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1. Example: Circular domains in Cn

D ⊂ Cn complete circular domain ⇐⇒
∀Z ∈ D then λZ ∈ D
∀λ ∈ C with |λ| ≤ 1.

Assume D is smoothly bounded and strictly pseudoconvex.

Minkowski functional of D: mD:Cn
→ R+

mD(Z) =






0 if Z = 0

[sup{t ∈ R | tZ ∈ D}]−1 if Z �= 0

– Monge-Ampère exhaustion for D: ρD = m2
D

Easy to see: ρD(Z) = G(Z)�Z�2 for some bounded G ∈ C∞(Cn
\ {0}

which is constant on complex lines through the origin (i.e. G ∈ C∞(CPn−1)).
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– Moduli space for Circular domains:

In fact the funtion ρD (and hence G) is (almost complete) modular
datum. Patrizio-P.M.Wong (’83):

Proposition Two bounded circular domains D1 and D2 are biholomor-
phic ⇐⇒ ρD1 = ρD2 ◦A for some A ∈ GL(n,C)
and consequently:

Theorem Let

D = {biholomorphic classes of smootly bd complete circular domains}

D+ = {[D] ∈ D | D is strictly pseudoconvex}

[Ω] = {smooth (1, 1) forms coomologous to the Fubini-Study form}

[Ω]+ = {positive forms in [Ω]}

Then
D ∼= [Ω]/Aut(Pn−1) D

+ ∼= [Ω]+/Aut(Pn−1)
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NOTATIONS

On a complex manifold we denote

d = ∂ + ∂ dc = i(∂ − ∂)

ddc = 2i∂∂ and ddc = −dcd

and for a function u of class C2 one has:
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2. Manifolds of Circular type

Definition (— ’85) M complex manifold of dimension n. (M,τ ) mani-
fold of circular type (of bd type) with center x0 if

(i) τ :M → [0, 1) exhaustion with {τ = 0} = {x0} with
�
τ ∈ C0(M) ∩ C∞({τ > 0})
τ ∈ C∞(M̃)

( π: M̃ → M the blow up at {x0})

(ii)






2i∂∂τ = ddcτ > 0

2i∂∂ log τ = ddc log τ ≥ 0

(ddc log τ)n ≡ 0 (Monge−Ampère Eq.)

on {τ > 0}

(iii) near x0, w.r.t. any local coordinates centered at x0:

log τ(Z) = log �Z�2 +O(1) (logarithmic singularity)
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More often we consider the following situation:

M complex manifold of dimension n, D ⊂ M smooth,

relatively compact, is a domain of circular type with center x0 ∈ D

if there exisists a smooth exhaustion τ :D → [0, 1] with {τ = 0} = {x0}

such that (D,τ ) is a manifold of circular type.
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Lempert Theory for Strictly (linearly) Convex Domains:

Theorem (Lempert ’81): D ⊂⊂ Cn smooth, bounded strictly (linearly)
convex domain, KD and δD its Kobayashi metric and distance

⇓

– δD ∈ C∞(D ×D \Diagonal)

– For p ∈ D let δp = δD(p, •): then u = log(tanh δp) ∈ C∞(D \ {p}), it
is the unique solution of the problem

�
det(uµν) = 0 on D \ {p}
u|∂D = 0 and u(z) = log |z − p|+O(1) near D \ {p}

In fact D with the exhaustion τ = (tanh δp)2 is manifold of circular type
with center p.

10





The problem of finding moduli for (pointed) strictly convex domains was
addressed – and to a large extent solved – by

Lempert (Annals of Math ’88):

He uses special coordinates along Kobayashi extremal disks to get bound-
ary invariants

Bland-Duchamp (Inventiones ’91), Bland (Acta ’94), Bland-Duchamp
(’95):

Their invariants are the Kobayashi indicatrix at the center and certain
deformation tensor along the extremal disks (they are able to construct
them for strictly convex domains and for “small” deformation of the unit
ball.
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What is left:

– the moduli seem to belong to a larger class of manifolds.

