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ABSTRACT. LetD ⊂ CN be a bounded strongly convex domain with smooth boundary. We consider a Monge-Ampère
type equation inD with a simple pole at the boundary. Using the Lempert foliation ofD in extremal discs, we construct
a solutionu whose level sets are boundaries of horospheres. Among other things, we show that the biholomorphisms
between strongly convex domains are exactly those maps which preserves our solution.

1. INTRODUCTION

Let D ⊂ CN be a bounded strongly convex domain with smooth boundary and letz0 ∈ D. In his amazing
work [15] Lempert constructs a solutionL : D → R to the Monge-Amp̀ere equation

(1.1)



u plurisubharmonic inD,

(∂∂u)N (z) = 0, for z ∈ D \ {z0}
du 6= 0,
u(z) = 0 for z ∈ ∂D
u(z)− log ‖z0 − z‖ = O(1) as z → z0

In fact, Lempert proved that given a bounded strongly convex domain inCN with smooth boundary, and fixed
a pointz0 ∈ D, for any pointz ∈ D there exists a unique complex geodesicϕ : D → D, i.e., a holomorphic
isometry betweenω (the Poincaŕe metric inD) and the Kobayashi metrickD, with ϕ(0) = z0 andϕ(t) = z for
a suitablet ∈ (0, 1) and such thatϕ extends smoothly past the boundary. Furthermore the complex geodesic
discs through the pointz0 provide a foliation ofD (singular atz0) which is exactly the foliation associated to the
plurisubharmonic solutionL of the complex Monge-Amp̀ere equation (1.1).

It turns out that the solutionL is the defining function for the balls centered inz0 for the Kobayashi distance.
This deep result establishes a surprising tie between intrinsic metrics and potential theory in higher dimension.
Lempert’s construction is the cornerstone for many impressive construction in several complex variables.

Later, suitably adapting and pushing further Lempert’s arguments, Abate [3] and Chang, Hu and Lee [10]
showed that existence and uniqueness for complex geodesic discs hold even if the pointz0 is chosen at the boundary
of the domainD and the pointz is allowed to vary inD. In this case they show that there exists a complex geodesic
ϕ : D → D which extends smoothly to the boundary and withz0 = ϕ(1) andz in ϕ(D). The mapϕ is unique up
to composition of automorphisms of the unit disc and the parametrization may be chosen uniquely fixing suitable
extremal conditions at the pointz0. It is natural to ask whether it is possible to interpret also in this case the
foliation of complex geodesics passing through the boundary pointz0 as the foliation associated to a solution of
the complex homogeneous Monge-Ampère equation. The main result of this work is to show that indeed this is
the case.

Heuristically, as in the unit disc the Green potential is replaced by the Poisson kernel when the pole goes to
the boundary and the type of singularity changes from a logarithmic to a simple singularity, even in our case, as
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D 3 z0 → p ∈ ∂D, one can expect to replace the logarithmic singularity with a simple pole. Thus we introduce
and study the following Monge-Ampère equation with a singularity at a boundary pointp ∈ ∂D:

(1.2)



u plurisubharmonic inD,

(∂∂u)N ≡ 0,
du 6= 0,
u(z) = 0 for z ∈ ∂D \ {p}
u(z) ≈ ‖p− z‖−1 as z → p non-tangentially

Where, for real or complex functionsa(z), b(z), the symbola(z) ≈ b(z) for z → p means that there exist
c, C > 0 such thatc|b(z)| ≤ |a(z)| ≤ C|b(z)| for all z close enough top.

Using the work of Chang, Hu and Lee [10], in Theorem 6.3, we show that (1.2) has a smooth solution onD
such that(∂∂u)N−1 6= 0. Our solutionu is “natural” in the sense that its level sets are exactly the boundaries of the
horospheres of D atp. Horospheres are “limits of Kobayashi balls”, defined by Abate by means of the Kobayashi
distance or by means of Busemann functions (see,e.g., [1], [2] and section 3) and they are one of the main tools in
the study of iteration theory.

Indeed, the construction of our solution to (1.2) is very much related to the understanding of geometrical prop-
erties of horospheres, which we study in details in section 4. Bland, Duchamp and Kalka in [6] (see also [18])
proved that a biholomorphism between two strongly convex domains is characterized by the property of being a
biholomorphism between any two Kobayashi balls of the same radius. As a spin off result, quite interesting by its
own, we show that the same property holds for horospheres (see section 4):

Theorem 1.1. LetD,D′ be bounded strongly convex domains inCN with smooth boundary. ThenD is biholo-
morphic toD′ if and only if there exist a horosphereED ⊂ D with centerp ∈ ∂D, a horosphereED′ ⊂ D′ with
centerq ∈ ∂D′ and a biholomorphismF : ED → ED′ such thatF (p) = q (in the sense of non-tangential limits)
and the radius ofED with respect to somez ∈ ED is equal to the radius ofED′ with respect toF (z).

For the solution of the Monge-Ampère equation with logarithmic singularity at an internal point, the associated
Monge-Amp̀ere foliation is a singular foliation (holomorphic if and only if the domain is biholomorphic to a
complete circular domain, the Kobayashi indicatrix at that point, see [19], [20]). If the foliation has singularity on
the boundary we show that the associated Monge-Ampère foliation is actually a smooth fibration with baseCN−1

and fiber the unit discD (see Theorem 3.5).
Finally, we prove the following boundary Schwarz-type result:

Theorem 1.2. LetD,D′ ⊂ CN be bounded strongly convex domains with smooth boundary. Letp ∈ ∂D and
q ∈ ∂D′. Let uD (respectivelyuD′ ) be the solution of(1.2) in D (respectively inD′). Let F : D → D′ be
holomorphic and assume thatF is continuous atp. ThenF is a biholomorphism such thatF (p) = q if and only if
there existsλ ∈ R+ \ {0} such thatF ∗(uD′) = λuD.

The plan of the paper is as follows. In Section 2 we recall some preliminary classical results in the unit disc, as
needed for our aim. In Section 3 we discuss the results of Chang-Hu-Lee in terms of “Monge-Ampère foliations”
showing that actually the foliation in complex geodesics centered atp ∈ ∂D is a fibration. In Section 4 we intro-
duce horospheres and prove some technical lemmas about them. In Section 5 we discuss mappings of horospheres
onto horospheres and prove Theorem 1.1. In Section 6 we construct the solution of (1.2). Finally, in Section 7 we
relate our work with Busemann functions and prove Theorem 1.2.

We conclude this introduction remarking that the smoothness required for the boundary of∂D can be lowered up
toCk, k ≥ 14 as in [10] (see also [14] where it is shown that actuallyC3 is enough for much of the construction).
Also, instead of working with strongly convex domains one could work withstrictly linearly convex domains.
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2. PRELIMINARY ON THE JULIA -WOLFF-CARATHÉODORY THEOREMS

In the sequel we will use several times the classical Julia Lemma, Wolff Lemma and Julia-Wolff-Carathéodory
Theorem. For the reader convenience we state here such theorems (in the form we need) and refer to the book [1]
for proofs. Also, we state and prove a corollary of the Julia-Wolff-Carathéodory Theorem we will need later.

As a matter of notation, ifD is a domain inCn and{zk} ⊂ D is a sequence which converges top ∈ ∂D, we
say thatzk → p non-tangentially if there exists a constantc > 0 such that, fork →∞,

‖zk − p‖ ≤ c · dist(zk, ∂D).

Let P (ζ) = (1 − |ζ|2)(|1 − ζ|2)−1 be the Poisson kernel in the unit discD := {ζ ∈ C : |ζ| < 1}. The
horosphere ofcenter 1, pole 0 and radiusR > 0 is given byED(1, 0, R) := {ζ ∈ D : P (ζ) > 1/R} (we refer to
Heins [12] for explanations and developments of the relations between horospheres and Poisson kernel).

The first result we recall is a simple consequence of Julia’s Lemma:

Lemma 2.1. Letf : D → D be holomorphic. Suppose there existsα ∈ (0,+∞) such that for allR > 0

f(ED(1, 0, R)) ⊂ ED(1, 0, αR),

and suppose there existsR0 > 0 and ζ ∈ ∂ED(1, 0, R0) such thatf(ζ) ∈ ∂ED(1, 0, αR0). Thenf is an
automorphism ofD.

