MONGE-AMP ERE FOLIATIONS WITH SINGULARITIES AT THE BOUNDARY OF STRONGLY
CONVEX DOMAINS

FILIPPO BRACCI AND GIORGIO PATRIZIO

ABSTRACT. LetD C C¥ be a bounded strongly convex domain with smooth boundary. We consider a Mongaédmp

type equation inD with a simple pole at the boundary. Using the Lempert foliatioah extremal discs, we construct

a solutionu whose level sets are boundaries of horospheres. Among other things, we show that the biholomorphisms
between strongly convex domains are exactly those maps which preserves our solution.

1. INTRODUCTION

Let D ¢ C" be a bounded strongly convex domain with smooth boundary ang let D. In his amazing
work [15] Lempert constructs a solutidn: D — R to the Monge-Ampre equation

u plurisubharmonic inD,

(00u)N(z) =0, for z € D\ {20}
(1.2) du # 0,

u(z) =0for z € D

u(z) —log|lzo — 2| = O(1) as z — 2

In fact, Lempert proved that given a bounded strongly convex domatirwith smooth boundary, and fixed
a pointzy € D, for any pointz € D there exists a unique complex geodegic D — D, i.e., a holomorphic
isometry between (the Poincag metric inD) and the Kobayashi metriep, with ¢(0) = zy andy(t) = z for
a suitablet € (0,1) and such thap extends smoothly past the boundary. Furthermore the complex geodesic
discs through the point, provide a foliation ofD (singular atzy) which is exactly the foliation associated to the
plurisubharmonic solutiof of the complex Monge-Amgre equation (1.1).

It turns out that the solutio is the defining function for the balls centeredzinfor the Kobayashi distance.
This deep result establishes a surprising tie between intrinsic metrics and potential theory in higher dimension.
Lempert’s construction is the cornerstone for many impressive construction in several complex variables.

Later, suitably adapting and pushing further Lempert’s arguments, Abate [3] and Chang, Hu and Lee [10]
showed that existence and uniqueness for complex geodesic discs hold even if thg igahbsen at the boundary
of the domainD and the point is allowed to vary inD. In this case they show that there exists a complex geodesic
¢ : D — D which extends smoothly to the boundary and wigh= (1) andz in ¢(ID). The mapy is unique up
to composition of automorphisms of the unit disc and the parametrization may be chosen uniquely fixing suitable
extremal conditions at the point. It is natural to ask whether it is possible to interpret also in this case the
foliation of complex geodesics passing through the boundary pgias the foliation associated to a solution of
the complex homogeneous Monge-Agne equation. The main result of this work is to show that indeed this is
the case.

Heuristically, as in the unit disc the Green potential is replaced by the Poisson kernel when the pole goes to
the boundary and the type of singularity changes from a logarithmic to a simple singularity, even in our case, as
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D 3> zy — p € 0D, one can expect to replace the logarithmic singularity with a simple pole. Thus we introduce
and study the following Monge-Angwe equation with a singularity at a boundary peirgt 9 D:

u plurisubharmonic irD,
(00u)N =0,
(1.2) du # 0,
u(z) =0for z € 0D\ {p}
u(z) = ||p — z||~* as z — p non-tangentially

Where, for real or complex functionsgz), b(z), the symbola(z) =~ b(z) for = — p means that there exist
¢, C > 0 such that|b(z)| < |a(z)| < Clb(z)| for all z close enough tp.

Using the work of Chang, Hu and Lee [10], in Theorem 6.3, we show that (1.2) has a smooth solufion on
such that9du)N—1 # 0. Our solutionu is “natural” in the sense that its level sets are exactly the boundaries of the
horospheres of D atp. Horospheres are “limits of Kobayashi balls”, defined by Abate by means of the Kobayashi
distance or by means of Busemann functions (sge,[1], [2] and section 3) and they are one of the main tools in
the study of iteration theory.