Problem: determine the “right” class

– For circular domains there is a natural “special” point, for stricly
convex domains any point is a natural “special’ point.

Problem: “understand” the set of special points

Extending and simplifying Bland-Duchamp construction, we:

– prove that the right class to have complete (bijective) description is

the class of manifolds of circular type

and

– determine a framework to understand the problem of the “special”point.
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Technology: Monge-Ampère equation and foliations

M cmpx manifold dimCM = n, u:M → R of class C∞

ddcu = 2i∂∂u =loc. 2i
�

ujkdz
j
∧ dzk

thus:

u plurisubharmonic ⇐⇒ ddcu = 2i∂∂u ≥ 0 ⇐⇒loc. (ujk) ≥ 0

Complex (homogeneous) Monge-Ampère equation (M-A):

(ddcu)n = (2i∂∂u)n = (2i)n ∂∂u ∧ . . . ∧ ∂∂u� �� �
n times

= 0

�loc.

det(ujk)dz
1
∧ . . . ∧ dzn ∧ dz1 ∧ . . . ∧ dzn = 0 ⇐⇒ det(ujk) = 0
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For u plurisubharmonic and smooth, if for τ = eu we have ddcτ > 0, it
follows:






(∂∂u)n = 0 (M−A)

(∂∂u)n−1 �= 0 non degeneracy condition

Then at every point ∂∂u (and (ujk)) has rank n−1: infact n−1 positive
eigenvalues and one equal to 0.
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To see this, define a vector field Z of type (1, 0) on τ > 0 by

κ(Z,W ) = ∂τ(W ) ∀ W ∈ T 1,0M (∗)

where κ is the Kähler metric defined by ddcτ > 0. From the formula

τ2ddc log τ = τddcτ − dτ ∧ dcτ (∗∗)

so that

0 = τ2n(ddc log τ)n = τn(ddcτ)n − τn−1(ddcτ)n−1
∧ dτ ∧ dcτ

i.e. on M \ {x0}

(ddc log τ)n = 0 ⇐⇒ τ(ddcτ)n = n(ddcτ)n−1
∧ dτ ∧ dcτ

or, in coordinates: (ddc log τ)n = 0 ⇐⇒ τ = τντνµτµ where (τνµ) = (τνµ)−1
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One computes locally:

Z =loc

�
Zµ ∂

∂Zµ
where Zµ =

�

ν

τντ
νµ

and
ddcτ(Z,Z) = τ = ∂τ(Z) = ∂τ(Z)

Now, from (∗∗)

τ2ddc log τ(Z,Z) = τddcτ(Z,Z)− dτ ∧ dcτ(Z,Z) = τ2 − τ2 = 0

As ddc log τ ≥ 0 then Z ∈ Annddc log τ so that, with a similar computa-
tion it follows that Z is orthogonal to the holomorphic tangent spaces to
the level sets ot τ (and log τ) which are strongly psedoconvex. On the
directions in the holomorphic tangent spaces then ddc log τ > 0. Putting
all this together we get the claim.
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Set, for u = log τ

Z = Ann∂∂u = Annddc log τ
�

p∈M

Zp

where Zp = eigenspace of 0–eigenvalue of (ujk) at p =CZp, then

– Z is an integrable distribution (∂∂u is closed)

– leaves are holomorphic integral curves of Z (∂∂u is (1, 1) form!)
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The foliation defined by Z is called Monge-Ampère foliation associ-
ated to u

To “recognize” leaves of the Monge-Ampère foliation associated to u:

a holomorphic curve L ⊂ M is (contained in) a leaf

⇐⇒

u|L is harmonic
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3. Normal forms and deformations of CR Structures

Notations: Bn unit ball in Cn with standard complex strct J0, B̃
n
its

blow-up at 0, τ0 = � • �2

let Z be the distribution tangent to the Monge-Ampère foliation asso-
ciated to log τ0 (“radial disks”) and H be normal distribution (actually
defined on B̃n

!)