Conversely, iff is an automorphism ofD such thatf(1) = 1, then there existsα ∈ (0,+∞) such that
f(ED(1, 0, R)) = ED(1, 0, αR) for all R > 0.

Let ω denote the Poincaré distance onD. By the very definitionω(ζ1, ζ2) = 1
2 log 1+|Tζ1 (ζ2)|

1−|Tζ1 (ζ2)| whereTζ1 is

any automorphism ofD mappingζ1 to 0. For f : D → D holomorphic such thatf(1) = 1 (in the sense of
non-tangential limits) we let

1
2

log f ′(1) := lim inf
ζ→1

[ω(0, ζ)− ω(0, f(ζ))] = lim inf
ζ→1

1
2

log
1− |f(ζ)|

1− |ζ|
.

Then we have

Theorem 2.2(Julia-Wolff-Carath́eodory). Letf : D → D be holomorphic and such thatf(1) = 1 (in the sense of
non-tangential limits). Assume thatf ′(1) <∞. Then

(1) limR3r→1− [ω(0, r)− ω(0, f(r))] = limR3r→1−
1
2 log 1−|f(r)|

1−r = 1
2 log f ′(1).

(2) The functionζ 7→ 1−f(ζ)
1−ζ has limitf ′(1) for ζ → 1 non-tangentially.

(3) The functionf ′(ζ) has limitf ′(1) for ζ → 1 non-tangentially.

Also we have the following boundary Schwarz-type lemma, due in this form to Herzig [13] (see also [10,
Lemma 2]):

Theorem 2.3(Herzig). Let f : D → D be holomorphic and such thatf(1) = 1 (in the sense of non-tangential
limits). If f(0) = 0 thenf ′(1) > 1 unlessf(ζ) = ζ for all ζ ∈ D.

Now we state and prove a corollary which will be used later.

Lemma 2.4. Letf : ED(1, 0, R) → D be holomorphic,R > 0. SupposelimR3r→1 f(r) = 1 and

lim
R3r→1−

1− |f(r)|
1− r

= α <∞.
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Then for any sequence{ζn} ⊂ ED(1, 0, R) which converges radially to1, i.e., such that|1− ζn|/(1− |ζn|) → 1
asn→∞, it follows

lim
n→∞

1− |f(ζn)|
1− |ζn|

= α.

Proof. LetR > 0 andg := f ◦ θR : D → D, whereθR is defined by

(2.1) θR(ζ) :=
1 +Rζ

1 +R
.

Note thatθR(r) ∈ R if r ∈ [0, 1). Then

lim
R3r→1−

1− |g(r)|
1− r

= lim
R3r→1−

1− |f(θR(r))|
1− θR(r)

· 1− θR(r)
1− r

= α · R

R+ 1
.

Namely, by the Julia-Wolff-Carathéodory Theorem 2.2.(1),

(2.2) lim
R3r→1−

[ω(0, r)− ω(0, g(r))] =
1
2

log
αR

R+ 1
.

Let tn := θ−1
R (ζn). Then for allr ∈ (0, 1) it follows

ω(0, tn)− ω(0, g(tn)) = ω(0, tn) + ω(r, tn)− ω(0, r) + ω(0, r)− ω(r, tn)− ω(0, g(tn))

≤ ω(0, tn) + ω(r, tn)− ω(0, r) + ω(0, r)− ω(g(r), g(tn))− ω(0, g(tn))

≤ [ω(0, tn) + ω(r, tn)− ω(0, r)] + [ω(0, r)− ω(0, g(r))],
(2.3)

where we used thatω(g(r), g(tn)) ≤ ω(r, tn) and the triangle inequality. Taking into account that for allz ∈ D

lim
w→1

[ω(z, w)− ω(0, w)] + ω(0, z) =
1
2

log
|1− z|
1− |z|

,

if we let r → 1 in (2.3), by (2.2) we get

(2.4) ω(0, tn)− ω(0, g(tn)) ≤ 1
2

log
|1− tn|
1− |tn|

+
1
2

log
αR

R+ 1
.

By hypothesisζn → 1 radially. Since(θ−1
R )′(1) ∈ R it follows thattn converges to1 radially as well. Therefore

the right-hand side of (2.4) tends to12 log αR
R+1 asn → ∞. Recalling Theorem 2.2.(1) and (2.2), we see that the

left-hand side of (2.4) tends to the same limit asn→∞. Furthermore,

lim
n→∞

[ω(0, tn)− ω(0, g(tn))] =
1
2

log lim
n→∞

1− |f(ζn)|
1− |ζn|

1− |ζn|
1− |θ−1

R (ζn)|
=

1
2

log
[

R

R+ 1
lim

n→∞

1− |f(ζn)|
1− |ζn|

]
,

from which the statement follows. �

3. MONGE-AMPÈRE FOLIATION AT THE BOUNDARY

LetD be a bounded strongly convex domain inCN with smooth boundary. By Lempert’s work (see [15] and
[1]), adapted by Abate (see [3]) and Chang, Hu and Lee (see [10]) given any pointz ∈ D there exists a unique
complex geodesicϕ : D → D, i.e., a holomorphic isometry betweenω (the Poincaŕe metric inD) andkD (the
Kobayashi distance inD), such thatϕ extends smoothly past the boundary,ϕ(0) = z0 andϕ(t) = z, with t ∈ (0, 1)
if z ∈ D andt = 1 if z ∈ ∂D. Moreover for any such complex geodesic there exists a holomorphic retraction
ρ : D → ϕ(D), i.e., ρ is a holomorphic self-map ofD such thatρ ◦ ρ = ρ andρ(z) = z for anyz ∈ ϕ(D). We call
such aρ theLempert projectionassociated toϕ. Furthermore we let̃ρ := ϕ−1 ◦ ρ and call it theleft inverseof ϕ,
for ρ̃ ◦ ϕ = IdD. The triple(ϕ, ρ, ρ̃) is the so-calledLempert projection device.

As we remarked for instancein [8, p. 145] the mapsϕ, ρ̃ are unique only up to “parametrization” (i.e., if
θ ∈ Aut(D) thenϕ ◦ θ is a complex geodesic andθ−1 ◦ ϕ is the associated left-inverse) whileρ is unique (that is,
depends only on the imageϕ(D)).
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Remark3.1. Assumeϕ : D → D is a complex geodesic and letρ̃ : D → D be the its left inverse. By [17,
Proposition 1 p. 345] it follows that̃ρ(D \ ϕ(∂D)) ⊂ D. In particular, ifη : D → D is a complex geodesic such
thatρ̃(η(D)) = D or, equivalently,ρ(η(D)) = ϕ(D) (whereρ : D → D is the Lempert projection associated toϕ)
thenη(D) = ϕ(D).

With an abuse of notation, we call “complex geodesic” also the image of a complex geodesicϕ : D → D. We
let Fx denote the foliation ofD defined by all the complex geodesics whose closure containx ∈ ∂D. Thus an
elementG ∈ Fx is just a one-dimensional holomorphic retract ofD. We callFx a (boundary)Monge-Ampère
foliation.

Proposition 3.2. LetD be a bounded strongly convex domain inCN with smooth boundary. Letx ∈ ∂D. Then
Fx is a smooth foliation ofD whose leaves are complex geodesics ofD.

Proof. Let z ∈ D. We are going to show that there exists a open subsetVz ⊂ D containingz and a smooth map
h : Vz 7→ Uz ×D ⊂ CN−1 ×D which trivializesFx ∩ Vz; namely, for allw ∈ Uz the mapD 3 ζ 7→ h−1(w, ζ) is
a leaf ofFx. This is essentially the content of [10, Theorem 3]. However, for the reader convenience, we give here
a proof using a different choice of coordinates. We proceed this way. LetG be the complex geodesic containingz
and letρz : D → G be the associated Lempert’s projection. By [15, Proposition 9 ] (see also [17, Proposition 11])
we can assume thatG = D×{(0, . . . , 0)}, thatz = (0, . . . , 0) and thatρG((z1, . . . , zN )) = (z1, 0, . . . , 0). Let Ṽz

be a small ball centered atz = (0, . . . , 0). We letU ′z := Ṽz ∩ ρ−1
G (z). ThenU ′z = {0} × Uz with Uz an open ball

in CN−1 centered at0. It is clear that ifṼz is small enough thenU ′z is anN−1 complex affine manifold transverse
toFx. Now letAz ⊂ Fx be the set of one dimensional holomorphic retracts which intersectU ′z. We set

Vz :=
⋃

G∈Az

G.