Indeed, the construction of our solution to (1.2) is very much related to the understanding of geometrical prop-
erties of horospheres, which we study in details in section 4. Bland, Duchamp and Kalka in [6] (see also [18])
proved that a biholomorphism between two strongly convex domains is characterized by the property of being a
biholomorphism between any two Kobayashi balls of the same radius. As a spin off result, quite interesting by its
own, we show that the same property holds for horospheres (see section 4):

Theorem 1.1. Let D, D’ be bounded strongly convex domaingdf with smooth boundary. Theh is biholo-
morphic toD’ if and only if there exist a horospheré, C D with centerp € 9D, a horosphereEp, C D’ with
centerg € 9D’ and a biholomorphisn¥' : Ep — Ep. such thatF'(p) = ¢ (in the sense of non-tangential limits)
and the radius o', with respect to some € E, is equal to the radius of' . with respect taF'(z).

For the solution of the Monge-Angpe equation with logarithmic singularity at an internal point, the associated
Monge-Ampere foliation is a singular foliation (holomorphic if and only if the domain is biholomorphic to a
complete circular domain, the Kobayashi indicatrix at that point, see [19], [20]). If the foliation has singularity on
the boundary we show that the associated Monge-&mafoliation is actually a smooth fibration with bag& —*
and fiber the unit dis® (see Theorem 3.5).

Finally, we prove the following boundary Schwarz-type result:

Theorem 1.2. Let D, D’ ¢ C¥ be bounded strongly convex domains with smooth boundaryp ke®D and
q € OD'. Letup (respectivelyup/) be the solution of(1.2) in D (respectively inD’). LetF : D — D’ be
holomorphic and assume thatis continuous ap. ThenF' is a biholomorphism such th&(p) = ¢ if and only if
there exists\ € Rt \ {0} such thatF'* (up/) = Aup.

The plan of the paper is as follows. In Section 2 we recall some preliminary classical results in the unit disc, as
needed for our aim. In Section 3 we discuss the results of Chang-Hu-Lee in terms of “MongeeAiuifations”
showing that actually the foliation in complex geodesics centered=ab D is a fibration. In Section 4 we intro-
duce horospheres and prove some technical lemmas about them. In Section 5 we discuss mappings of horospheres
onto horospheres and prove Theorem 1.1. In Section 6 we construct the solution of (1.2). Finally, in Section 7 we
relate our work with Busemann functions and prove Theorem 1.2.

We conclude this introduction remarking that the smoothness required for the boun8@argah be lowered up
to C*, k > 14 as in [10] (see also [14] where it is shown that actuéllyis enough for much of the construction).
Also, instead of working with strongly convex domains one could work witlatly linearly convex domains.
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2. PRELIMINARY ON THE JULIA-WOLFF-CARATHEODORY THEOREMS

In the sequel we will use several times the classical Julia Lemma, Wolff Lemma and Julia-Wolff &ai@rtj
Theorem. For the reader convenience we state here such theorems (in the form we need) and refer to the book [1]
for proofs. Also, we state and prove a corollary of the Julia-Wolff-Cdatlory Theorem we will need later.

As a matter of notation, iD is a domain inC™ and{z;} C D is a sequence which convergeste 9D, we
say thatz;, — p non-tangentially if there exists a constant> 0 such that, fokc — oo,

Iz — pl| < c-dist(zx, dD).

Let P(¢) = (1 — [¢]?)(J]1 — ¢[*)~! be the Poisson kernel in the unit difc:= {¢ € C : [¢| < 1}. The
horosphere oéenter 1, pole 0 and radiusk > 0 is given byEp (1,0, R) := {¢ € D : P(¢) > 1/R} (we refer to
Heins [12] for explanations and developments of the relations between horospheres and Poisson kernel).