Definition: J is an L–Complex Structure on B̃n
if

(i) Z and H are J–invariant

(ii) J|Z = J0|Z (i.e. J and J0 differ only for their action on H!)

(iii) there exists a smooth homotopy J(t) of L–complex structures on
B̃n

with J(1) = J , J(0) = J0

Definition: A complex manifold M is said of circular type in normal
form if M = (Bn, J) where (Bn, J) is the blow-down of (B̃n

, J̃) for some
L–Complex Structure J̃ on B̃n

.
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Proposition A manifold M = (Bn, J) in normal form with the exahus-
tion τ0 is a manifold of circular type (if J is smooth up to the boundary,
“everything” is up to the boundary!).

Idea: The only thing that really needs to be checked is the fact that
τ0 is strictly plurisubharmonic w.r. to the structure J . By construction
the “radial” distribution Z and the “normal” H are “orthogonal” with
respect to the ddcτ0 (here ddc is w.r. to J !). Since J|Z = J0|Z =⇒

ddcτ0|Z > 0. On the other hand ddc
�
τo|H×H coincides with the Levi

form (w.r.t. to J) of the hypersurfaces { τo = const. }. which are
strongly J0-pseudo-convex and hence H is a contact distribution over
each such hypersurface. This implies that, at any point, ddcτo|H×H is a
non-degenerate J-Hermitian form. The same claim is true for all complex
structures Jt of an L-isotopy between J and Jo. By continuity it follows
that that ddcτo|H×H > 0.
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Conversely:

Theorem (existence of normalizing maps) For each manifold of circular
type M , with exhaustion τ and center x0, there is a biholomorphism
Φ:M → (Bn, J) to a manifold in normal form (Bn, J) with:

– Φ (x0) = 0 and τ = τ0 ◦ Φ.

– Φmaps leaves of the Monge-Ampère foliation to disks trough the origin

Remark Two normalizing maps at the same center differ only for the
action on the leaf space. In fact the set of normalizing maps N (M) is
naturally parametrized by a subset Aut(Bn) containing Aut(Bn)0 = Un

(we’ll come back to this).
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Interpretation as deformation of CR-Structures:

Trivialize locally π: B̃n
→ Pn−1 setting

Z ∈ B̃n
⇐⇒ Z = ([v], ζ) [v] ∈ Pn−1, ζ ∈ D

Furthermore set τ0(Z) = |ζ|2 = �Z�2

Let M = (Bn, J, τ0) be a manifold of circular type in normal form and
let (B̃n

, J) be the blow up.

J is completely determined by

φJ ∈ (H0,1)∗ ⊗H
1,0 = ∪Hom(H0,1,H1,0)

which is defined by

H
0,1
J = {w + φJ(w) | w ∈ H

0,1
}
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Try to characterize the deformation tensors using differential equations
(classical idea: Kodaira...... Here we adapt ideas of Bland-Duchamp)

If φ is a deformation tensor of an L-complex structure, then forX,Y ∈ H0,1

[X,φ (Y )] ∈ H
1,0 + Z

C

Thus, if (·)
HC is the projection onto the distributionHC, [X,φ (Y )]

HC ∈ H1,0

for or X,Y ∈ H0,1. Consider (see Kodaira-Morrow e.g.) (here X, Y in
H0,1) :

∂b : H
1,0∗

⊗H
1,0

→ Λ2
H

1,0∗
⊗H

1,0 ,

∂bα(X,Y ) = [X,α (Y )]
HC − [Y,α(X)]

HC − α([X,Y ])

and

[·, ·] :
�
H

0,1∗
⊗H

1,0
�
×

�
H

0,1∗
⊗H

1,0
�
−→ Λ2

H
0,1∗

⊗H
1,0 ,

[α,β ](X,Y ) =
1

2
([α(X),β(Y )]− [α(Y ),β(X)])
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Theorem Let J be a complex structure on �Bn of Lempert type that
admits an associated deformation tensor φ. Then:

(i) ddcτo(φ(X), Y )+ddcτo(X,φ (Y )) = 0 ∀ X,Y ∈ H0,1; (J cmplx str.)