The setVz is open inD. This follows at once from the fact that the space of (the closure of) one dimensional
holomorphic retracts ofD with, for instance, the topology of uniform convergence on compacta is homeomorphic
to the space of (the closure of) complex geodesic sets endowed with the Hausdorff topology of compacta ofD
(see [8, Lemma 5.3]). However this will also followa fortiori from the fact thatVz is the homeomorphic image of
Uz × D.

Now we defineh : Vz → Uz × D as follows. For anyw ∈ U ′z we letϕw : D → D be the unique complex
geodesic such thatϕw(0) = w andϕw(1) = x. Thus, ifu ∈ Vz thenu = ϕw(ζ) for a uniquew ∈ U ′z and a unique
ζ ∈ D. Therefore we set

Vz 3 u 7→ h(u) := (w, ζ) ∈ Uz × D,
where, with some abuse of notation we callw both the element ofU ′z and its projection toUz. We claim thath is
a smooth diffeomorphism with inverse

Uz × D 7→ h−1(w, ζ) := ϕw(ζ) ∈ Vz.

Since any complex geodesic parameterizingϕw(D) is obtain by pre-composing with automorphisms ofD then we
can use [10, Proposition 5’] (see also the argument at [10, p. 369] and [15, pp. 460-461]) to show thath, h−1 are
smooth. �

¿From the proof of Proposition 3.2 it follows that the local trivializing coordinates(w, ζ) ∈ Uz ×D introduced
are holomorphic inζ, and thus they areadapted in the sense of [6]. Thus, using [6, Lemma 3.2] and arguing as at
[6, p. 27] we have the following lemma which will be useful later:

Lemma 3.3. LetD,D′ be bounded strongly convex domains with smooth boundary inCN . Letp ∈ ∂D and letU
be an open subset ofD intersecting each leaf of the boundary Monge-Ampère foliationFp. Let F̃ : D → D′ be a
smooth (C1 is enough) map such that

(1) F̃ is holomorphic onU ,



6 F. BRACCI, G. PATRIZIO

(2) for any ϕ : D → D complex geodesic such thatϕ(D) ∈ Fp the mapD 3 ζ 7→ F (ϕ(ζ)) ∈ D′ is
holomorphic.

ThenF̃ is holomorphic onD.

Using the boundary spherical representation of Chang, Hu and Lee (see [10, Theorem 3]) one can refine Propo-
sition 3.2 in order to obtain “global coordinates” adapted to the boundary Monge-Ampère foliation. For the reader
convenience and since it will be useful later, we recall here the Chang, Hu and Lee construction as needed for our
aim. Letp ∈ ∂D and, up to rigid transformation, assume that the unit normal vector for∂D atp is e1 = (1, . . . , 0).
LetLp := {v = (v1, . . . , vn) ∈ CN |‖v‖ = 1, v1 > 0}. For anyv ∈ Lp the mapηv : D 3 ζ 7→ e1 + (ζ − 1)v1v is
a complex geodesic ofBN , ηv(1) = e1 andη′v(1) = v1v. In [10] Chang, Hu and Lee prove that one can perform a
unique choice of a complex geodesicϕv : D → D such thatϕ(1) = p andϕ′(1) = v1v imposing an extremality
condition on the second derivative ofϕ at 1 (we do not state here such a condition since we do not need it). Then
the mapΦ : D → BN is defined as follows:

Φ(z) = e1 + (ζz − 1)v1v,

whereζz ∈ D andv ∈ Lp are the unique data such thatϕv(ζz) = z. The mapΦ is a smooth diffeomorphism
whose inverse is easily seen to be

Φ−1(w) = ϕv(ζw),
whereζw ∈ D andv ∈ Lp are the unique data such thatw = ηv(ζw). MoreoverΦ,Φ−1 extend continuously up to
the boundary. For future reference, we note here the following fact:

Remark3.4. For anyv ∈ Lp it follows thatΦ ◦ ϕv = ηv. Now, letϕ : D → D be a complex geodesic such that
ϕ(1) = p. Then there existsv ∈ Lp and an automorphismθ : D → D with θ(1) = 1 such thatϕ = ϕv ◦ θ. Notice
thatθ′(1) > 0. Therefore, denoting by〈·, ·〉 the standard Hermitian product inCN ,

〈ϕ′(1), e1〉 = θ′(1)〈ϕv(1), e1〉 = v2
1θ
′(1) = θ′(1)〈(Φ ◦ ϕv)′(1), e1〉 = 〈(Φ ◦ ϕ)′(1), e1〉.

In particular it follows thatΦ is holomorphic on the leaves of the boundary Monge-Ampère foliationFp and
sends leaves ofFp onto leaves ofGe1 , the Monge-Amp̀ere foliation ofBN ate1.

Using the spherical representation of Chang, Hu and Lee we can prove the following result:

Theorem 3.5. LetD be a bounded strongly convex domain inCN with smooth boundary. Letx ∈ ∂D. ThenFx

is a smooth fibration ofD ontoCN−1 with fiberD.

Proof. Since the boundary spherical representationΦ : D → BNsends the boundary Monge-Ampère foliationFx

to the boundary Monge-Ampère foliationGe1 of the ballBN (heree1 = (1, 0, . . . , 0)), it is enough to show that the
foliation Ge1 is a fibration ofBN . Write the ball as the upper Siegel planeHN = {(z, w) ∈ C × CN−1 : Im z >
‖w‖2} using a biholomorphic transformation which sendse1 to∞. We claim that the boundary Monge-Ampère
foliation of HN at∞ is given byG∞ = {w = const}. Indeed,{w = 0} is clearly a complex geodesic. The others
can be found by translating this by means of parabolic automorphisms ofHN fixing ∞, giving the claim. Then
G∞ is clearly a (holomorphic) fibration onCN−1 with fiber (biholomorphic to)D. �

In the previous proof we showed that the boundary Monge-Ampère foliationGe1 is actually holomorphic inBN .
Also, note that the fibrationGe1 is smoothly equivalent to the productCN−1×D but it is clearly not holomorphically
equivalent to it. It would be interesting to characterize those domains for which the boundary Monge-Ampère
foliation is a holomorphic fibration.

4. HOROSPHERES

LetD be a strongly convex bounded domain inCN with smooth boundary. Letz0 ∈ D. We denote bykD the
Kobayashi distance inD. Following Abate [1], [2] we give the following
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Definition 4.1. A horosphere ED(x, z0, R) of centerx ∈ ∂D, polez0 and radiusR > 0 is defined as

(4.1) ED(x, z0, R) := {z ∈ D : lim
w→x

[kD(z, w)− kD(z0, w)] <
1
2

logR}.

It is a feature of strongly convex domain (see,e.g., [1, Theorem 2.6.47]) that the limit definingED(x, z0, R)
actually does exist.

Remark4.2. It is known after Abate (see,Corollary 2.6.49 in [1] and [2]) that the horospheres of centerx ∈ ∂D
are convex subsets ofD, smooth and strongly convex atx.

If D = D the unit disc inC then

ED(1, 0, R) = {ζ ∈ D :
|1− ζ|2

1− |ζ|2
< R}

is a disc of radiusR/(R+ 1) tangent toD at1.

Remark4.3. It should be noted that there is another (equivalent) way of defining horospheres, namely by means of
theBusemann functions as follows (see [9], [5] and [21]). Letϕ : D → D be a complex geodesic,ϕ(1) = p ∈ ∂D.
Let s be the arc length parameter of the real geodesicR+ 3 t 7→ ϕ(t) (thuss(t) = 1

2 log 1+t
1−t = ω(0, t)). Let

z ∈ D. The functionkD(z, ϕ(s))−s is decreasing ins and, by the triangle inequality, it is bounded bykD(z, ϕ(0)).
Thus the limit fors→∞ does exist. We let

Bϕ(z) := lim
s→+∞

[kD(z, ϕ(s))− s] = lim
t→1

[kD(z, ϕ(t))− kD(ϕ(0), ϕ(t))] = lim
t→1

[kD(z, ϕ(t))− ω(0, t)],

theBusemann function of γ atp. By construction it follows at once that the set{z ∈ D : Bϕ(z) < 1
2 logR} is the

horosphere ofD centered atϕ(1) = p with poleϕ(0) and radiusR > 0.