The first result we recall is a simple consequence of Julia’s Lemma:

Lemma 2.1. Let f : D — D be holomorphic. Suppose there exists (0, +oo) such that for allR > 0
f(En(1,0,R)) C Ep(1,0,aR),

and suppose there existg > 0 and( € 0Ep(1,0, Ry) such thatf(¢) € 0Ep(1,0,aRy). Thenf is an
automorphism off).

Conversely, iff is an automorphism ob such thatf(1) = 1, then there exista&x € (0,+o00) such that
f(Ep(1,0,R)) = Ep(1,0,aR) forall R > 0.

Let w denote the Poincéardistance o). By the very definitionw (¢, ) = %log % whereT¢, is
1 2

any automorphism o mapping¢; to 0. For f : D — D holomorphic such thaf(1) = 1 (in the sense of
non-tangential limits) we let

Lo ol 1= f(Q)]
5 log f1(1) = llgn;{lf[w(O,C) w(0, f(¢))] = lim inf 5 log —— o
Then we have
Theorem 2.2(Julia-Wolff-Caratteodory) Let f : D — D be holomorphic and such thg@{1) = 1 (in the sense of
non-tangential limits). Assume th#t(1) < oo. Then
(1) limgs,_1-[w(0,7) — w(0, f(r))] = limps,_1- %log W = %log (D).
(2) The function] — %&Q has limit /(1) for ¢ — 1 non-tangentially.
(3) The functionf’(¢) has limit /(1) for { — 1 non-tangentially.
Also we have the following boundary Schwarz-type lemma, due in this form to Herzig [13] (see also [10,
Lemma 2]):

Theorem 2.3(Herzig). Let f : D — D be holomorphic and such thgt{1) = 1 (in the sense of non-tangential
limits). If f(0) = 0thenf’(1) > 1 unlessf(¢) = ¢ forall { € D.

Now we state and prove a corollary which will be used later.

Lemma2.4. Letf : Ep(1,0, R) — D be holomorphicR > 0. Supposéimg-,—.1 f(r) =1 and
1—|f(r)|

R3r—1— 1—1r
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Then for any sequendg,,} C Ep(1,0, R) which converges radially to, i.e., such thafl — ¢,,|/(1 — |(,]) — 1
asn — oo, it follows

lim ——* = qa.
n—o0 1 — |Gl
Proof. Let R > 0andg := fofr : D — D, where&R is defined by
1+ R¢
2.1 N il
(2.1) Or(C) =7 TR
Note thatdg(r) € Rif r € [0,1). Then
b L=leWl L 1= |f0R() 1=0() _ R
Ror—1- 1—r Ror—1- 1 —0g(r) 1—r R+1
Namely, by the Julia-Wolff-Caraéfodory Theorem 2.2.(1),
. - aR
(2.2) gt [w(0,7) = w(0,g(r))] = 3 log ==

Lett, := 0, ((,)- Then for allr € (0,1) it follows
w(0,tn) = w(0,9(tn)) = w(0,tp) + w(r,tn) — w(0,7) + w(0,7) — w(r, tn) —w(0,g(tn))
(2.3) S w(0,tn) + w(r,tn) —w(0,7) +w(0,7) — w(g(r), g(tn)) — w(0,g(tn))
< [w(0,tn) + w(r, tn) —w(0,r)] + [w(0,7) — w(0,9(r))],

where we used that(g(r), g(t)) < w(r, t,) and the triangle inequality Taking into account that forzadl D

lim [w(z, w) = w(0, )] + w(0, 2) = 1 og 1L _|Z:
if we letr — 1in (2.3), by (2.2) we get
3 |1 —t,] 1 aR

By hypothesis;,, — 1 radially. Since(d;"')'(1) € R it follows thattn converges td radially as well. Therefore
the right-hand side of (2.4) tends gdog Ig—fl asn — oo. Recalling Theorem 2.2.(1) and (2.2), we see that the
left-hand side of (2.4) tends to the same limitas- co. Furthermore,