(ii)∂bφ+ 1
2 [φ,φ ] = 0; (integrability)

(iii) LZ0,1(φ) = 0. (holomorphicity along radial disks)

Conversely, any tensor field φ ∈ H0,1∗ ⊗ H1,0 that satisfies (i) − (iii)
is the deformation tensor of a complex structure of Lempert type. In
addition, an L-complex structure J , associated with a deformation tensor
φ, is so that (Bn, J, τo) is a manifold of circular type (i.e. the standard
exhaustion τo is strictly plurisubharmonic if and only if

(iv) ddcτo(φ(X),φ(X)) < ddcτo(X,X) ∀ 0 �= X ∈ H0,1. (positivity)
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Remark Condition (iv) of the theorem may be interpreted as an a-priori
estimate for the deformation tensor φ in particular it is “bounded” and
hence the condition for an L-complex structure J of (Bn, J, τo) a manifold
of circular type to have a deformation tensor is also closed. Being all
smoothly homotopic to the standard complex structure, by continuity
they all have a deformation tensor.

Remark Condition (iii) of the theorem imply that, with respect to the
trivializing coordinates on the blow up, then if φJ is the deformation
tensor of an L-complex structure J

φJ =
∞�

k=0

φk
J([v], ζ) =

∞�

k=0

φk
J([v])ζ

k, φk
J ∈ (H0,1)∗ ⊗H

1,0

with the series uniformely covergent on compaact sets
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Theorem A manifold in circular type in normal form M = (Bn, J, τ0)
determines uniquely the sequence of tensors φk

J ∈ (H0,1)∗ ⊗ H1,0, such
that if

φJ =
∞�

k=0

φk
J([v], ζ) =

∞�

k=0

φk
J([v])ζ

k, (∗)

satisfy the following conditions:

(i) ddcτ0(φJ(X), Y ) + ddcτ0(X,φ J(Y )) = 0 ∀X,Y ∈ H0,1

(ii) ∂bφ
k
J +

1

2

�

i+j=k

[φi
J ,φ

j
J ] = 0 ∀k ≥ 0 (integrability)

(iii) ddcτ0(X+φJ(X), X+φJ(X)) > 0 ∀0 �= X ∈ H0,1 (positivity)

Conversely a sequence φk
J ∈ (H0,1)∗ ⊗ H1,0, with (*) converging uni-

formely on compact sets and satisfying (i),(ii),(iii), determines uniquely
a manifold of circular type.
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Remark: φJ restricted to any sphere S2n−1(r) = {�Z� = r}, 0 < r < 1
is a deformation of the CR–structure of S2n−1(r). Viceversa a a defor-
mation of the CR–structure of S2n−1(r) for any 0 < r < 1 determines
uniquely all the terms of the Fourier-type of series:

φJ =
∞�

k=0

φk
J([v], ζ) =

∞�

k=0

φk
J([v])ζ

k

Conclusion: there exists a bijection

{Manifolds of Circular type in normal formwith fixed center}

�

�
Deformations of theCR− Structure of S2n−1(r)

satisfying suitable (explicit) conditions

�
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The deformation tensor φJ and its Fourier developement were considered
first by Bland (’94) and Bland-Duchamp (’95) for small deformation of
the standard CR-Structure of S2n−1.

In fact they where primarily concerned with the embeddability as bounded
domain in Cn
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Parametrization of normalizing maps:

For a given manifold of circular type M there are many different nor-
malizing maps. The class N (M) of normalizing maps is the other bi-
holomorphic datum for the class of manifold of circular type. We want
parametrize the class N (M) of normalizing maps .