Lemma 4.4. Let G ∈ Fx. Then for allR > 0 it follows thatG ∩ ED(x, z0, R) is a complex geodesic of
ED(x, z0, R).

Proof. Fix R > 0. Let ρG : D → G be the Lempert projection associated toG. Then we claim that

(4.2) ρG(ED(x, z0, R)) = ED(x, z0, R) ∩G.

Indeed, letϕG : D → D be a parametrization forG such thatϕG(1) = x. SinceρG ◦ ϕG = ϕG, if z ∈
ED(x, z0, R) we have

lim
w→x

[kD(ρG(z), w)− kD(z0, w)] = lim
r→1

[kD(ρG(z), ρG(ϕG(r)))− kD(z0, ϕG(r))]

≤ lim
r→1

[kD(z, ϕG(r))− kD(z0, ϕG(r))] <
1
2

logR.
(4.3)

ThereforeρG(z) ∈ ED(x, z0, R) ∩ G. This means thatED(x, z0, R) ∩ G is a (one-dimensional) holomorphic
retract ofED(x, z0, R) whose closure containsx. By [22, Th́eor̀eme 2.3] it follows thatED(x, z0, R) ∩ G is
actually a complex geodesic. �

Remark4.5. Let ED(p, z0, R) be a horosphere inD. LetG be a complex geodesic forD such thatz0 ∈ G and
let ϕG : D → D be a parametrization such thatϕG(1) = p, ϕG(0) = z0. Lettingw = ϕG(r) for r → 1 in (4.1)
one easily sees thatϕG(ED(1, 0, R)) = ED(p, z0, R) ∩G. Let θR be as in (2.1). ThenθR(D) = ED(1, 0, R) and
ϕ ◦ θR : D → G ∩ ED(p, z0, R) is a parametrization of the complex geodesicG ∩ ED(p, z0, R) of ED(p, z0, R).

Now we see how the radius of the horosphere changes when changing the pole. Letp ∈ ∂D and letz1 ∈ D.
Set

(4.4)
1
2

log r(z1) := lim
w→p

[kD(z0, w)− kD(z1, w)].
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Then

(4.5) ED(p, z0, R) = ED(p, z1, R · r(z1)).
Indeed,

kD(z, w)− kD(z1, w) = [kD(z, w)− kD(z0, w)] + [kD(z0, w)− kD(z1, w)],
and since the limit forw → p exists then we have (4.5).

In particular for any complex geodesicϕ : D → D such thatϕ(1) = p it follows that

ϕ(ED(1, 0, R · r(ϕ(0)))) = ϕ(D) ∩ ED(p, z0, R).

As a final result of this section, we obtain a technical lemma which will be useful in the sequel.

Lemma 4.6. LetED := ED(p, z0, R) be a horosphere inD with z0 ∈ ED, i.e., R > 1. Letϕ : D → D be a
complex geodesic such thatϕ(1) = p andϕ(0) ∈ ED. Then

lim
R3r→1−

[kD(z0, ϕ(r))− kED
(z0, ϕ(r))] =

1
2

log
R− 1
R

.

Proof. Letϕo : D → D be the complex geodesic such thatϕo(0) = z0 with ϕo(1) = p and letρo be the associated
Lempert projection. By [7, Proposition 3.4] it follows that

(4.6) lim
R3r→1

kD(ϕ(r), ρo(ϕ(r))) = 0,

namely, in the terminology of [1], the curveR 3 r → ϕ(r) is special with respect to the projectionρo. In the proof
of [7, Proposition 3.4] it is actually shown that the curver 7→ ϕ(r) belongs eventually to any ballB contained in
D and tangent to∂D atp and that

lim
R3r→1

‖ϕ(r)− ρo(ϕ(r))‖2

dist(ρo(ϕ(r)), ∂D)
= 0.

This condition, together with the fact thatr 7→ ρo(ϕ(r)) tends top non-tangentially inD (and then inB), guaran-
tees thatlimR3r→1 kB(ϕ(r), ρo(ϕ(r))) = 0 (see [4] and [1, Proposition 2.7.10]). SinceED is strongly convex at
p (see Remark 4.2), there existsB ⊂ ED tangent to∂D atp. Therefore

lim
R3r→1

kED
(ϕ(r), ρo(ϕ(r))) ≤ lim

R3r→1
kB(ϕ(r), ρo(ϕ(r))) = 0.

Now, ϕ ◦ θR1 : D → D is a complex geodesic inED (hereθR1 is defined in (2.1) andR1 = Rr(ϕ(0))) and
by (4.2) the mapρo : ED → ED is a holomorphic retraction, then

(4.7) lim
R3r→1

kED
(ϕ(r), ρo(ϕ(r))) = lim

R3r→1
kED

(ϕ ◦ θR1 ◦ θ−1
R1

(r), ρo ◦ ϕ ◦ θR1 ◦ θ−1
R1

(r))) = 0.

Therefore we can write

kD(z0, ϕ(r))− kED
(z0, ϕ(r)) = [kD(z0, ρo ◦ ϕ(r))− kED

(z0, ρo ◦ ϕ(r))]

+ [kD(z0, ϕ(r))− kD(z0, ρo ◦ ϕ(r))]− [kED
(z0, ϕ(r))− kED

(z0, ρo ◦ ϕ(r))].

Since by (4.6),
lim
r→1

|kD(z0, ϕ(r))− kD(z0, ρo ◦ ϕ(r))| ≤ lim
r→1

kD(ϕ(r), ρo(ϕ(r)) = 0,

and similarly forkED
(z0, ϕ(r))− kED

(z0, ρo ◦ ϕ(r)), then

lim
R3r→1−

[kD(z0, ϕ(r))− kED
(z0, ϕ(r))] = lim

R3r→1−
[kD(z0, ρo ◦ ϕ(r))− kED

(z0, ρo ◦ ϕ(r))].

Let τ(ζ) := ϕ−1
o ◦ρo ◦ϕ(ζ). Thenτ : D → D is holomorphic, smooth at1 andτ(1) = 1. Hence0 < |τ ′(1)| <∞

and the classical Julia-Wolff-Carathéodory Theorem 2.2 implies

lim
R3r→1−

|1− τ(r)|
1− |τ(r)|

= lim
R3r→1−

|1− τ(r)|
1− r

· 1− r

1− |τ(r)|
= |τ ′(1)| · 1

|τ ′(1)|
= 1.
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Therefore the curveR 3 r 7→ τ(r) converges radially to1.
For r ∈ (0, 1),

kD(z0, ρo ◦ ϕ(r))− kED
(z0, ρo ◦ ϕ(r))

= kD(ϕo(0), ϕo(τ(r)))− kED
(ϕo ◦ θR ◦ θ−1

R (0), ϕo ◦ θR ◦ θ−1
R (τ(r)))

= ω(0, τ(r))− ω(θ−1
R (0), θ−1

R (τ(r))).

Using the explicit form ofω, it follows that

(4.8) lim
D3ζ→1

[ω(0, ζ)− ω(θ−1
R (0), θ−1

R (ζ))] = lim
ζ→1

1
2

log
1− |Φ ◦ θ−1

R (ζ)|
1− |ζ|

,

whereΦ(ζ) = (ζ−θ−1
R (0))/(1−θ−1

R (0)ζ). NowΦ◦θ−1
R : ED(1, 0, R) → D is holomorphic andΦ◦θ−1

R (1) = 1.
A direct calculation shows that

lim
R3r→1−

1− |Φ ◦ θ−1
R (r)|

1− r
= lim

R3r→1−

1− Φ ◦ θ−1
R (r)

1− r
= (Φ ◦ θ−1

R (ζ))′|ζ=1 =
R− 1
R

.

