Ψ and Ψ (t), it can be checked that J (t), t ∈ [0,1], is a
smooth family of complex structures even at t = 0 and t = 1, proving that JM is L-isotopic to Jo.

From these remarks, the proof can be done assuming that M is a smoothly bounded, strongly
pseudoconvex circular domain I ⊂ Cn, the parabolic exhaustion τ is equal to the τ = μ2 where
μ is the Minkowski function of I , and J is a complex structure of Lempert type on M = I , which
is L-isotopic to the standard one and so that the blow up of (I, J ) at the origin coincides with the
blow up of (I, Jo) and with J |CPn = Jo|CPn .

Now, notice that if we replace J by Jo, then (I, Jo,μ
2) remains a manifold of circular type.

We claim that if Φ : (Ĩ , Jo) → (B̃n, J ′) is a normalizing map for (I, Jo,μ
2) relative to μ2 and

center xo = 0, then it is also a normalizing map also for (I, J,μ2). In fact, it is enough to consider
the complex structure J ′′ = Φ∗(Jo) on B̃n and observe that:

(1) Φ is (J, J ′′)-biholomorphic map by construction;
(2) τ̃o ◦ Φ = μ2 ◦ π because Φ is a normalizing map for (I, Jo,μ

2);
(3) J ′′ is of Lempert type because J is of Lempert type on I ;
(4) J ′′ is L-isotopic to J ′ (because J is L-isotopic to Jo) and J ′ is L-isotopic to Jo; from this it

follows that J ′′ is L-isotopic to Jo.

So, if we show the existence of a normalizing map for any smoothly bounded, strongly pseu-
doconvex circular domain I ⊂ Cn, relative to τ = μ2 and xo = 0, we automatically prove the
existence of normalizing maps for any other manifold of circular type.

This is done using the lemma that follows. In order to state it, we have to fix some notation.
As usual, the blow-up of Cn at the origin is identified with the tautological line bundle π : C̃n =
E → CP n−1 and we set E∗ = E \{zero section} = Cn \{0}. We remark that E∗ is a holomorphic
principal C∗-bundle over CP n−1.

Let now μ : Cn → R�0 be the Minkowski function of a smoothly bounded, complete circular
domain D ⊂ Cn and let μ̃ = μ◦π :E∗ → R�0. It is quite direct to realize that μ̃2 is the quadratic
form of an Hermitian metric h(μ) on π :E → CP n−1 and that the distribution H, defined by

Hu = {
v ∈ TuE

∗: dμ̃u(v) = dμ̃u(Jov) = 0
}
, (3.2)

is a connection on the principal C∗-bundle E∗. The associated curvature 2-form ω̃(μ) is a C∗-
invariant, horizontal 2-form on E∗ and projects down onto a closed, 2-form ω(μ) on CP n−1.
A direct computation shows that, for any two Minkowski functions μ, μ′, the associated 2-forms
ω(μ) and ω(μ′) are cohomologous (see e.g. [26], Theorem 3.3).

From the definition, it is clear that, for any hypersurface S(c) = {μ = const.}, the restric-
tion H|S(c) coincides with the real distribution underlying the CR structure of S(c). When D

is strongly pseudo-convex, the function τ = μ2 is a parabolic exhaustion for D and hence H|D
coincides with the normal distribution of the Monge–Ampère foliation of D determined by τ .
Moreover, being each hypersurface S(c) strongly pseudo-convex, it is simple to check that the
associated 2-form ω(μ) is a Kähler form.

In the following, μo is the Minkowski function of Bn, i.e. μo = | · |, μ̃o = μo ◦ π and Ho is
the corresponding connection on E∗ as defined in (3.2).
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Lemma 3.5. Let D ⊂ Cn be a smoothly bounded, strongly pseudoconvex circular domain with
Minkowski function μ. Set μ̃ = μ ◦ π and let H be the corresponding connection on E∗ defined
in (3.2). Then, there exists a diffeomorphism φ : C̃n → C̃n with the following properties:

(i) it is a fiber preserving map for the bundle π : C̃n = E → CP n−1 which is holomorphic on
any fiber;

(ii) μ̃o = μ̃ ◦ φ;
(iii) φ∗(Ho) = H.

Moreover, if {μ(t), 0 � t � 1} is a smooth 1-parameter family of Minkowski functions of smoothly
bounded, strongly pseudoconvex circular domains, then it is possible to choose a family of dif-
feomorphisms φ(t) : C̃n → C̃n, satisfying (i)–(iii) for μ = μ(t), which depends smoothly on t .

Proof. Let ωo and ω be the Kähler forms on CP n determined by the curvatures on E∗ of the
connections Ho and H, respectively. Since ωo and ω are cohomologous, by Moser’s theorem [19]
there exists a diffeomorphism ψ : CP n−1 → CP n−1 such that

ψ∗ω = ωo. (3.3)

Indeed, by the proof of Moser’s theorem, there exists a smooth 1-parameter family of diffeo-
morphisms ψt , t ∈ [0,1], such that ψ0 = IdCPn−1 , ψ1 = ψ . Such family of diffeomorphisms is
obtained by integrating a family of vector fields Xt = ψ̇t satisfying a particular system of dif-
ferential equations. Consider the vector fields X̂t on E∗ � Cn \ {0}, which are horizontal w.r.t.
Ho and project onto the vector fields Xt . Since any space of the distribution Ho is tangent to
some spheres in E∗ = Cn \ {0}, it is possible to integrate such vector fields and obtain another

1-parameter family of diffeomorphisms ψ̂t :E∗ → E∗ so that X̂t = ˙̂
ψt . We then define

ψ̃t :E → E, ψ̃t

([v], z) =
{

(ψt ([v]), ψ̂t (z)) if z 
= 0,

(ψt ([v]),0) if z = 0,

which can be easily checked to be a family of diffeomorphisms and we set ψ̃
def= ψ̂1. By construc-

tion, ψ̃ :E → E commutes with the action of C on E and restricts to ψ on CP n−1. Consider
now a diffeomorphism φ :E → E of the form

