




Canonical lifts of almost complex structures

For a complex manifold M it is easy to define complex struc-
tures on TM and T

∗
M with holomorphic charts valued in

TCn � C2n � T
∗Cn “naturally” defined starting with holo-

morphic charts of M .
For almost complex manifolds, there are no holomorphic coor-

dinates thus one needs to do more that a “formal procedure”.
Fortunately somebody did it!

For example presentation in Yano-Ishihara (1973):

Given a system of real coordinates on (M,J)

ξ = (x1
, . . . , x

2n) : U ⊂ M −→ R2n
,
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denote

�ξ = (x1
, . . . , x

2n
, q

1
, . . . , q

2n) : π−1(U) ⊂ TM −→ R4n
,

�ξ = (x1
, . . . , x

2n
, p1, . . . , p2n) : �π−1(U) ⊂ T

∗
M −→ R4n

,

the associated coordinates on TM |U and T
∗
M |U , determined

by the components qi of vectors v = q
i ∂
∂xi and the components

pj of the covectors α = pjdx
j.

Let J i
j = J

i
j(x) denote the components of J = J

i
j

∂
∂xi ⊗ dx

j,



3

The canonical lifts of J on TM and T
∗
M are the almost

complex structures J on TM and �J on T
∗
M defined by

J = J
a
i

∂

∂xa
⊗ dx

i + J
a
i

∂

∂qa
⊗ dq

i + q
b
J
a
i,b

∂

∂qa
⊗ dx

i
,

�J = J
a
i

∂

∂xa
⊗dx

i+J
a
i

∂

∂pi
⊗dpa+

+
1

2
pa

�
−J

a
i,j + J

a
j,i + J

a
�

�
J
�
i,mJ

m
j − J

�
j,mJ

m
i

�� ∂

∂pj
⊗dx

i
.

These tensor fields can be checked to be independent on
the chart (xi) and:
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Yano-Ishihara (1973):

i) the standard projections π : T ∗
M −→ M , �π : T ∗

M −→

M are (J, J)-holomorphic and (�J, J)-holomorphic, re-
spectively;

ii) given a (J, J �)-biholomorphism f : (M,J) −→ (N, J
�)

between almost complex manifolds, the tangent and
cotangent maps

f∗ : TM −→ TN and f
∗ : T ∗

N −→ T
∗
M

are (J, J�)- and (�J�,�J)-holomorphic, respectively;
iii) when J is integrable, J and �J coincide with above

described integrable complex structures of TM and
T

∗
M , respectively (in the integrable case, all deriva-

tives Ja
i,j are 0 in holomorphic coordinates).
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With respect to complex coordinates and their conjugates

(zA) = (za, za
def
= za), denoting by (pA) = (pa, pa

def
= pa) the

complex components of real 1-forms ω = padz
a + padz

a ∈

T
∗
M , the canonical lift �J of an almost complex structure J

on T
∗
M is of the form

�J = J
B
A

�
∂

∂zB
⊗ dz

A +
∂

∂pA
⊗ dpB

�
+

+
1

2
pC

�
−J

C
A,B + J

C
B,A + J

C
L

�
J
L
A,MJ

M
B − J

L
B,MJ

M
A

�� ∂

∂pB
⊗dz

A
,

where J
A
B are the components of J w.r.t. the complex vector

fields
�

∂
∂zA

�
. So that, when J is integrable and (z1, . . . , zn) are

holomorphic coordinates, �J = J
B
A

�
∂

∂zB ⊗ dz
A + ∂

∂pA
⊗ dpB

�
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Stationary disks

Let D ⊂⊂ (M,J) (strongly pseudoconvex), N be the conor-
mal bundle of Γ= ∂D, i.e.

N = { β ∈ T
∗

xM , x ∈ Γ : ker β ⊂ TxΓ } ⊂ T
∗
M |Γ

f : ∆ −→ M is Cα,ε
-stationary disk of D , α ≥ 1, ε > 0,

i) f |∆ is a J-holomorphic embedding and f(∂∆) ⊂ ∂D;

ii) there exists a �J-holomorphic map �f : ∆ −→ T
∗
M in

Cα,ε(∆) with π ◦ �f = f , so that

ζ
−1

· �f(ζ) ∈ N \ {zero section} for any ζ ∈ ∂∆ (1)

In (1) “ · ” denotes the C-action on T
∗
M :

ζ · α
def
= �(ζ)α−�(ζ)J∗

α for any α ∈ T
∗
M,ζ ∈ C .
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If f is stationary, maps �f satisfying (ii) are called stationary

lifts of f .

Remark Roughly speaking Condition (ii) means that the re-
striction along f(∂∆) of the CR-distribution of ∂D extends
to a J-holomorphic bundle on ∆.