1 - n 1-— n 1 R n
Jim [w(0,25) = w(0,9(t0))] = 10%,}520 1 _|f|(§|) 1 9—|1<(< T2 R nlinio 1 —fI(CC)| ’
n — VR n "

from which the statement follows. O

3. MONGE-AMPERE FOLIATION AT THE BOUNDARY

Let D be a bounded strongly convex domainGA” with smooth boundary. By Lempert’s work (see [15] and
[1]), adapted by Abate (see [3]) and Chang, Hu and Lee (see [10]) given anyzpaind there exists a unique
complex geodesip : D — D, i.e, a holomorphic isometry between(the Poincaé metric inD) andkp (the
Kobayashi distance i), such thatp extends smoothly past the boundas{)) = zo andp(t) = 2z, witht € (0, 1)
if z € Dandt = 1if z € 9D. Moreover for any such complex geodesic there exists a holomorphic retraction
p: D — ¢(D),i.e, pisaholomorphic self-map dP such thap o p = p andp(z) = z foranyz € p(D). We call
such gp the Lempert projectiorassociated te. Furthermore we lef := ! o p and call it theleft inverse of ¢,
for g o p = Idp. The triple(y, p, p) is the so-called.empert projection device

As we remarked for instanca [8, p. 145] the maps, p are unique only up to “parametrizationi.€;, if
0 € Aut(D) theny o § is a complex geodesic amid ! o ¢ is the associated left-inverse) whjdds unique (that is,
depends only on the imaggD)).
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Remark3.1 Assumep : D — D is a complex geodesic and Igt: D — D be the its left inverse. By [17,
Proposition 1 p. 345] it follows thai(D \ ¢(dD)) C D. In particular, ify : D — D is a complex geodesic such
thatp(n(D)) = D or, equivalentlyp(n(D)) = ¢(D) (wherep : D — D is the Lempert projection associated4p
thenn(D) = (D).

With an abuse of notation, we call “complex geodesic” also the image of a complex gegddBie~ D. We
let 7, denote the foliation of> defined by all the complex geodesics whose closure contandD. Thus an
elementG € F, is just a one-dimensional holomorphic retract/of We call 7,, a (boundary)Monge-Ampére
foliation.

Proposition 3.2. Let D be a bounded strongly convex domaindf with smooth boundary. Lat € 9D. Then
F. is a smooth foliation oD whose leaves are complex geodesic®of

Proof. Let z € D. We are going to show that there exists a open suldset D containingz and a smooth map
h:V,+— U, xD c CN~! x D which trivializesF, N V. ; namely, for allw € U, the mapD > ¢ +— h~!(w, () is

a leaf of 7. This is essentially the content of [10, Theorem 3]. However, for the reader convenience, we give here
a proof using a different choice of coordinates. We proceed this way lbet the complex geodesic containing

and letp, : D — G be the associated Lempert's projection. By [15, Proposition 9 ] (see also [17, Proposition 11])
we can assume that = D x {(0,...,0)}, thatz = (0,...,0) and thappc((z1, . . ., z5)) = (21,0, ...,0). LetV,

be a small ball centered at= (0,...,0). We letU” := V, N p5*(2). ThenU’ = {0} x U, with U, an open ball

in CN—! centered af. Itis clear that ifi/, is small enough thefi’ is anN — 1 complex affine manifold transverse

to F,.. Now let. A, C F, be the set of one dimensional holomorphic retracts which intetgediVe set

v..= | G
GeA,

The setV/, is open inD. This follows at once from the fact that the space of (the closure of) one dimensional
holomorphic retracts ab with, for instance, the topology of uniform convergence on compacta is homeomorphic
to the space of (the closure of) complex geodesic sets endowed with the Hausdorff topology of compacta of
(see [8, Lemma 5.3]). However this will also follawfortiori from the fact that’, is the homeomorphic image of
U, x D.