φ
([v], z) def=

(
ψ

([v]), eiλ([v]) |z| · ψ̂(z)

μ(ψ̂(z))

)
(3.4)

where we denote by λ : CP n−1 → R a smooth function to be fixed later. It is clear that a map of
the form (3.4) satisfies (i). But it satisfies also (ii), since

μ̃
(
φ
([v], z)) = μ

(
eiλ([v]) |z| · ψ̂(z)

μ(ψ̂(z))

)
= |z| = μ̃o

([v], z),
and we claim that there exists a λ so that it satisfies also (iii). To check this, observe that, since
φ|E∗ commutes with the action of C∗, it maps the connection Ho into a connection H′ on E∗
whose curvature 2-forms projects down on CP n−1 onto the C-valued 2-form
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ω′ = ψ∗ωo = ω. (3.5)

Moreover, by (ii), all spaces of H′ are tangent to the hypersurfaces {μ = const.}.
By standard arguments of theory of connections, we obtain that, for any u ∈ E∗ there exists a

linear map

νu :Tπ(u)CP n−1 → R (3.6)

so that any space H′
u is of the form

H′
u =

{
w = v + νu

(
π∗(v)

) ·
(

i
∂

∂ζ

∣∣∣
u
− i

∂

∂ζ̄

∣∣∣
u

)
for some v ∈ Hu

}
(3.7)

(here we denoted by ζ the standard coordinate of C and by ∂
∂ζ

the vertical holomorphic vector
field on E induced by the holomorphic action of C on E). Equivalently, we may say that if
� :T E∗ → C∗ is the connection form for H, then the connection form � ′ of H′ is

� ′ = � − iν. (3.8)

By the invariance of H′ and H under the C∗-action, the linear map νu depends only on the point
x = π(u) ∈ CP n−1 and we may consider ν as a 1-form on CP n. Computing the curvature, we
get from (3.8) and (3.5) that

dν = i(ω′ − ω) = 0. (3.9)

Since H 1(CP n−1) = 0, there exists a smooth function λ̃ : Cn → R such that ν = dλ̃. Now, let us
replace the function λ in (3.4) with the function λ− λ̃◦ψ−1. By construction, in (3.7) the function
νu has to be replaced by the function ν̃u = νu − dλ̃|π(u) = 0 and the new map φ satisfies (iii).

It remains to prove the final part of the statement. First of all, notice that by the first part of
the proof, the function λ : CP n−1 → R is uniquely determined (up to a constant) by the diffeo-
morphism ψ : CP n−1 → CP n−1 which satisfies (3.3). By choosing some suitable normalization
condition for λ, we may assume that the map φ is uniquely determined by ψ . If μ(t) is a smooth
family of Minkowski functions of strongly pseudoconvex, complete circular domains, then also
the corresponding Kähler forms ω(t) are smoothly depending on t (it suffices to see the explicit
expression of ω(t) in term of μ(t)—see e.g. [26, p. 27]). Now, the proof of Moser’s theorem
in [19] shows that there exists a smooth family of diffeomorphisms ψ(t), t ∈ [0,1], each of them
satisfying ψ(t)∗ω(t) = ωo. This automatically implies the existence of a smooth family φ(t) sat-
isfying (i)–(iii) for any t . �

We may now conclude the proof of the theorem. Given a smoothly bounded, strongly pseu-
doconvex circular domain I ⊂ Cn with Minkowski function μ, let Φ = φ−1|

Ĩ
: Ĩ → B̃n, where

φ is diffeomorphism of the previous lemma, and let J ′ = Φ∗(Jo). From (i)–(iii) of the lemma,
it follows immediately that J is of Lempert type and that τ̃ = τ̃o ◦ Φ with τ = μ2. Moreover,
we may consider the smooth 1-parameter family of Minkowski functions μ(t) = (1 − t)μ + tμo

with t ∈ [0,1], a corresponding family of diffeomorphisms Φt = φ−1
t with φt associated by the

lemma with μ(t) and smoothly depending on t , and the 1-parameter family of complex functions
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Jt
def= Φt∗(Jo). By construction, Jt is an L-isotopy between J ′ and Jo and we may conclude that

Φ is a normalizing map for (I, Jo, τ = μ2), as needed.
Assume now that Φ,Φ ′ : M̃ → B̃n are two normalizing maps so that (Φ ′−1 ◦ Φ)|π−1 = Idπ−1

or, equivalently, that (Φ ′ ◦Φ−1)|CPn−1 = Id|CPn−1 . Now, Φ and Φ ′ map the leaves of the Monge–
Ampère foliation of (M,J, τ ) into the leaves of the Monge–Ampère foliation of (Bn,Φ∗(J ), τo)

and of (Bn,Φ ′∗(J ), τo), which are in both cases the images of the standard radial discs. This
means that Φ ′ ◦ Φ−1 maps biholomorphically any standard radial disc into itself, since (Φ ′ ◦
Φ−1)|CPn = Id|CPn−1 . If in addition (Φ ′−1 ◦ Φ)∗ induces the identity map on any tangent space
of a leaf of the Monge–Ampère foliation at the points of π−1(xo), we get that Φ ′ ◦ Φ−1 maps
any radial disc into itself by a biholomorphism which fixes the origin and with derivative equal
to 1 at 0. By Schwarz lemma, Φ ′ ◦ Φ−1 = Id on any radial disc and hence on the whole Bn.

It remains to check the smooth extendibility up the boundary of Φ if τ is smoothly extendible.
But this is a consequence of the fact that Φ is obtained by composing the inverse of the circular
representation (which is smoothly extendible to the boundary because of Proposition 2.6) and
the diffeomorphism between Ĩ ⊂ T̃xoM = C̃n and B̃n, which is given in Lemma 3.5 and which
is trivially smooth up to the boundary. �

We remark that one can prove a stronger statement about the uniqueness of normalizing maps.
We will come back on this topic in Section 6.