SinceR 3 r 7→ τ(r) converges radially to1, by Lemma 2.4 it follows that

lim
R3r→1−

1− |Φ ◦ θ−1
R (τ(r))|

1− |τ(r)|
=
R− 1
R

,

and from (4.8) we get the assertion. �

5. MAPPING HOROSPHERES ONTO HOROSPHERES

LetD,D′ be two strongly convex bounded domains inCN with smooth boundary. Letp ∈ ∂D andq ∈ ∂D′.
We are going to study biholomorphisms betweenED(p, z0, R0) andED′(q, z′0, R

′
0) such thatp is mapped (in the

non-tangential sense) toq. First of all we give the following

Example 5.1. Let θR : D → ED(1, 0, R) ⊂ D be defined by (2.1). LetR′ > 0. ThenθR is a biholomorphism
betweenED(1, 0, R′) andθR(ED(1, 0, R′)) which is a horosphere ofD. MoreoverθR(1) = 1. However clearly
θR does not extend to a biholomorphism fromD to D.

The problem with the previous example is that the corresponding horospheres have “different radii” as we
explain in the following remark.

Remark5.2. Let F : D → D′ be a biholomorphism between bounded strongly convex domains with smooth
boundary. Letp ∈ ∂D. ThenF has non-tangential limitq at p for someq ∈ ∂D′. This is pretty well known,
actuallyF extends smoothly onD nearp (see [11] or [15, section 10]). LetED be a horosphere of centerp and
radiusR > 0 with respect to some polez1 ∈ ED. ThenF (ED) is the horosphereED′ of centerq and radiusR
with respect to the poleF (z1). Indeed for anyz ∈ D we have

lim
w→p

[kD(z, w)− kD(z1, w)] = lim
w→p

[kD′(F (z), F (w))− kD′(F (z1), F (w))]

= lim
w′→q

[kD′(F (z), w′)− kD′(F (z1), w′)].

LetED := ED(p, z0, R0) andED′ := ED′(q, z′0, R
′
0) be two horospheres ofD,D′ respectively. Assume that

z0 ∈ ED andz′0 ∈ ED′ . Forz ∈ ED denote byR(z) the radius ofED with polez, namely:

ED(p, z0, R0) = ED(p, z,R(z)),

and similarly forz′ ∈ ED′ . Let F : ED → ED′ be a biholomorphism such thatF (p) = q (in the sense of
non-tangential limits) andF (z0) = z′0. As we have seen, the radius of a horosphere depends on the choice of its
pole. It is not clear a priori that ifR0 = R′0 thenR(z) = R(F (z)) for all z ∈ ED, unlessF is already known to
be a biholomorphism betweenD andD′. This is however true, as we are going to show.
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Lemma 5.3. Let D,D′ be two strongly convex domains with smooth boundary,p ∈ ∂D and q ∈ ∂D′. Let
ED := ED(p, z0, R0) andED′ := ED′(q, z′0, R

′
0) be two horospheres ofD,D′ respectively. LetF : ED → ED′

be a biholomorphism. IfR0 = R′0 then for allz ∈ ED it followsR(z) = R(F (z)).

Proof. In (4.5) we saw thatR0 = R(z)/r(z) for all z ∈ D, wherer(z) is defined in (4.4). SimilarlyR′0 =
R(F (z))/r(F (z)). SinceR0 = R′0 we have

(5.1)
R(z)
r(z)

=
R(F (z))
r(F (z))

for all z ∈ ED.

Now we computer(z). Let ϕ : D → D be a complex geodesic such thatϕ(0) = z andϕ(1) = p. Then by
Lemma 4.6

1
2

log r(z) = lim
w→p

[kD(z0, w)− kD(z, w)] = lim
R3r→1

[kD(z0, ϕ(r))− kD(z, ϕ(r))] =

= lim
R3r→1

[kD(z0, ϕ(r))− kED
(z0, ϕ(r))] + lim

R3r→1
[kED

(z0, ϕ(r))− kED
(z, ϕ(r))]

− lim
R3r→1

[kD(z, ϕ(r))− kED
(z, ϕ(r))] =

1
2

log
R0 − 1
R0

+
1
2

log rED
(z)− 1

2
log

R(z)− 1
R(z)

=
1
2

log
R(z)(R0 − 1)
R0(R(z)− 1)

rED
(z).

SinceF is a biholomorphism, then it is an isometry betweenkED
andkE′

D
. Thus (takingw → p non-tangentially)

1
2

log rED
(z) = lim

w→p
[kED

(z0, w)− kED
(z, w)]

= lim
w→p

[kE′
D

(F (z0), F (w))− kE′
D

(F (z), F (w))] =
1
2

log rE′
D

(F (z)).

Therefore, taking into account thatR0 = R′0 we have

r(z) =
R(z)(R0 − 1)
R0(R(z)− 1)

rED
(z),

r(F (z)) =
R(F (z))(R0 − 1)
R0(R(F (z))− 1)

rED
(z)

Substituting these into (5.1) we haveR(z) = R(F (z)) as wanted. �

Now we are in a good shape for stating and proving the following result:

Theorem 5.4. LetD,D′ be bounded strongly convex domains inCN with smooth boundary. ThenD is biholo-
morphic toD′ if and only if there exist a horosphereED ⊂ D with centerp ∈ ∂D, a horosphereED′ ⊂ D′ with
centerq ∈ ∂D′ and a biholomorphismF : ED → ED′ such thatF (p) = q (in the sense of non-tangential limits)
and the radius ofED with respect to somez ∈ ED is equal to the radius ofED′ with respect toF (z).

Proof. One direction follows from Remark 5.2. As for the other direction, thanks to Lemma 3.3, we have just to
show that there exists̃F : D → D′ smooth such that

(1) F̃ (z) = F (z) for all z ∈ ED.
(2) ζ 7→ F̃ (ϕ(ζ)) is holomorphic for allϕ : D → D complex geodesics such thatϕ(1) = p.

We are going to definẽF as follows. Letϕv : D → D be a complex geodesic as in section 3 (in particular given
z ∈ D there exist a uniquev ∈ CN and a uniqueζ ∈ D such thatϕv(ζ) = z). ThenGED

= ϕv(D) ∩ ED

is a complex geodesic inED by Lemma 4.4. ThusF (GED
) is a complex geodesic inED′ . Let t > 0 be

such thatϕv(t) ∈ ED. Let ϕF (v) : D → D′ be the unique complex geodesic such thatϕF (v)(1) = q and
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ϕF (v)(t) = F (ϕv(t)). Again by Lemma 4.4, it is not too difficult to see thatϕF (v) is independent of the point
t > 0 chosen to define it (with the property thatϕv(t) ∈ ED). We let

F̃ (ϕv(ζ)) := ϕF (v)(ζ).

Notice thatF̃ is well-defined by the uniqueness of theϕv ’s. Also, by definition, property (2) follows, and, since
the boundary Monge-Amp̀ere foliationsFp,F ′

q are smooth by Proposition 3.2 andF is holomorphic, theñF is
smooth.

We have only to show that̃F (z) = F (z) for all z ∈ ED. To see this, letz ∈ ED and letϕv : D → D be a
complex geodesic such thatz ∈ ϕv(D). We can writeED = ED(p, ϕv(0), r) for somer > 0. By Lemma 5.3
thenED′ = ED′(q, F (ϕv(0)), r). Let θr : D → ED(1, 0, r) be defined as in (2.1). By Remark 4.5 it follows that
ϕv ◦ θr : D → ED is a complex geodesic ofED containingz and thenF ◦ ϕv ◦ θr : D → E′D is a complex
geodesic ofED′ containingF (z). Now, again by Remark 4.5 it follows thatϕF (v) ◦ θr : D → ED′ is a complex
geodesic containingF (z). We are then left to show that for allζ ∈ D

F ◦ ϕv ◦ θr(ζ) = ϕF (v) ◦ θr(ζ).

But this is clear for they both map1 to q andθ−1
r (0) to the same pointF (ϕv(0)). Thus (1) holds. �

6. PLURISUBHARMONIC SOLUTIONS TO THE BOUNDARYMONGE-AMPÈRE EQUATION

The aim of this section is to study the solution of the complex Monge-Ampère equationu : D → R such that
du 6= 0, (∂∂u)N = 0 andu is harmonic on each leaf of the boundary Monge-Ampère foliation at a given point
p ∈ ∂D.