Fact: (Using maximum principle for suharmonic function!)
For D strongly pseudoconvex and f : ∆ −→ M stationary
disk one has f(∆̄) ⊂ D̄ and f(ζ) ∈ ∂D ⇔ ζ ∈ ∂∆

















































Plurisubharmonic functions/pseudoconvex manifolds

(M,J) almost cmplx manifold, Ωk(M), k ≥ 0, k-forms of M .

Denote by d
c : Ωk(M) −→ Ωk+1(M) the classical dc-operator

d
c
α = (−1)k(J∗

◦ d ◦ J
∗)(α) ,

where J
∗ denotes the usual action of J on k-forms, i.e.

J
∗
β(v1, . . . , vk)

def
= (−1)kβ(Jv1, . . . , Jvk)

When J is integrable:

d
c = i(∂ − ∂) , ∂∂ =

1

2i
dd

c
, dd

c = −d
c
d

and dd
c
u is a J-Hermitian 2-form for any C2-function u.

1
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when J is not integrable, d
c
d �= −dd

c
and the 2-form dd

c
u,

for u ∈ C2(M), is usually not J-Hermitian. In fact:

dd
c
u(JX1, X2) + dd

c
u(X1, JX2) = 4NX1X2(u) , (1)

where NX1X2 is the Nijenhuis tensor evaluated on X1, X2 and
is – of course – in general non zero. This fact suggests the
following definition.

Definition 0.1. Let u : U ⊂ M −→ R be of class C2. The J-
Hessian of u at x is the symmetric form Hess(u)x ∈ S

2
TxM ,

whose associated quadratic form is L(u)x(v) = dd
c
u(v, Jv)x.

By polarization formula and (1), one has that, for any v, w ∈

TxM ,

Hess(u)x(v, w) =
1

2
(ddcu(v, Jw) + dd

c
u(w, Jv))

����
x

=

= dd
c
u(v, Jw)x − 2Nvw(u) . (2)
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Remark Hess(u)x is also J-Hermitian, i.e.

Hess(u)x(Jv, Jw) = Hess(u)x(v, w) for any v, w.

and it is associated with the Hermitian antisymmetric tensor

Hess(u)(J ·, ·) =
1

2
(ddcu(·, ·) + dd

c
u(J ·, J ·))

=
1

2
(ddcu+ J

∗
dd

c
u) .

The Levi form of u at x is the quadratic form

L(u)x(v) = dd
c
u(v, Jv)|x

and it is related with the notion of J-plurisubharmonicity.

Fact: This dd
c is the same as N. Pali’s (Manuscripta 2005)

used to study positivity and by Plís to study the inhomoge-
neous complex Monge-Ampère equation (ArXiv June 2011)
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An upper semicontinuous function u : U ⊂ M −→ R is called
J-plurisubharmonic if u ◦ f : ∆ −→ R is subharmonic for
any J-holomorphic disk f : ∆ −→ U⊂ M . As for complex
manifolds for u ∈ C2(U)

u is J-plurisubharmonic

⇐⇒

L(u)x(v) = Hess(u)x(v, v) ≥ 0 for any x ∈ U and v ∈ TxM .

u ∈ Psh(U)∩C2(U) is said strictly plurisubharmonic if and
only if Hess(u)x is positive definite at any x ∈ U .

The almost complex manifold (M,J) is called strongly pseu-

doconvex (or Stein) manifold if it admits a C2 strictly plurisub-
harmonic exhaustion τ : M −→]−∞,∞[
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Maximal plurisubharmonic functions

J-plurisubharmonic functions share most basic properties of
classical plurisubharmonic functions. In particular for any
open domain U ⊂ M , , as for domains in complex manifolds,
the class Psh(U) is a convex cone and if ui ∈ Psh(U) also
u
� = max{ u1, . . . , un } are in Psh(U). Thus it is natural to

consider the notion of “maximal” J-plurisubharmonic func-
tions.