4. Bland and Duchamp’s invariants

In this section, we consider only manifolds of circular type in normal form, i.e. of the form
(Bn, J, τo) with τo = | · |2 and J complex structure on B̃n of Lempert type and L-isotopic to the
standard one. The distribution in B̃n, which is normal to the standard Monge–Ampère foliation,
will be denoted H. We recall that, for any sphere S(c) = {τo = c2}, the restriction H|S(c) is the
distribution underlying the standard CR structure of S(c) and that, for any x ∈ B̃n,

TxB̃
n = Zx ⊕ Hx

where Z is the distribution tangent to the standard radial disc. We also denote by Z the vector
field defined in (2.4): in the standard coordinates of Cn, the corresponding holomorphic and
anti-holomorphic parts of Z are

Z1,0 = 1

2
(Z − iJoZ) = zi ∂

∂zi
, Z0,1 = z̄i ∂

∂z̄i
. (4.1)

Recall also that any complex structure J of Lempert type is uniquely determined by its action
on the vector fields on H, since the action on the vector fields in Z is the same of the standard
complex structure Jo.

Let H 1,0 and H 0,1 = H 1,0 be the Jo-holomorphic and Jo-anti-holomorphic subbundles
of HC. For any other complex structure J of Lempert type, we denote the corresponding J -

holomorphic and J -anti-holomorphic subbundles of HC by H
1,0
J and H

0,1
J = H

1,0
J .

Definition 4.1. Let J be a complex structure on B̃n of Lempert type. We call deformation tensor
associated with J any smooth section
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φ : B̃n →
⋃

x∈B̃n

Hom
(
H 0,1,H 1,0) = H 0,1 ∗⊗ H 1,0

so that H 0,1 can be expressed as

H
0,1
J |x = {

w + φx(w), w ∈ H 0,1|x
}

for any x ∈ B̃n. (4.2)

Notice that not necessarily every complex structure of Lempert type has an associated de-
formation tensor. However if J has an associated deformation tensor, then any sufficiently small
deformation J ′ of J , which is also of Lempert type, has an associated deformation tensor. Indeed,
we will shortly see that any complex structure J of Lempert type and L-isotopic to Jo admits an
associated deformation tensor.

We now want to exhibit some differential equations which characterize the deformation ten-
sors. In order to do this, we first need to recall the definition of two important operators on the
tensor fields in H 0,1∗ ⊗ H 1,0.

We recall that B̃n ⊂ C̃n is a holomorphic bundle π̂ : B̃n → CP n−1, with fibers given by
the radial discs (if endowed with the standard complex structure). Since H is a connection
in such a bundle, the holomorphic and anti-holomorphic distributions are generated by vec-
tor fields X1,0 ∈ H 1,0 and Y 0,1 ∈ H0,1 that can be locally chosen so that π̂∗([X1,0, Y 0,1]) =
[π̂∗(X1,0), π̂∗(Y 0,1)] = 0. Let us call such vector fields holomorphic and anti-holomorphic vec-
tor fields of the distribution HC, respectively. It can be easily checked that if φ is a deformation
tensor associated with a complex structure of Lempert type, then for any two anti-holomorphic
vector fields X,Y ∈ H 0,1

[
X,φ(Y )

] ∈ H 1,0 + Z C. (4.3)

Hence, if we denote by (·)HC the projection onto the distribution HC, we surely have that
[X,φ(Y )]HC ∈ H 1,0 for any pair of anti-holomorphic vector fields. Now, consider the following
two operators (see [14]):

∂̄b :H 0,1 ∗⊗ H 1,0 → Λ2H 0,1 ∗⊗ H 1,0,

∂̄bα(X,Y )
def= [

X,α(Y )
]

HC − [
Y,α(X)

]
HC − α

([X,Y ]), (4.4)

and

[ · ,·] :
(
H 0,1 ∗⊗ H 1,0) × (

H 0,1 ∗⊗ H 1,0) → Λ2H 0,1 ∗⊗ H 1,0,

[α,β](X,Y )
def= 1

2

([
α(X),β(Y )

] − [
α(Y ),β(X)

])
(4.5)

for any pair of anti-holomorphic vector fields X, Y in H 0,1.

Proposition 4.2. Let J be a complex structure on B̃n of Lempert type that admits an associated
deformation tensor φ. Then:

(i) ddcτo(φ(X),Y ) + ddcτ (X,φ(Y )) = 0 for anti-holomorphic X,Y ∈ H 0,1;
(ii) ∂̄bφ + 1

2 [φ,φ] = 0;
(iii) LZ0,1(φ) = 0.
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Conversely, any tensor field φ ∈ H 0,1∗ ⊗ H 1,0 that satisfies (i)–(iii) is the deformation tensor of
a complex structure of Lempert type.

In addition, a complex structure J of Lempert type, associated with a deformation tensor φ,
is so that (Bn, J, τo) is a manifold of circular type if and only if

(iv) ddcτo(φ(X),φ(X)) < ddcτo(X̄,X) for any 0 
= X ∈ H 0,1.

Proof. First of all, recall that by the Jo-invariance of the 2-form ddcτo, for any two vector fields
in H 0,1 ⊕ Z 0,1 or in H 1,0 ⊕ Z 1,0,

ddcτo(W,W ′) = ddcτo(JoW,JoW
′) = −ddcτo(W,W ′) = 0.

So, from the proof of Theorem 3.2, the reader can check that a complex structure J of Lempert
type is so that (Bn, J, τo) is a manifold of circular type, if and only if for any 0 
= X ∈ H 0,1

ddcτo

(
X̄ + φ(X),X + φ(X)

) = ddcτo(X̄,X) + ddcτo

(
φ(X),φ(X)

)
> 0.