We begin with the following proposition, maybe interesting by its own.

Proposition 6.1. Let D,D′ be bounded strongly convex domains inCN with smooth boundary,p ∈ ∂D and
q ∈ ∂D′. LetΦ : D → D′ be a smooth diffeomorphism, such thatΦ has non-tangential limitq at p. Suppose that
Φ respects the boundary Monge-Ampère foliations ofD at p andD′ at q, namely

(1) Φ maps leaves ofFp onto leaves ofFq and it is a holomorphic Kobayashi-isometry on each leaf,
(2) for any complex geodesicϕ : D → D such thatϕ(1) = p, it follows that

〈ϕ′(1), np〉 = 〈(Φ ◦ ϕ)′(1), n′q〉,

wherenp (respectivelyn′q) denotes the outer unit normal to∂D at p (respectively to∂D′ at q).

ThenF maps horospheres ofD with centerp onto horospheres ofD′ with centerq.

The second condition onΦ means thatΦ cannot “squeeze” the complex geodesics. Note that by the first
condition,Φ ◦ ϕ extends smoothly onD and thus it makes sense to consider(Φ ◦ ϕ)′(1).

Proof of Prop. 6.1.LetED = ED(p, z0, R(z0)) be a horosphere inD. We claim that

(6.1) Φ(ED(p, z0, R(z0))) = ED′(q,Φ(z0), R(z0)) =: ED′ .

Letϕ : D → D be a complex geodesic such thatϕ(1) = p. Let z = ϕ(0). If we writeED = ED(p, z,R(z)) then
ϕ(ED(1, 0, R(z))) = ϕ(D) ∩ ED. By hypothesis (1)Φ ◦ ϕ : D → D′ is a complex geodesic inD′. ThusΦ ◦ ϕ
extends smoothly past∂D and sinceΦ has non-tangential limitq atp thenΦ(ϕ(1)) = q.

Therefore, to show thatΦ(ED) = ED′ is equivalent to proving thatΦ(ED ∩ ϕ(D)) = ED′ ∩Φ(ϕ(D)) for any
complex geodesicϕ : D → D such thatϕ(1) = p.

Thus we have to show that

Φ(ϕ(ED(1, 0, R(z)))) = ED′(q,Φ(z), R(Φ(z))) ∩ (Φ ◦ ϕ(D)).
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In other words it is enough to show thatR(z) = R(Φ(z)) for all z ∈ D. By constructionR(z0) = R(Φ(z0)) and
by (4.5) we are left to show thatr(z) = r(Φ(z)) for all z ∈ D. Now, letϕ : D → D be a complex geodesic such
thatϕ(0) = z0 andϕ(1) = p. Then

1
2

log r(z) = lim
w→p

[kD(z0, w)− kD(z, w)] = lim
R3r→1

[ω(0, r)− kD(z, ϕ(r))]

= lim
R3r→1

[kD′(Φ ◦ ϕ(0),Φ ◦ ϕ(r))− kD′(Φ(z),Φ ◦ ϕ(r))] + lim
R3r→1

[kD′(Φ(z),Φ ◦ ϕ(r))− kD(z, ϕ(r))]

=
1
2

log r(Φ(z)) + lim
R3r→1

[kD′(Φ(z),Φ ◦ ϕ(r))− kD(z, ϕ(r))].

The assertion follows as soon as we prove that the limit in the last line of the previous formula is equal to0. To
see this, letψ : D → D be the complex geodesic such thatψ(1) = p andψ(0) = z. Let ρ : D → D be the
Lempert projection associated toψ andρ′ : D′ → D′ be the Lempert projection associated toΦ ◦ ψ. By the
triangle inequality and (4.6)

lim
r→1

[|kD′(Φ(z),Φ ◦ ϕ(r))− kD′(Φ(z), ρ′ ◦ Φ ◦ ϕ(r))|+ |kD(z, ϕ(r))− kD(z, ρ ◦ ϕ(r))|]

≤ lim
r→1

[kD′(Φ ◦ ϕ(r), ρ′ ◦ Φ ◦ ϕ(r)) + kD(ϕ(r), ρ ◦ ϕ(r))] = 0.

Thus, from the very definition ofω, it follows that

lim
R3r→1

[kD′(Φ(z),Φ ◦ ϕ(r))− kD(z, ϕ(r))] = lim
R3r→1

[kD′(Φ(z), ρ′ ◦ Φ ◦ ϕ(r))− kD(z, ρ ◦ ϕ(r))]

= lim
R3r→1

[ω(0, ψ−1◦Φ−1◦ρ′◦Φ◦ϕ(r))−ω(0, ψ−1◦ρ◦ϕ(r))] = lim
R3r→1

1
2

log
1− |ψ−1 ◦ ρ ◦ ϕ(r)|

1− |ψ−1 ◦ Φ−1 ◦ ρ′ ◦ Φ ◦ ϕ(r)|
.

By the classical Julia-Wolff-Carathèodory Theorem 2.2 and [1, Lemma 2.6.44] (or see [4]) it follows that

lim
R3r→1

1
2

log
1− |ψ−1 ◦ ρ ◦ ϕ(r)|

1− |ψ−1 ◦ Φ−1 ◦ ρ′ ◦ Φ ◦ ϕ(r)|
= lim

R3r→1

1
2

log
1− |ψ−1 ◦ ρ ◦ ϕ(r)|

1− r

− lim
R3r→1

1
2

log
1− |ψ−1 ◦ Φ−1 ◦ ρ′ ◦ Φ ◦ ϕ(r)|

1− r
=

1
2

log
〈ϕ′(1), np〉
〈ψ′(1), np〉

·
〈(Φ ◦ ψ)′(1), n′q〉
〈(Φ ◦ ϕ)′(1), n′q〉

,

which is0 by hypothesis (2). �

By Remark 3.4 we have the following result:

Corollary 6.2. The boundary spherical representationΦ : D → BN maps horospheres ofD onto horospheres
of BN .

Starting from this result we can solve the Monge-Ampère equation at the boundary.

Theorem 6.3. LetD be a bounded strongly convex domain inCN with smooth boundary and letp ∈ ∂D. The
Monge-Amp̀ere equation

(6.2)



u plurisubharmonic inD,

(∂∂u)N ≡ 0,
du 6= 0,
u(z) = 0 for z ∈ ∂D \ {p}
u(z) ≈ ‖p− z‖−1 as z → p non-tangentially

has a solutionu ∈ C∞(D) such thatu(z) < 0 for all z ∈ D and(∂∂u)N−1 6= 0. Moreover the level sets ofu are
boundaries of the horospheres ofD with centerp.
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Proof. First assumeD = BN andp = e1. Then we consider

u0(z) := −1− ‖z‖2

|1− z1|2
.

A straightforward calculation shows thatu0 is actually a solution of the boundary Monge-Ampère equation (6.2).
Moreover by [1, Proposition 2.2.20] (see also [2]) it follows thatEBN (e1, 0, R) = {u0(z) < −1/R} and thus the
level sets ofu0 are exactly the boundary of the horospheres centered ate1. These horospheres are strongly convex.
Let P (ζ) = (1 − |ζ|2)/(|1 − ζ|2) be the Poisson kernel inD. Then the set{P (ζ) > 1/R} is the horosphere of
center1 and radiusR > 0 of D. A simple calculation shows

u0 ◦ ηv(ζ) = − 1
v2
1

P (ζ),

wherev ∈ Le1 andηv is defined in the third section. Thusu0 is harmonic on the leaves of the boundary Monge-
Ampère foliationGe1 . Now, for a strongly convex domainD, define

u := u0 ◦ Φ,

whereΦ : D → BN is the boundary spherical representation of Chang, Hu and Lee. Thenu ∈ C∞(D), du 6= 0
andu(z) = 0 for z ∈ ∂D \ {p}. SinceΦ is holomorphic on the leaves of the boundary Monge-Ampère foliation
thenu is harmonic on such leaves. Moreover, by Corollary 6.2 it follows that the level sets ofu are the boundary
of the horospheres centered atp.