Definition Let D domain in a strongly pseudoconvex almost
complex manifold (M,J). u ∈ Psh(D) is called maximal if for
any open U ⊂⊂ D and h ∈ Psh(U)

lim sup
z→x

h(z) ≤ u(x) for all x ∈ ∂U =⇒ h ≤ u|U (3)



6

The characterization of maximal plurisubharmonic functions
“nails down” the right candidate for almost complex Monge-
Ampère operator:

Theorem Let D ⊂ M be a domain of a strongly pseudo-

convex almost complex manifold (M,J) of dimension 2n. A

function u ∈ Psh(D) ∩ C2(D) is maximal if and only if it

satisfies

(ddcu+ J
∗(ddcu))n = 0 . (4)

Proof. Let τ : M −→] −∞,+∞[ be a C2 strictly plurisub-
harmonic exhaustion for M and assume that u satisfies (4).
Let h ∈ Psh(U) with

lim sup
z→x

h(z) ≤ u(x) for all x ∈ ∂U .
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Let xo ∈ U so that u(xo) < h(xo). Let λ > 0 so small that

h(xo) + λ (τ(xo)−M) > u(xo) , M = max
y∈U

τ(y) ,

and define �h def
= h+ λ(τ −M)|U . By construction,

�h ∈ Psh(U) lim sup
z→x∈∂U

h(z) ≤ u(x), (�h− u)(xo) > 0.

Thus �h− u has maximum at some inner point yo ∈ U .
Let 0 �= vo ∈ TyoM with

(ddcu+ J
∗(ddcu))x (vo, Jvo) = Hessx(u)(vo, vo) = 0 .

and f : ∆ −→ M a J-holomorphic disk with f(0) = yo and

f∗

�
∂

∂x

����
0

�
= vo , f∗

�
∂

∂y

����
0

�
= f∗

�
Jst

∂

∂x

����
0

�
= Jvo .
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But then he function G
def
= (�h−u)◦f = (h+(λτ−λM−u))◦f

is subharmonic on some disk∆ r = {|ζ| < r}. In fact τ is C2,
strictly plurisubharmonic and Hess(u)yo(vo, vo) = 0, so that

0 < Hess((λτ−λM−u))yo(vo, vo) = 2i ∂∂((λτ − λM − u) ◦ f)
��
0
.

By continuity, there exists r > 0 so that

0 < 2i ∂∂((λτ − λM − u) ◦ f)
��
ζ

for any ζ ∈ ∆r .

It follows that (λτ−λM−u)◦f |∆r is strictly subharmonic and
that G|∆r is subharmonic, being sum of subharmonic func-
tions.
Since yo is a point of maximum for �h−u on f(∆) ⊂ U , then G

has a maximum in thew interior of∆ r and hence it is constant
and that h◦f |∆r is C

2 with 2i ∂∂(h ◦ f)
��
∆r

< 0, contradicting
the subharmonicity of h ◦ f .
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Conversely, let u ∈ C2(D) ∩ Psh(D) be maximal with
Hessyo(u)(v, v) > 0 for some yo ∈ D and all 0 �= v ∈ TyoM .

Known Fact: ∃ a rel. cmpct neigh. U of yo (J, J �)-biholom.
to (Bn

, J
�), with J

� arbitra. C2-close to the stand cmplx struc.

⇒ Pulling back the squared norm, may assume that ∃ C2

strictly J-PSH exhaustion τ on U , with τ → 1 at ∂U .
∃ c > 0 s. t. for x ∈ U and v ∈ TxM � R2n with |v| = 1

Hessx(u+ c(1− τ))(v, v) ≥ 0

⇒ �h def
= (u+ c(1− τ))|Byo (r)

is C2(U) ∩ Psh(U), and
it is dominated by u on ∂U so that by maximality satisfies
�h ≤ u on U . But for � > 0 ∅ �= τ

−1([0, 1− �[) � U and hence
such that, on this subset, �h ≥ u + c� > u, contradicting the
maximality of u. �
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Green functions of nice circular domains

Definition Let D be a domain in a strongly pseudocon-
vex, almost complex manifold (M,J). We call almost pluri-

complex Green function with pole at xo ∈ D an exhaustion
u : D −→ [−∞, 0] such that

i) u|∂D = 0 and u(x) � log �x − xo� when x → xo, for
some Euclidean metric � · � on a neighborhood of xo;

ii) it is J-plurisubharmonic;
iii) it is a solution of the generalized Monge-Ampere equa-

tion (ddcu+ J
∗(ddcu))n = 0 on D \ {xo}.

Notice that, if a Green function with pole xo exists, by a
direct consequence of property of maximality it is unique.



11

For an almost complex domain D of circular type in (M,J)
with center xo with Riemann map exp : �Bn −→ �D the stan-

dard exhaustion of D τ(xo) : D −→ [0, 1[ is defined by

τ(x) =






| exp−1(x)|2 if x �= 0 ,

0 if x = xo .

so that if D is in normal form, i.e. D = (Bn
, J) with J

almost L-complex structure, its standard exhaustion is just
τo(z) = |z|2.