This proves (iv). For checking the necessity and sufficiency of (i)–(iii), we only need to show
that those properties give necessary and sufficient conditions for the integrability of the unique
almost complex structure J , which coincides with Jo on the radial discs, leaves the distribution
H invariant and have an associated anti-holomorphic distribution H

0,1
J which is as in (5.2). Such

almost complex structure J is integrable if and only if for any anti-holomorphic vector fields
X,Y ∈ H 0,1 one has

[
X + φ(X),Y + φ(Y )

] ∈ Z 0,1 + H
0,1
J ,

[
Z0,1,X + φ(X)

] ∈ Z 0,1 + H
0,1
J . (4.6)

But conditions (4.6) are satisfied if and only if

[
X + φ(X),Y + φ(Y )

]
HC = [X,Y ] + φ

([X,Y ]) ⇔ ∂̄bφ(X,Y ) + 1

2
[φ,φ](X,Y ) = 0,

(4.7)[
X + φ(X),Y + φ(Y )

]
Z C = 0 ⇔ ddcτo

(
X + φ(X),Y + φ(Y )

) = 0, (4.8)[
Z0,1,X + φ(X)

] = [
Z0,1,X

] + φ
([

Z0,1,X
]) ⇔ LZ0,1φ(X) = 0 (4.9)

for any anti-holomorphic X, Y ∈ H 0,1, i.e. if and only if (i)–(iii) are true. �
Let J be a complex structure of Lempert type and Jt , t ∈ [0,1], an L-isotopy between J

and Jo. By the previous remark, the set of t’s, for which Jt has an associated deformation tensor,
is open, while (iv) of the previous lemma implies that it is also closed. From this, we conclude
that also J = J1 has a deformation tensor and hence that there is a natural injective map between
the class of manifolds in normal form (Bn, J, τo) and the class of tensor fields φ ∈ H 0,1∗ ⊗H 1,0

on B̃n which satisfy (i)–(iv) of Proposition 4.2.
The correspondence between normal forms and deformation tensors satisfying (i)–(iv) is a

priori only injective, not surjective. However, for any deformation tensor satisfying (i)–(iv), the
associated complex structure J defines a manifold of circular type and hence there exists some
normalizing map Φ : B̃n → B̃n for which Ĵ = Φ∗(J ) is in normal form and whose associated
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deformation tensor is φ̂ = Φ∗(φ). In other words, we may say that any deformation tensor satis-
fying (i)–(iv) is, up to a diffeomorphism, the deformation tensor of some normal form.

Proposition 4.2(iii) has also the following consequence. Consider n − 1 holomorphic vector
fields (e1, . . . , en−1), defined on some open subset of CP n−1 ⊂ B̃n and linearly independent at
all points where they are defined. Extend them to B̃n as Z and JZ invariant vector fields on
taking values in H 1,0. Let also (e1, . . . , en−1, Z1,0∗) be the holomorphic field of (1,0)-forms,
which is dual to the frame field (e1, . . . , en−1, Z1,0). Then any tensor field φ ∈ H 0,1∗ ⊗H 1,0 is of
the form φ = ∑n−1

a,b=1 φa
b eb ⊗ ea and satisfies Proposition 4.2(iii) if and only if the restrictions of

the functions φa
b on the radial discs are holomorphic. In particular, using a system of coordinates

(v1, . . . , vn−1, ζ ) for B̃n as in (2.2), we have that φ satisfies (iii) if and only if it is of the form

φ =
∞∑

j=0

φj ζ
j , φj =

n−1∑
a,b=1

φa
bj e

b ⊗ ea

where φa
bj = φa

bj (v
1, . . . , vn−1) are the coefficients of the series expansion in powers of ζ

of the functions φa
b (v1, . . . , vn−1, ζ ). It can be checked that the deformation tensors φ(k) def=

φkζ
k ∈ H 0,1∗ ⊗ H 1,0 are independent on the choice of the coordinates and of the frame field

(e1, . . . , en−1). Moreover, φ satisfies (i) and (iii) of Proposition 4.2 if and only each tensor field
φ(i) satisfies (i) and that the following equations:

∂̄bφ
(k) + 1

2

∑
i+j=k

[
φ(i), φ(j)

] = 0 for any 0 � k < ∞. (4.10)

Summarizing, we have the following theorem, which can be considered as an extension to arbi-
trary manifolds of circular type some of the main results in [5,7] (see next remark).

Theorem 4.3. Let D be a manifold of circular type in normal form, i.e. D = (Bn, J, τo), with J

complex structure of Lempert type and L-isotopic to Jo. Then J is uniquely determined by an as-
sociated sequence of deformation tensors φ(k) ∈ H 0,1∗ ⊗ H 1,0, 0 � k < ∞, which satisfy (4.10)
and (i) of Proposition 4.2 for any k, and with the series φ = ∑

k φ(k) uniformly converging on
compacta.

In [5,7], Bland and Duchamp considered small deformations of the standard CR structure of
the S2n−1 and proved that, for n > 1, any such CR structure is embeddable in Cn−1 as bound-
ary of a domain which is biholomorphic to a domain in normal form (Bn, J, τo). In particular,
they associated with any small deformation of the CR structure of S2n−1 a sequence of tensors,
which correspond to the restrictions to S2n−1 of the tensors φ(k) appearing in Theorem 4.3.1 It
is therefore natural to name such sequence of deformation tensors φ(k) the Bland and Duchamp
invariants of (Bn, J, τo).

We conclude with the following concept, which will turn out to be quite useful in the applica-
tions of the next section.

1 Be aware that our deformation tensor is minus the deformation tensor considered in [5,7].
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Definition 4.4. Let (D,J, τ ) be a domain of circular type. We say that D is stable if it admits
a parabolic exhaustion τ , whose associated circular representation Ψ : Ĩ → D extends smoothly
up to the boundary inducing a diffeomorphism between ∂Ĩ and ∂D.

Unless differently stated, for any given stable domain D, we will call parabolic exhaustive
functions of D only those, whose associated circular representation satisfies the above condi-
tion.

We also recall that, by Lempert’s and the first author’s result (see e.g. [15,23]), the class of
stable domains of circular type naturally includes the smoothly bounded, strictly linearly convex
domains of Cn and the smoothly bounded, strongly pseudoconvex circular domains. Indeed, by
Theorem 4.4 in [24], the complete circular domains may be characterized as the unique (stable)
domains of circular type whose Monge–Ampère foliation is holomorphic.