Let ϕ : D → D be a complex geodesic such thatϕ(1) = p. In [17, Proposition 11] Lempert constructs a
biholomorphismG from D to a domainG(D) which extends smoothly through∂D and such thatG ◦ ϕ(ζ) =
(ζ, 0 . . . , 0) and the associated Lempert projection isρ̃(z1, . . . , zn) = (z1, 0 . . . , 0) (note that the Lempert pro-
jectionρ : D → D associated toϕ is equal toG ◦ ρ̃ ◦ G−1). For short we call such coordinates the “Lempert
coordinates”. The domainG(D) is no longer convex in general, but it is still convex nearG(ϕ(∂D)). We claim that
if ED = u−1(−1/R) is a horosphere with centerp thenG(∂ED) is convex nearG(∂ED)∩G(ϕ(D)). Indeed, let
w0 ∈ G(∂ED) ∩G(ϕ(D)) and letHR

w0
⊂ Ce1 be the real one-dimensional tangent space toG(∂ED) ∩G(ϕ(D))

at w0. Sinceρ̃(G(ED)) ⊂ G(ED) ∩ G(ϕ(D)) and ρ̃ is linear then the real hyperplane given by{w ∈ Cn :
ρ̃(w)−w0 ∈ HR

w0
} separatesw0 fromG(ED), which is thus convex atw0. Moreover this clearly implies that the

complex tangent space

(6.3) TC
G(ϕ(ζ))(∂G(ED(G(p), G(ϕ(ζ)), 1)) = span

(
∂

∂zj

)
j=2,...,N

for anyζ ∈ D (notice thatϕ(ζ) ∈ ∂ED(p, ϕ(ζ), 1) always).
We are going to show thatu is a plurisubharmonic solution of the Monge-Ampère equation using the Lempert

coordinates. Letz = (z1, 0 . . . , 0) ∈ G(D). Since∂G(ED) is (pseudo)convex, the matrix(
∂2u

∂zj∂zk
(z)

)
j,k=2,...,N

is non-negative definite.

Sinceu is harmonic onζ 7→ (ζ, 0, . . . , 0) then ∂2u
∂z1∂z1

(z) = 0. We are left to show that ∂2u
∂zk∂z1

(z) = 0 for

k = 2, . . . , N . But this is obvious since, by (6.3), we havedu( ∂
∂zk

) ≡ 0 on (ζ, 0, . . . , 0), ζ ∈ D, k = 2, . . . , N .

Thereforeu is plurisubharmonic inD, or, in other terms,ddcu = 2i∂∂u ≥ 0. To show that(∂∂u)N−1 6= 0
it is enough to see thatddcu > 0 in D on the complex tangent spaces to the boundary of horospheres inD. To
this aim, we introduce the following functions:τ : D → R+ andτ0 : BN → R+ defined byτ(z) = exp(u(z))
andτ0(z) = exp(u0(z)). A direct computation shows thatddcτ0 > 0 in BN andddcτ ≥ 0 in D. The formddcu
is then positive definite on the complex tangent spaces to the boundary of horospheres if and only ifτ is strictly
plurisubharmonic, namely,ddcτ > 0 in D. Now, we claim thatΦ is a “contact map”, that is, it maps the complex
tangent space of a (boundary of) horosphere ofBN to the complex tangent space of the corresponding (boundary
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of) horosphere. Indeed, up to composition with automorphisms ofBN we can assume that the complex geodesic
η(ζ) = (ζ, 0, . . . , 0) of BN is mapped to the complex geodesicϕ = Φ−1 ◦ η which, in Lempert’s coordinates,
is given byζ 7→ (ζ, 0, . . . , 0). With this choice of coordinates—and since biholomorphisms preserve complex
tangent spaces—equation (6.3) implies thatΦ is a contact map. In other words,(Φ−1)∗(∂τ) = g∂τ0 for some
smooth functiong. To computeg, we consider an arbitrary complex geodesicη : D → BN containinge1. By
definition,τ0 ◦ η = τ ◦ Φ−1 ◦ η. Thereforeη∗(∂τ0) = η∗((Φ−1)∗∂τ) = gη∗(∂τ0) and thusg ≡ 1. Now, taking
into account that∂∂ = d∂, it follows that

ddcτ0 = −2i∂∂τ0 = −2i d((Φ−1)∗(∂τ)) = −2i(Φ−1)∗(d∂τ) = (Φ−1)∗(ddcτ).

Henceddcτ is non-degenerate. Since we already know thatddcτ ≥ 0, the only possibility is thatddcτ > 0, as
wanted.

Finally we show thatu(z) ≈ ‖p− z‖−1 asz → p non-tangentially. Let{zk} ⊂ D be a sequence converging to
p non-tangentially. We use the notationsϕv, ηv for v ∈ Lp as introduced in Section 3. Letζk ∈ D andvk ∈ Lp

be such thatϕvk
(ζk) = zk. Since the leaves ofFp are transversal to∂D at p andzk → p non-tangentially, up

to subsequences, we may assume thatvk → v0 ∈ Lp. Also, ζk → 1 non-tangentially (since complex geodesics
maps non-tangential regions onto non-tangential regions, see,e.g., [1, Proposition 2.7.8.(ii)]). Thusηvk

→ ηv0 as
vk → v0 andΦ(zk) → e1 non-tangentially. Write

u(z) · ‖p− zk‖ = u0(Φ(zk))‖e1 − Φ(zk)‖ · ‖p− zk‖
‖e1 − Φ(zk)‖

.

Then

u0(Φ(zk)) · ‖e1 − Φ(zk)‖ =
1− ‖Φ(zk)‖2

|1− Φ1(zk)|
· ‖e1 − Φ(zk)‖
|1− Φ1(zk)|

and both these factors are bounded away from zero and infinity sinceΦ(zk) → e1 non-tangentially (see,e.g., [1,
Section 2.2.3]).

Now we examine the term ‖p−zk‖
‖e1−Φ(zk)‖ . First of all, sincezk → p, Φ(zk) → e1 non-tangentially then‖p−zk‖ ≈

d(zk, ∂D) and‖e1 − Φ(zk)‖ ≈ d(Φ(zk), ∂BN ), whered(·, ∂D) is the (euclidean) distance. By the boundary
localization estimates for the Kobayashi distance (see,e.g. [1]) we know that− log d(zk, ∂D) ≈ kD(z0, zk) for
anyz0 ∈ D fixed. Therefore, passing to the logarithm, we are left to show that there existc, C > 0 such that for
all k ∈ N
(6.4) −c < kD(z0, zk)− kBN (0,Φ(zk)) < C.

Now, zk = ϕvk
(ζk). Sinceϕvk

(0) → ϕv0(0) then the triangle inequality implies

|kD(ϕvk
(ζk), z0)− ω(0, ζk)| = |kD(ϕvk

(ζk), z0)− kD(ϕvk
(ζk), ϕvk

(0))| < const<∞.

Similarly, sinceΦ(zk) = ηvk
(ζk) we have thatkBN (0,Φ(zk)) ≈ ω(0, ζk) and thus (6.4) follows. �

Remark6.4. ¿From the proof of Theorem 6.3 it follows that the boundaries of horospheres are smooth strongly
pseudoconvex, actually strongly convex for big radii.

7. SOME APPLICATIONS

The first application is somehow a rephrasing of Theorem 6.3 in terms of the Busemann functions ofD. We
thank Stefano Trapani for explaining this point to us.

Proposition 7.1. LetD ⊂ CN be a bounded strongly convex domain with smooth boundary. Letu be the solution
of (6.2) in D given by Theorem 6.3. Letϕ : D → D be a complex geodesic such thatϕ(1) = p ∈ ∂D. LetBϕ be
the Busemann function ofϕ at p. Then for allz ∈ D it follows that

(7.1) Bϕ(z) = −1
2

(log |u(z)| − log |u(ϕ(0))|) .
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Proof. By the very definition, the level sets ofBϕ andu are the same. Therefore there existsβ : R → R such
that log |u(z)| = β(Bϕ(z)) for all z ∈ D. We are going to computeβ. By the very definition ofBϕ, we have
Bϕ(ϕ(−t)) = ω(0, t) for all t ∈ (0, 1). Thereforeβ(ω(0, t)) = log |u(ϕ(−t))|. Letϕv be the complex geodesic
defined in Section 3 such thatϕ = ϕv ◦ θ for some automorphismθ of D with θ(1) = 1. As shown in the proof
of Theorem 6.3 it follows that|u(ϕv(θ(ζ)))| = 1

v2
1
P (θ(ζ)) for all ζ ∈ D, whereP is the Poisson kernel inD.