Now we defineh : V, — U, x D as follows. For anyw € U, we lety,, : D — D be the unique complex
geodesic such that,,(0) = w andy,, (1) = z. Thus, ifu € V, thenu = ¢,,(¢) for a uniquew € U, and a unique
¢ € D. Therefore we set

V.2 uwr h(u) = (w,{) €U, x D,

where, with some abuse of notation we ealboth the element df’, and its projection td/,. We claim thath is
a smooth diffeomorphism with inverse

U. x D= h™H(w, () := pu(() € V.

Since any complex geodesic parameterizindD) is obtain by pre-composing with automorphism$othen we
can use [10, Proposition 5] (see also the argument at [10, p. 369] and [15, pp. 460-461]) to shioyi tHadre
smooth. O

¢ From the proof of Proposition 3.2 it follows that the local trivializing coordin&tes ) € U, x D introduced
are holomorphic ir, and thus they aredapted in the sense of [6]. Thus, using [6, Lemma 3.2] and arguing as at
[6, p. 27] we have the following lemma which will be useful later:

Lemma 3.3. Let D, D’ be bounded strongly convex domains with smooth boundWi.nLetge 0D and letU
be an open subset @ intersecting each leaf of the boundary Monge-&neffoliation7,,. LetF : D — D’ be a
smooth C' is enough) map such that

(1) F is holomorphic orl,
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(2) for any ¢ : D — D complex geodesic such thatD) € F, the mapD > ¢ — F(¢(¢)) € D' is
holomorphic.

ThenF is holomorphic onD.

Using the boundary spherical representation of Chang, Hu and Lee (see [10, Theorem 3]) one can refine Propo-
sition 3.2 in order to obtain “global coordinates” adapted to the boundary Mongeefenfigliation. For the reader
convenience and since it will be useful later, we recall here the Chang, Hu and Lee construction as needed for our
aim. Letp € 9D and, up to rigid transformation, assume that the unit normal vectorBoatp ise; = (1,...,0).

LetL, := {v = (v1,...,v,) € CV|||lv|| = 1,01 > 0}. Foranyv € L, the mapp, : D3 ( —e; + (( — Dvvis

a complex geodesic &, 1, (1) = e; andn/,(1) = vyv. In [10] Chang, Hu and Lee prove that one can perform a
unique choice of a complex geodesig : D — D such thatp(1) = p andy’(1) = v;v imposing an extremality
condition on the second derivative pfat 1 (we do not state here such a condition since we do not need it). Then
the map® : D — BY is defined as follows:

(I)(z) =e1+ (Cz - 1)'01'U,

where(, € D andv € L, are the unique data such that(¢{,) = z. The map® is a smooth diffeomorphism
whose inverse is easily seen to be

(I)_l(w) = u(Cw)s
where¢,, € D andv € L, are the unique data such that= 7,({,,). Moreover®, ! extend continuously up to
the boundary. For future reference, we note here the following fact:

Remark3.4. For anyv € L, it follows that® o ¢, = 7,. Now, lety : D — D be a complex geodesic such that
©(1) = p. Then there exists € L, and an automorphis#h: D — D with #(1) = 1 such thatp = ¢, o 6. Notice
thatd’(1) > 0. Therefore, denoting by, -) the standard Hermitian product@",

(¢'(1),e1) = 0'(1){pu(1),e1) = 070 (1) = 0" (1)((® 0 9u) (1), e1) = (@ 0 p)' (1), c1).

In particular it follows that® is holomorphic on the leaves of the boundary Monge-&repfoliation, and
sends leaves of,, onto leaves of.,, the Monge-Ampre foliation ofBY ate; .
Using the spherical representation of Chang, Hu and Lee we can prove the following result:

Theorem 3.5. Let D be a bounded strongly convex domairf with smooth boundary. Lat € dD. ThenF,
is a smooth fibration ob ontoCN ~! with fiberD.