Moreover, the “stability” property is invariant under biholomorphisms between domains of
circular type. In fact:

Lemma 4.5. Let (D,J, τ ) and (D̂, Ĵ , τ̂ ) be two biholomorphic domains of circular type. Then
D is stable if and only if D̂ is stable. Furthermore they have a normal form (Bn, J, τo), with
a complex structure J which is smoothly extendible up to the boundary and makes Bn a stable
domain of circular type.

Proof. The first claim follows from the fact that any biholomorphism f : D → D̂ between stable
domains extends smoothly up to the boundary. This property can be checked using the local
regularity results of Berteloot [4, Proposition 3], which imply that any such f admits an Hölder
continuous extension up the boundary. In fact, from Hölder boundary regularity, the standard
arguments of Lempert’s proof of Fefferman theorem (see [15,30]) imply that f extends smoothly
up to the boundary.

The last claim is a consequence of the proof of Theorem 3.4. In fact, if D is stable, we may
construct a normalizing map which is smooth up to the boundary and induces a diffeomorphism
between ∂D and S2n−1 = ∂Bn. In particular, the complex structure of D̃, which extends up to
∂D, is mapped onto a complex structure on B̃n, which extends smoothly up to ∂Bn (and hence
also to a small neighborhood of Bn). This implies that the associated normal form (Bn, J, τo)

is a stable domain of circular type since the circular representation of (Bn, J, τo) coincides with
the one of (Bn, Jo, τo). �

By the previous lemma, the normal forms of stable domains of circular type correspond to

Bland and Duchamp’s invariants {φ(k)} converging uniformly on the closure B̃n.

5. Miscellaneous results

5.1. The geometrical meaning of the Bland and Duchamp invariant φ(0)

Let (Bn, J, τo) be a manifold in normal form, φ(k) the Bland and Duchamp invariants, I ⊂
T0B

n � Cn the indicatrix at 0 and Ψ : Ĩ → B̃n the circular representation. We identify T0B
n �

Cn so that we may assume J |T0B
n = Jo. The following proposition indicates the information

carried by φ(0).
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Proposition 5.1.

(a) The pull-backed complex structure J ′ = Ψ ∗(J ) on Ĩ is of Lempert type.
(b) The tensor field φ − φ(0) = ∑∞

k�1 φ(k) is identically vanishing if and only if the circular
representation is a biholomorphism between I and (Bn, J, τo), i.e. (Bn, J ) is biholomorphic
to a circular domain.

(c) The invariant φ(0) is always the deformation tensor of a manifold in normal form
(Bn, J (0), τo), more precisely, of a normal form of the indicatrix I .

Proof. (a) is a direct consequence of definitions and Proposition 2.6. For (b), we remark that
φ(k) = 0 for all k � 1 if and only if the projection π : B̃n → CP n−1 is J -holomorphic, i.e. if and
only if the Monge–Ampère foliation of (Bn, J, τo) is holomorphic. Then (b) follows from [24],
Proposition 3.4.

For (c), notice that φ(0) satisfies (i)–(iv) of Proposition 4.2 and defines a complex structure
which is L-isotopic to Jo, because φ does it. So, by the remarks after Proposition 4.2, the first
claim follows immediately. Now, consider the circular representation Ψ : Ĩ → B̃n. It is straight-
forward to realize that J (0)|CPn = Ψ∗(Jo|CPn) and hence, by invariance along the leaves of the
Monge–Ampère foliations, J (0) = Ψ∗(Jo) on Ĩ . This implies that the corresponding projected
structures on I and on Bn are biholomorphic. �
5.2. The parameterization of normalizing maps and the automorphisms group of a manifold of
circular type

Definition 5.2. Let τ be a parabolic exhaustion function for M and xo and Ixo ⊂ TxoM � Cn the
corresponding center and indicatrix. We call special frame at xo associated with τ a complex
basis (e0, e1, . . . , en−1) for TxoM defined as follows:

(i) e0 ∈ ∂Ixo (i.e. κ(e0) = 1, where κ is the Minkowski function of Ixo );
(ii) (e1, . . . , en−1) is a unitary basis w.r.t. ddcκ2 for the holomorphic tangent space D1,0

e0 ⊂
Te0∂Ixo of the CR structure of ∂Ixo ⊂ TxoM � Cn.

Recall that if D is a domain of circular type, for any center xo there is a unique parabolic exhaus-
tion function τ :D → [0,1), smoothly extendible at the boundary, for which the center is exactly
xo (see Lemma 2.2). For this reason, for any such domain the following set is well defined

P =
⋃

xo is a center

Pxo, where Pxo = {special frames at xo}.

We call it the pseudo-bundle of special frames of D. We also denote by π :P → D the map
which associates to any special frame the base point and C(D) = π(P ) ⊂ D denote the set of
centers of D.

It should be observed that, relatively to the biholomorphisms that are smooth up to the bound-
ary (in case of stable domains, any biholomorphism is in such a class), the pseudo-bundle P is
a biholomorphic invariant of D. In case C(D) is discrete, the pseudo-bundle P is a bundle over
such a set. Any fiber Pxo = π−1(xo) has a structure of Un−1-principal bundle with basis equal
to the boundary of the indicatrix ∂Ixo . In case D is a smoothly bounded, strictly linearly convex
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domain in Cn (and hence D = C(D)), P is a bundle over D, coinciding with the unitary frame
bundle of the Kobayashi metric of D [27].

Notice also that, via Gram–Schmidt orthonormalization, any special frame of a manifold in
normal form is uniquely associated with a basis which is unitary w.r.t. the standard Poincarè–
Bergman metric of the unit ball Bn ⊂ Cn. Using such correspondence, it is possible to embed
the pseudo-bundle P into the bundle Un(B

n) of the unitary frames of Bn. Since Aut(Bn, Jo)

acts transitively and freely on Un(B
n), Un(B

n) can be identified with Aut(Bn, Jo) and the pre-
vious immersion P ↪→ Un(B

n) can be considered as an immersion P ↪→ Aut(Bn, Jo). In case
C(D) = D, such immersion is actually a diffeomorphism (see e.g. [27,28]).