By Lemma 2.1 it followsP (θ(ζ)) = αP (ζ) for someα > 0. In particular|u(ϕ(0))| = P (0)α/v2
1 = α/v2

1 .
Therefore, taking into account thatω(0, t) = 1

2 log 1+t
1−t , a direct computation shows thatβ(s) = −2s+ log(α/v2

1)
and formula (7.1) is proved. �

Remark7.2. Formula (7.1) can be used to relate the work of Trapani (see [21]) with our solutionu of the boundary
Monge-Amp̀ere equation. The story goes as follows. Forz ∈ D let ϕz : D → D be the unique complex geodesic

such thatϕz(1) = p andϕz(0) = z. Let vz = ∂ϕz(eiθ)
∂θ |θ=0. Thenvz ∈ Tp∂D. All the vectorsvz belong to the

same half-spaceDp of Tp∂D with respect to the decomposition of this one induced byTC
p ∂D. Let Θ be a real

linear form vanishing onTC
p ∂D and positive onDp. Any other such a form is multiple ofΘ by a positive constant.

DefineΨ : D → R as
Ψ(z) := −Θ(vz)

In [21, Theorem 4.1] it is proved thatBϕ(z) = 1
2 (log |Ψ(z)| − log |Ψ(0)|). Formula (7.1) implies then that

u(z) = C/Ψ(z) for someC ∈ R+ \ {0}.

As a second application we show that our solution of (6.2) can be used to characterize biholomorphisms, exactly
as the Poisson kernel characterizes automorphism of the unit discD. Indeed, Lemma 2.1 can be rephrased as:
f : D → D holomorphic,f(1) = 1 (in the sense of non-tangential limits) is an automorphism ofD if and only if
there existsλ ∈ R+ \ {0} such thatf∗(P (ζ)) = λP (ζ) for all ζ ∈ D (hereP is the Poisson kernel ofD).

Theorem 7.3. LetD,D′ ⊂ CN be bounded strongly convex domains with smooth boundary. Letp ∈ ∂D and
q ∈ ∂D′. Let uD (respectivelyuD′ ) be the solution of(6.2) in D (respectively inD′) given by Theorem 6.3.
LetF : D → D′ be holomorphic and assume thatF is continuous atp. ThenF is a biholomorphism such that
F (p) = q if and only if there existsλ ∈ R+ \ {0} such thatF ∗(uD′) = λuD.

Proof. If F is a biholomorphism such thatF (p) = q then it maps horospheres inD with centerp onto horospheres
in D′ with centerq. Let ϕ : D → D be a complex geodesic and setϕ′ := ϕ ◦ F , a complex geodesic forD′.
The biholomorphic invariance of the Kobayashi distance immediately yieldsBϕ(z) = Bϕ′(F (z)), whereBϕ is
the Busemann function ofϕ (and similarlyBϕ′ ). Proposition 7.1 then gives

|F ∗(uD′)| = |uD′(F (ϕ(0)))|
|u(ϕ(0))|

|uD|,

and the assertion follows because bothuD, uD′ are strictly negative.
Conversely, first we show that the hypothesisF ∗(uD′) = λuD implies thatF (p) = q. Indeed, let{zk} ⊂ D

be a sequence converging non-tangentially top. Up to extracting subsequences, we may assume that{F (zk)} is
converging tox ∈ D′. Now

(7.2) λuD(zk) = uD′(F (zk)),

therefore ifx 6= q it follows that the right-hand side of (7.2) stays bounded ask → ∞ while the left-hand side
diverges, which is impossible. ThusF has non-tangential limitq at p. The hypothesis thatF is continuous atp
implies then thatF (p) = q.

Secondly, the hypothesisF ∗(uD′) = λuD implies that forz ∈ D,R > 0 there existsa = a(z) > 0 such that

(7.3) F (∂ED(p, z,R)) ⊆ ∂ED′(q, F (z), aR).

Notice that, oncez is fixed,a is independent ofR > 0. Indeed, for allt < 0 it follows F−1(u−1
D′ (t)) = u−1

D (t/λ).
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Now, letϕ : D → D be a complex geodesic such thatϕ(1) = 1 and letz0 = ϕ(0). Let ψ : D → D′ be
a complex geodesic such thatψ(1) = q andψ(0) = F (z0) and letρ : D′ → ψ(D) be the associated Lempert
projection. Consider the holomorphic functionf : D → D defined asf(ζ) = ψ−1 ◦ ρ ◦ F ◦ ϕ(ζ). Thenf is
continuous at1 and clearlyf(1) = 1. We claim thatf is an automorphism ofD. To see this, thanks to Lemma 2.1,
it is enough to show that there existsα > 0 such that for allR > 0,

(7.4) f(ED(1, 0, R)) ⊆ ED(1, 0, αR),

and that there exists a pointζ0 ∈ ∂ED(1, 0, R) such thatf(ζ0) ∈ ∂ED(1, 0, αR) for someR > 0.
Let R > 0. By Remark 4.5, it followsϕ(∂ED(1, 0, R)) = ∂ED(p, z0, R) ∩ ϕ(D). Thus by (7.3), setting

α = a(z0),
F ◦ ϕ(∂ED(1, 0, R) \ {1}) ⊂ ∂ED′(q, F (z0), αR) ∩ F (ϕ(D \ {p})).

By (4.2) we have thatρ(∂ED′(q, F (z0), αR)) ⊂ ED(1, 0, αR) and thus (7.4) holds. It is then clear by construction
that0 ∈ ∂ED(1, 0, 1) andf(0) ∈ ∂ED(1, 0, α) and thusf is an automorphism ofD.

Next aim is to show thatF ◦ ϕ : D → D′ is a complex geodesic. For what we have just shown, it follows that
ρ ◦ F ◦ ϕ = ψ ◦ f : D → D′ is a complex geodesic. Thus for allζ1, ζ2 ∈ D

ω(ζ1, ζ2) = kD′(ρ(F (ϕ(ζ1))), ρ(F (ϕ(ζ2)))) ≤ kD′(F (ϕ(ζ1)), F (ϕ(ζ2))) ≤ ω(ζ1, ζ2),

which implieskD′(F (ϕ(ζ1)), F (ϕ(ζ2))) = ω(ζ1, ζ2) and thusF ◦ ϕ : D → D′ is a complex geodesic. Therefore
F maps complex geodesics onto complex geodesics.

To show thatF is injective we have only to show that ifϕ, η : D → D are complex geodesics such that
ϕ(1) = η(1) = p andϕ(D) ∩ η(D) = ∅ thenF (ϕ(D)) ∩ F (η(D)) = ∅. Suppose this is not the case. Since
F ◦ ϕ, F ◦ η : D → D′ are complex geodesics, thenF (ϕ(D)) ∩ F (η(D)) 6= ∅ impliesF (ϕ(D)) = F (η(D)). Let
ρa : D′ → D′ be the Lempert projection associated toh := F ◦ ϕ. Consider the holomorphic map̃ρ : D → D
defined as

ρ̃(z) := h−1 ◦ ρa ◦ F (z).
It is clear that̃ρ ◦ ϕ(ζ) = ζ for all ζ ∈ D. Thenρ̃ is the left-inverse ofϕ and, sincẽρ(η(D)) = D by construction,
by Remark 3.1 it followsϕ(D) = η(D), which is a contradiction.

It remains to show thatF is surjective. First, sinceD andD′ have the same dimension, it follows thatF (D)
is open. Assume thatF is not surjective and letw 6∈ F (D) be such thatw ∈ ∂F (D) ∩ D′. Then there exists
a sequence{zk} ⊂ D such thatF (zk) → w. Up to subsequences assume thatzk → z0 ∈ D. It is clear that
z0 ∈ ∂D for otherwiseF (z0) = w. Also, sinceF (p) = q thenz0 6= p. By hypothesisλuD(zk) = uD′(F (zk)).
But uD(zk) → uD(z0) = 0 while uD′(F (zk)) → uD′(w) < 0 ask →∞, giving a contradiction. �
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