Proof. Since the boundary spherical representafionD — B~ sends the boundary Monge-Ame foliationF,

to the boundary Monge-Angpe foliationg., of the ballBY (heree; = (1,0, ...,0)), itis enough to show that the
foliation G., is a fibration ofBY. Write the ball as the upper Siegel plafi& = {(z,w) € Cx CN"1:Imz >
|w||?} using a biholomorphic transformation which serggo co. We claim that the boundary Monge-Aene
foliation of HY atcc is given byG., = {w = const. Indeed,{w = 0} is clearly a complex geodesic. The others
can be found by translating this by means of parabolic automorphisf$’ dixing oo, giving the claim. Then
G is clearly a (holomorphic) fibration of™Y—! with fiber (biholomorphic to)D. O

In the previous proof we showed that the boundary Monge-@mfoliationgG,, is actually holomorphic if* .
Also, note that the fibratiog,, is smoothly equivalent to the produet¥ —! x D but it is clearly not holomorphically
equivalent to it. It would be interesting to characterize those domains for which the boundary MongeeAmp
foliation is a holomorphic fibration.

4. HOROSPHERES

Let D be a strongly convex bounded domainGff with smooth boundary. Let, € D. We denote by:p the
Kobayashi distance i®. Following Abate [1], [2] we give the following
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Definition 4.1. A horosphere Ep(x, zo, R) of centerz € 9D, polez, and radius® > 0 is defined as
1
(4.2) Ep(z,2z0,R) :={z € D : lim [kp(z,w) — kp(z0,w)] < B log R}.

It is a feature of strongly convex domain (seez., [1, Theorem 2.6.47]) that the limit definingp (x, 2o, R)
actually does exist.

Remark4.2 It is known after Abate (se&orollary 2.6.49 in [1] and [2]) that the horospheres of centee 0D
are convex subsets @f, smooth and strongly convex at

If D = D the unit disc inC then

1-¢P

E]D)(170’R):{C€]D 1_|<|2

< R}

is a disc of radius?/(R + 1) tangent tdD at 1.

Remarlk4.3. 1t should be noted that there is another (equivalent) way of defining horospheres, namely by means of
the Busemann functions as follows (see [9], [5] and [21]). Let : D — D be a complex geodesig(1) = p € dD.

Let s be the arc length parameter of the real geodBsics ¢ — o(t) (thuss(t) = 4 log % = w(0,t)). Let

z € D. The functiorkp(z, ¢(s))—sis decreasing in and, by the triangle inequality, itis boundedy(z, ¢ (0)).

Thus the limit fors — oo does exist. We let

By(z) := lim [kp(z,¢(s)) - s] = lim[kp(2, (t)) — kp(p(0), ¢(t))] = lim[kp (=, ¢(t)) — w(0,1)],

the Busemann function of ~ atp. By construction it follows at once that the fetc D : B, (z) <  log R} is the
horosphere oD centered ap(1) = p with pole(0) and radiusk > 0.

Lemma 4.4. LetG € F,. Then for allR > 0 it follows thatG N Ep(x, 20, R) is a complex geodesic of
ED(x, 20, R)

Proof. Fix R > 0. Letpg : D — G be the Lempert projection associated*oThen we claim that
4.2) pc(Ep(z, 20, R)) = Ep(x, 20, R) N G.

Indeed, letpe : D — D be a parametrization fof such thatps(1) = z. Sincepg o vg = ¢q, If z €
Ep(zx, 2z, R) we have

Jim [kp(pe(2), w) = kp (20, w)] = lim[kp(pc(2), pa(ea(r))) = kp(z0, 0a(r))]
(4.3) ) 1
< lim[kp (2,96 (1) = kp(z0,96(r))] < 5 log R.