Consider a manifold of circular type (M,J, τ ) of dimension n and denote by Ñ (M) the class
of all normalizing maps Φ : M̃ → B̃n between a blow up of M at a center xo and the blow up of

Bn at the origin. A priori, Ñ (M) is a very large class of maps. In fact, by known properties on
symplectomorphisms [13] and the arguments in the proof of Lemma 3.5, one can lift symplec-
tomorphisms of CP n−1 and construct smooth families ψ̃t : B̃n → B̃n of bundle automorphisms
of π : B̃n → CP n−1, with ψ0 = Id and preserving the sets {τo = c}, the distribution Ho and the

complex structure of the fibers. If Φ is in Ñ (M), also the maps ψt ◦ Φ are in Ñ (M) and this

shows that Ñ (M) is a priori a class of quite large cardinality, comparable with the cardinality of
symplectomorphisms of CP n−1.

Any normalizing map Φ : M̃ → B̃n induces a complex structure on B̃n, which in turn projects
down onto a complex structure on Bn (see remarks in Definition 3.1). The charts of two dis-
tinct complex manifold structures of this kind in general belong to two distinct real manifolds
structures, even if they smoothly overlap when restricted to Bn \ {0}. To clarify this point, let
(M̃, J ) = (B̃n, Jo) and ψ̃t : B̃n → B̃n a family of fiber preserving diffeomorphism as described
above, which differs from the identity only on π−1(U ) for some open set U ⊂ CP n−1. The in-
duced diffeomorphisms ψ̂t : CP n−1 → CP n−1, t 
= 0, are not Jo-biholomorphisms, while the
blow-down map π̃ : B̃n → Bn determines smooth maps ψt = π̃ ◦ ψ̃ : Bn \ {0} → Bn \ {0}, which
extend non-smoothly to homeomorphisms of Bn (otherwise ψ̂t ([v]) = [Jψt |0(v)] and ψ̂t would
be forced to be ψ̂t = IdCPn−1 for all t , if CP n−1 \ U is not dense in CP n−1). The maps Φ = IdB̃n

and Φ ′ = ψ̃1 ◦ Φ are both in Ñ (M), but the complex structure determined by Φ ′ on Bn is non-
standard, since otherwise Φ ′ ◦ Φ−1 = ψ̃1 would determine a biholomorphism of (CP n−1, Jo).
Moreover, the new complex structure is given by charts of the form ξ ◦ ψ−1

1 , with ξ standard
complex chart of (Bn, Jo), and hence the underlying atlas of real charts is diffeomorphic but not
equal to the standard atlas, since ψ1 is not smooth at 0.

In the following, given a manifold M of circular type, we fix once and for all one of such
real manifold structures on Bn and we denote by N (M) ⊂ Ñ (M) the class of normalizing maps
which induce on Bn that real manifold structure. So, a normalizing map Φ : M̃ → B̃n belongs
to N (M) if and only if the corresponding projected map φ :M → Bn is a diffeomorphism w.r.t.
the real manifold structure of M and the fixed manifold structure of Bn. For a given parabolic
exhaustion τ on M with center xo, we also denote by N (M, τ, xo) ⊂ N (M) the subclass of
normalizing maps associated with τ and xo.

Lemma 5.3. Let Φ,Φ ′ ∈ N (M, τ, xo) and denote by φ,φ′ :M → Bn the corresponding pro-
jected maps. Then Φ = Φ ′ if and only if (φ′ ◦ φ−1)∗|T0B

n = Id.

Proof. The necessity is immediate. For the sufficiency, notice that the hypothesis implies that the
lifted maps Φ,Φ ′ : M̃ → B̃n are so that Φ ′ ◦Φ−1 is the identity when restricted to the exceptional
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divisor π−1(0) = CP n−1 and (Φ ′ ◦ Φ−1)∗ induces the identity map on each tangent space of a
standard radial disc at the intersection with CP n−1 = π−1(0). So, IdB̃n and Φ ′ ◦ Φ−1 are nor-
malizing maps for Bn that satisfy the hypothesis of Theorem 3.4. Hence Φ ′ ◦ Φ−1 = IdB̃n . �

With the help of the previous lemma, we can prove the following.

Proposition 5.4. Fix a normalizing map Φo ∈ N (M, τ, xo) and a special frame (eo
0, e

o
1, . . . , e

o
n−1)

at xo ∈ M , associated with τ . Also, for any Φ ∈ N (M, τ, xo) denote by φ :M → Bn the corre-
sponding projected map and let (e

φ
i ) be the frame at TxoM defined by e

φ
i = (φ−1 ◦ φo)∗(eo

i ).

Then the frames of the form (e
φ
i ) are special frames, relatively to xo and τ , and the corre-

spondence Φ → (e
φ
i ) is a one to one map between N (M, τ, xo) and the class of special frames

at xo.

Proof. By definition of normalizing maps, the map f = φ ◦ φ−1
o is a biholomorphism of (M,J )

into itself, fixing xo and so that τ ◦ f = τ . This implies that f∗|TxoM maps the class of special

frames at xo into itself. Moreover, if Φ and Φ ′ are so that (e
φ
i ) = (e

φ′
i ), it follows from definitions

that (φ′ ◦φ−1)∗|T0B
n = Id and hence that Φ = Φ ′ by the previous lemma. It remains to show that

the correspondence Φ → (e
φ
i ) is surjective.