Proposition Let D be a domain of circular type in (M,J)
with center xo and standard exhaustion τ(xo). If u = log τ(xo) is

J-plurisubharmonic, then u is an almost pluricomplex Green

function with pole at xo.
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Proof. With no loss of generality, we may assume that the
domain is in normal form, i.e. D = (Bn

, J) and τ(xo)(z) =
τo(x) = |x|2. Since τo is smooth on B

n \ {0} and u = log τo
is J-plurisubharmonic, we have that Hess(u)x ≥ 0 for any
x �= 0. On the other hand, for any straight disk f : ∆ −→ B

n

of the form f(ζ) = v · ζ, we have that u ◦ f is harmonic
and Hess(u)f(ζ)(v, v) = 0 for any ζ �= 0. This means that
Hess(u)x ≥ 0 has at least one vanishing eigenvalue at any
point of Bn \ {0} so that u satisfies the Monge-Ampère equa-
tion. The ther conditions can be checked directly from defi-
nitions. �

When J is integrable, the standard exhaustion u = log τ(xo)

of the normal form of a domain of circular type is automati-

cally plurisubharmonic .
In the almost complex case, this is no longer true!
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EXAMPLE

On the blow up of the unit 2-ball �B2 consider vector fields

Z, JstZ,E, JstE

where Z is the lift of �
�
z
i ∂
∂zi

�
, and E is any vector field in

the distribution H that satisfies the conditions

[Z,E] = [JstZ,E] = 0 , [E, JstE] = −JstZ. (∗)

The standard holomorphic bundle T
10 �B2 is generated at all

points by the complex vector fields Z
10 = Z − iJstZ (which

generates the “radial” distribution) and E
10 = E − iJstE

(which generates the holomorphic tangent bundle to “spheres”).

Denote by (E10∗
, E

01∗
, Z

10∗
, Z

01∗) the field of complex coframes,
dual to (E10

, E
01 = E10, Z

10
, Z

01 = Z10) at all points.
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For a smooth real valued function h : �Bn −→ R, with

– h constant on spheres Sc = { τo(z) = c }

– h ≡ 0 on an open neighborhood of π−1(0) = CP 1.

Define a deformation tensor φ ∈ Hom(H01
,Z10 +H10) by

φz = h(z)Z10
z ⊗ E

01∗
z

and let J be almost complex structure determined by the
deformation tensor φ i.e. such that

T
10
Jz

�Bn = CZ10
z ⊕ C �E10

z
�E10
z

def
= E

10
z + h(z)Z01

z

It is not hard (by direct inspection) to prove that such J is an
almost L-complex structure and ( �Bn

, J) is an almost complex
domain of circular type in normal form.

Fact: if h �≡ 0, the function u = log τo is not J-plurisubharmonic.
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Using the definition of J and [Z,E] = [JstZ,E] = 0, [E, JstE] =
−JstZ, one computes

Hess(E10
, �E10) = 2(1 + 2hhZ)

Hess(E10
, Z

10) = 2hZ Hess(Z10
, Z

10) = 0 ,

(here, (·)Z
def
= Z(·) is the derivation along Z) so that the ma-

trixH of the components ofHess(u) with respect to the frame
{E10

, Z
10}, is

H = 2

�
1 + 2hhZ hZ

hZ 0

�
.

Since the eigenvalues of H are

λ± = 2
(1 + 2hhZ)±

�
(1 + 2hhZ)2 + 4h2

Z

2
,

u is J-plurisubharmonic if and only if hZ ≡ 0, i.e. if and only
if h ≡ 0 (h vanishes in a neighborhood of 0!).
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Notice that in the example the complex stucture J is arbi-
trarily close to an integrable complex structure. The key is
that one should restrict to the class of to small deformations
of integrable structures and nice:

Theorem 0.2. Let D be a nice circular domain with standard

exhaustion τ(xo) and normal form (Bn
, J). If J is a sufficiently

small C1
-deformation of Jst, then u = log τ(xo) is the Green

function with pole at xo.

Proof. Need only to show that u = log |z|2 is J-PSH on
B

n \ {0}. If (Bn
, J) is nice, then Hess(u)(Z,H) = 0 at any

z �= 0. Since spheres are J-stongly pscx for J close to the
standard structure, then the plurisubharmonicity of u follows
easily computing along “orthogonal” directions.�
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CONCLUSION

Putting together all results one gets:

THEOREM Let D be an almost complex domain of circu-

lar type with center xo in (M,J) strongly pseudoconvex. If the

normal form (Bn
, J

�) of (D, J) is very nice with J
�
sufficiently

close to Jst, then

a) the stationary foliation F (xo) consists of extremal disks

w.r.t. Kobayashi metric;

b) the function u = log τ(xo) is the almost pluricomplex

Green function of D with pole xo;

c) the distribution Zz = kerHess(u)z is integrable and

the closures of its integral leaves are the disks in F (xo).
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