Idea to compare two different normalizing maps at given center:

M mnfold of circ. type with exhaustion τ and center x0 ∈ M .

Near x0 =⇒ τ = µ+ higher order

µ is squared Minkowski functional of Kobayashi indicatrix Ix0 of M at
x0.

Set “special frames at x0”

Px0 = {(e0, e1, . . . , en−1)}

where e0 ∈ ∂Ix0 and e1, . . . , en−1 is a unitary frame w.r.t. ddcµ of
holomorphic tangent space D1,0

e0 (∂Ix0)
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Fix (eo0, e
o
1, . . . , e

o
n−1) ∈ Px0 and a normalizing mapΦ o:M → (Bn, J)

at x0. If Φ :M → (Bn, J) is any other normalizing map. Then, by
constuction

�
(Φ−1

◦ Φo)∗(e
o
0) = eΦ0 , . . . , (Φ

−1
◦ Φo)∗(e

o
n−1) = eΦn−1

�
∈ Px0

Fact: Φ �→ (eΦ0 , . . . , e
Φ
n−1) is bijective.

Pseudo-bundle of special frames of M : P (M) =
�

x0 is a center

Px0

Warning: base of P (M) need not be a manifold! But: If M is a strictly
convex domain, P (M) is the unitary frame bundle of the Kobayashi
metric of M .

Fact: N (M) ∼= P (M)

Identified P (M) with a subset of Un(Bn) = Aut(Bn), the class N (M)
of normalizing maps is naturally parametrized by a subset Aut(Bn) con-
taining Aut(Bn)0 = Un.
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4. Some geometrical interpretation and applications

Let M = (Bn, J, τ0) be a manifold of circular type in normal form

Let φJ =
�∞

k=0 φ
k
J be the associated deformation tensor

Let I = I0(M) be the indicatrix ofM at the center 0 and µ its Minkowski
functional squared.

Theorem:

(i) φ0
J is the deformation tensor of a normal form of the manifold of

circular type (I, µ)

(i) the tensor field φJ −φ0
J vanishes identically ⇐⇒ M is biholomorphic

to the circular domain I
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Applications: Generalization of results of Patrizio-P.M.Wong-K.Leung
(’87) for strictly convex domains and of Abate-Patrizio (’94) for Kähler-
Finsler manifolds

(M,τ ) manifold of circular type with center x0. Set M(x0, r) = {τ < r}
For 0 < r < 1

Theorem: A manifold of (M,τ ) of circular type is biholomorphic to a
circular domain ⇐⇒

(∗) there exist distinct r1, r2 ∈ (0, 1) such that M(x0, r1) ∼= M(x0, r2)

Theorem: A complex manifold manifold M is biholomorphic to the
unit ball Bn (with standard compx structure!) ⇐⇒

M has at least two structures of manifold of circular type (M,τ ), (M,τ �)
relative to different centers x0, x�

0 for which (∗) holds.
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5. Final Remarks and Questions

Some interesting open question:

(i) Find the geometric meaning of (possibly all!) terms of the Fourier
series φJ =

�∞

k=0 φ
k
J of the deformation tensor of a manifold of circular

type (Bn, J, τ0) in normal form.

(ii) Starting with modular data construct explicitly manifods of circular
type with prescribed properties. E.G.:

– with only one center or a discrete set of centers (if there are!)

– with an open set of centers

– not embeddable in Cn (if it exists!)

(iii) Find conditions so that every point is a center.
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P.M. Wong (’87) proved that any manifold of circular type admits non
constant bounded holomorphic functions. In fact such manifolds are
hyperbolic and he proves that the Caratheodory metric is bounded below
by a multiple of the Kobayashi metric.

In this regard:

(iv) Find conditions on modular that characterize manifold of circular
type bibolomorphic to a strictly linearly convex domain or to just a
bounded domain in Cn.
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