Let J (o) be the complex structure on Bn obtained by pushing forward the complex structure
of M and denote by (f o

i ) and (fi) the special frames of (Bn, τo, J
(o)) obtained as images of

(eo
i ) and of another special frame (ei), respectively. Let also ([f o

i ]) and ([fi]) be the correspond-
ing points in CP n−1 ⊂ B̃n. Observe that the restriction J (o)|CPn−1 coincides with the complex
structure J (o,0) on B̃n defined by the Bland and Duchamp invariant φ(0) (see Section 5.1) and
it is diffeomorphic to the standard complex structure of CP n−1 (to see this, simply use the bi-
holomorphism between (B̃n, J (o,0)) and the blow up Ĩ of its indicatrix — see Proposition 5.1).
Hence Aut(CP n−1, J (o)) is isomorphic to Aut(CP n−1) = PGLn(C) and there exists a unique
J (o)-biholomorphism Ψ : CP n−1 → CP n−1 mapping [fi] into [f o

i ] for any 0 � i � n − 1. Let
us extend such a map to a diffeomorphisms Ψ : B̃n → B̃n in such a way that ζ · Ψ (w) = Ψ (ζw)

for any ζ ∈ Δ. We stress the fact that even if Ψ |CPn−1 is by construction a biholomorphism of
(CP n−1, J (o)|CPn−1), Ψ is not in general a biholomorphism of (B̃n, J (o)).

Now, observe that Ψ : B̃n → Bn is a normalizing map which maps the [fi]’s into the [f o
i ]’s.

Assume for the moment that Ψ projects onto a map ψ :Bn → Bn which preserves the real man-
ifold structure of Bn. Then, ψ∗(fj ) = eiθj f o

j for some suitable complex numbers eiθj and,

by a suitable adjustment of the definition of Ψ , we may always assume that eiθj = 1 for any
0 � j � n − 1. From this and its construction, it follows that Φ = Ψ ◦ Φo is a normalizing map
in N (M, τ, xo) so that (e

φ
i ) = (ei). This implies the surjectivity of the map Φ → (e

φ
i ).

To conclude, we only need to show that Ψ projects onto a map ψ :Bn → Bn which preserves
the real manifold structure of Bn. This is equivalent to check that there is a chart on Bn on a
neighborhood of the origin, which belongs to the real manifold structure of (Bn, J (o)) and in
which ψ is smooth. This can be done using the circular representation. In fact, we may use it
to identify the differentiable manifolds (Bn, J (o)) and (B̃n, J (o)) with the indicatrix I and its
blow up Ĩ ⊂ C̃n, respectively, both endowed with a suitable complex structure Ĵ (o). The circular
representation is a diffeomorphism between a domain in Cn and the manifold of circular type.
Thus the real manifold structure on I , determined by projection from the manifold structure
of Ĩ , is the standard manifold structure of I as open subset of Cn. The explicit expression of Ψ
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as a map Ψ : Ĩ → Ĩ shows directly that the projected map ψ : I → I is smooth in any standard
coordinates system of Cn. �

The main result of the section can be now immediately inferred.

Theorem 5.5. Let (D,J, τ ) be a stable domain of circular type and N (D) the class of all
normalizing maps, which induce on Bn the same real manifold structure. Fix also a frame
(eo

i ) ⊂ TxD belonging to the pseudo-bundle of special frames π :P → D and a normalizing

map Φo ∈ N (D). Then, the correspondence Φ → (e
φ
i ) of the previous proposition gives a con-

tinuous one to one map between N (M) and the pseudo-bundle of special frames P .

We remark that if P is identified with a subset of Un(B
n) � Aut(Bn), the previous result

can be stated saying that: N (D) is parameterized by a special subset of Aut(Bn). In particular,
we have that if the set of centers C(D) is a singleton, then N (D) is parameterized by Un =
Aut(Bn)0, while if C(D) = D, N (D) is parameterized by Aut(Bn). It is interesting to observe
the analogy (and the difference) between this class of normalizing maps and the class of Chern–
Moser normalizing maps for Levi non-degenerate hypersurfaces of Cn.

Let M be a circular domain of circular type. By means of a normalizing map, there is no loss
of generality if we assume that M is (Bn, J, τo), where J is a complex structure of Lempert type,
L-isotopic to the standard one. In this case, any automorphism Φ ∈ Aut(M) = Aut(Bn, J ) is also
a normalizing map and, if we set Φo = IdBn , Theorem 5.5 implies that the action of G = Aut(M)

on special frames determines a one to one map between G and the points of any orbits G · (eo
i ).

If M is a stable domain of circular type, by the results in [9], it possesses a Bergman metric
and G is therefore a Lie group. In particular, it is diffeomorphic to any of its orbits G · u in the
pseudo-bundle P . In this case, if C(M) ⊂ M is contained in a real submanifold of dimension a

(� 2n = dimR M), we get that

dimG � a + n2 � 2n + n2,

which is a refinement of the classical upper bound 2n + n2.

5.3. Characterizations of circular domains and of the unit ball

Definition 5.6. Let (D,J, τ ) be a stable domain of circular type. An element g ∈ G = Aut(D,J )

is called rotational at the center xo if g∗|xo = λ IdTxoD for some λ ∈ Cn so that λn 
= 1 for any
n ∈ Z. We say that M is rotational at xo if G contains a rotational element at xo.

The next two theorems extend to stable domains a pair of results in [23].

Theorem 5.7. A stable domain of circular type (D,J, τ ) is biholomorphic to a circular domain
in Cn if and only if it is rotational at some point xo ∈ D.

Proof. With no loss of generality, we assume that D is in normal form, i.e. that (D,J, τ ) =
(Bn, J, τo), and xo = 0. If g is rotational, the lifted map g̃ : B̃n → B̃n is so that g̃|CPn−1 =
IdCPn−1 . Moreover, by Lemma 2.2, τo ◦ g̃ = τo and hence g̃ induces on any standard radial
disc a biholomorphism that fixes the origin and with derivative at 0 equal to λ. This implies that
λ = eiθ for some θ ∈ R and, in a system of coordinates as described before (2.2), g̃ is of the
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form g̃(v, ζ ) = (v, eiθ ζ ). Moreover, since g̃ is a J -biholomorphism and induces on CP n−1 the
identity map, all Bland and Duchamp invariants do not change under the action of g̃. In particular
any invariant φ(k), k � 1, is so that φ(k) − eikθφ(k) = 0. Since λk = eikθ 
= 1 for all k, we get that
φ(k) = 0 for any k � 1 and we conclude by Proposition 5.1(b). �

By previous theorem and Theorem 9.4 in [23], the next theorem follows immediately.

Theorem 5.8. A stable domain (D,J, τ ) is biholomorphic to the unit ball Bn if and only if it is
rotational at two distinct centers xo, x

′
o ∈ D.

In the following statement, given a manifold of circular type (M,J, τ ) with τ :M → [0, r2)

and center xo, for any c ∈ (0, r2) we denote by D<c the domain D<c = {x ∈ M, τ(x) < c} ⊂ M .
We remark that the indicatrix at xo of (M,J, τ ) coincides (up to rescaling) with the indicatrix
of (D<c, J, τ ). From this and Proposition 2.6, it follows that (D<c, J, τ ) is a stable domain if
D<c � M .

Theorem 5.9. Let (M,J, τ ) be a manifold of circular type of dimension n. Then M is biholo-
morphic to a circular domain in Cn if and only if for some given parabolic exhaustion τ there
exist two domains D<c, D<c′ , 0 < c < c′ < r2, that are biholomorphic one to the other by means
of a map fixing the center of τ .

Proof. The necessity is direct: If M ⊂ Cn is a circular domain with Minkowski function μ and
we set τ = μ2, then the map f (z) = c′

c
z determines a biholomorphism between D<c and Dc′ for

any two c, c′.
To prove the sufficiency, we may assume that M is in normal form, i.e. M = (Bn, J, τo) and

that the parabolic exhaustion which defines the two biholomorphic stable domains D<c and D<c′
is the function τ = τo. Notice also that the restriction on D<c′ of the map

ψ : C̃n → C̃n, ψ
([z], z) =

(
[z], 1

c′ z
)

is a normalizing map for D<c′ (i.e. maps (D<c′ , J, τo) into (Bn, J̃ , τo)) and maps D<c into D<k ,
k = c/c′.

It follows directly from definitions that the indicatrix I at xo = 0 of (Bn, J̃ , τo) is the same
of the (D<k, J̃ , τo) (up to rescaling) and hence all special frames of the first domain at 0 co-
incide with the special frames of the second domain up to multiplication by k. On the other
hand, by hypothesis and Proposition 2.2, we have a biholomorphism of domains of circular type
f : (D<k, J̃ , τo) → (Bn, J̃ , τo) so that f (0) = 0. The differential f∗|0 :T0D<k = T0B

n → T0B
n

is a C-linear map mapping k · I into I and hence mapping a fixed special frame (ei) into another
special frame (e′

i ) rescaled by the factor 1/k. Let us denote by f̂ :Bn → Bn the unique normal-
izing map of (Bn, J̃ , τo) which transforms (ei) into (e′

i ) (see Theorem 5.5). The lift at the blow
up level of f −1 ◦ f̂ is a diffeomorphism between B̃n and D̃<k ⊂ B̃n which induces the identity
map on CP n−1 and so that, when restricted to any radial disc, it is a holomorphic map (w.r.t. the
standard complex structure) fixing the center, mapping the unit disc into the disc of radius k and
with derivative equal to k at the origin. Therefore f −1 ◦ f̂ is of the form

(
f −1 ◦ f̂

)([z], z) = ψk

([z], z), where ψk

([z], z) def= ([z], kz
)
.
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The same argument can be repeated for any iterated map f n = f ◦ · · · ◦ f and we obtain that,
for any n ∈ N, the map f̂ (n) = f n ◦ ψn

k is a normalizing map of (Bn, J̃ , τo), fixing the origin.
Since the normalizing maps fixing the origin are continuously parameterized by the compact set
of special frames at the origin (� Un), we may consider a subsequence nj so that the sequence
of normalizing maps f̂ (nj ) converges uniformly on compacta to a normalizing map f̂ (∞). In par-

ticular, the sequence of complex structures J̃ (nj ) def= f̂ (nj )∗(J̃ ) converges to a complex structure
J̃ (∞) = f̂ (∞)∗(J̃ ). On the other hand, since f is a (J̃ , J̃ )-biholomorphism, we have that

J̃ (nj ) = f̂ (nj )∗(J̃ ) = ψ
nj

k
∗(J̃ ).

A direct computation shows that, for any point ([z], z) ∈ B̃n, the deformation tensor φ(nj )|([z],z)
of ψ

nj

k
∗(J̃ ) coincides with the deformation tensor φ of J̃ , but evaluated at the point ([z], knj z).

It follows that

φ(∞)|([z],z) = lim
nj →∞φ(nj )|([z],z) = lim

nj →∞φ|([z],knj z) = φ|([z],0),

i.e. the deformation tensor φ(∞) of J̃ (∞) is independent on the coordinate of the radial discs. By
Proposition 5.1, this means that the domains (Bn, J̃ (∞), τo) � (Bn, J̃ , τo) � (D<c′ , J, τo) are
all circular. In particular, the restriction to D<c′ of the deformation tensor of the manifold from
which started, i.e. of (Bn, J, τo), is independent on the coordinates of the radial discs. By Propo-
sition 4.2(iii) (i.e. analyticity along the radial discs), we get independence on the coordinates of
the radial discs over the entire (Bn, J, τo). Using once again Proposition 5.1, we get the claim,
i.e. (Bn, J, τo) is circular. �
Remark 5.10. Notice that the proof of previous theorem implies that, if we assume that (M,J, τ )

is a stable domain (in particular if it is a strictly linearly convex domain in Cn), the claim is true
also when c′ = r2 and D<c′ = M .

By previous theorem and remark and by Theorem 5.8, we have the following.

Corollary 5.11. A stable domain D is biholomorphic to the unit ball if and only it has at least two
centers xo 
= x′

o and it is biholomorphic, by means of two maps fixing xo and x′
o, respectively,

to two proper subdomains D<c = {τ < c}, D′
<c′ = {τ ′ < c′}, with τ , τ ′ parabolic exhaustions

associated with xo and x′
o, respectively.
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