Thereforeps(z) € Ep(x, 29, R) N G. This means thaEp(z, 20, R) N G is a (one-dimensional) holomorphic
retract of Ep(x, zo, R) whose closure contains. By [22, Theome 2.3] it follows thatEp (z, zo, R) N G is
actually a complex geodesic. O

Remarkd.5. Let Ep(p, z0, R) be a horosphere if. Let G be a complex geodesic fdp such that:y € G and
let ¢ : D — D be a parametrization such that, (1) = p, ¢ (0) = 2. Lettingw = pg(r) forr — 1in (4.1)
one easily sees that; (Ep(1,0, R)) = Ep(p, 20, R) N G. Letfg be as in (2.1). Thefir(D) = Ep(1,0, R) and
polbr:D— GNEp(p, 20, R) is a parametrization of the complex geode&sic\ Ep (p, zo, R) of Ep(p, 2o, R).

Now we see how the radius of the horosphere changes when changing the pgles B0 and letz; € D.
Set

(4.4) %log 7(z1) = iiglp[kD(Zo, w) — kp(z1,w)].
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Then

(4.5) Ep(p, 20, R) = Ep(p, 21, R - r(21)).
Indeed,
kp(z,w) — kp(z1,w) = [kp(z,w) — kp (20, w)] + [kp (20, w) — kp (21, w)],
and since the limit forv — p exists then we have (4.5).
In particular for any complex geodesic: D — D such thatp(1) = p it follows that

(P(ED(L 0,R- T((p(O)))) = (p(]D) NEp (p’ 20, R)
As a final result of this section, we obtain a technical lemma which will be useful in the sequel.

Lemma 4.6. Let Ep := Ep(p, 20, R) be a horosphere itD with zy € Ep,ie, R > 1. Letp : D — D be a
complex geodesic such thatl) = p and(0) € Ep. Then

. 1 R-1

Raligll_ [kD(ZO7 90(7‘)) - kED (207 QP(TD] = 5 IOg R .

Proof. Lety, : D — D be the complex geodesic such thgf0) = z, with ¢, (1) = p and letp, be the associated
Lempert projection. By [7, Proposition 3.4] it follows that
(4.6) Llim kp(e(r), po((r))) =0,

namely, in the terminology of [1], the cun® > r — ¢(r) is special with respect to the projection,. In the proof
of [7, Proposition 3.4] it is actually shown that the curve- ¢(r) belongs eventually to any bdll contained in
D and tangent t&@D atp and that

_ 2
p o) = poleDIP _
rRor—1 dist(p,((r)), D)

This condition, together with the fact that— p,(p(r)) tends top non-tangentially inD (and then irB), guaran-
tees thalimgs,.—1 kg (¢(7), po((r))) = 0 (see [4] and [1, Proposition 2.7.10]). Singk, is strongly convex at

p (see Remark 4.2), there exiftsC Fp tangent tad D atp. Therefore
lim kg, (@(r), po(e(r)) < lim kg(o(r), po(e(r))) = 0.
Sr—1 Ror—1

R
Now, p o 0, : D — D is a complex geodesic iR (herefg, is defined in (2.1) and?; = Rr(¢(0))) and
by (4.2) the map, : Ep — Ep is a holomorphic retraction, then
(47) Rgggl kED ((,9(7”), pO(QD(T'))) = R§7¥21 kED (@ 0 031 0 9]_%11 (T)v Po © PO 0R1 ° 0}_%11 (T))) =0.

Therefore we can write

kp(z0,(r)) = kup (20, (1)) = [kp (20, po © (1)) = krp (20, po © ¢(r))]
+ [kp (20, £(r)) — kp(20, po 0 9(7))] = [FEp (20, 9(7)) — KBy (20, po 0 0(7))]-
Since by (4.6),
lim [k (20, (7)) = kb (20, po 0 2(r))| < lim kp((r), po(p(r)) = 0,
and similarly forkg,, (z0, (1)) — ke, (20, po © ©(1)), then
im [k (z0.0(r) — ki (0, 0(0)] = lim_[kp (20, p0 0 @(r) = ki (20, p0 0 (1))
Let7(¢) := ¢, op,0¢(¢). Thenr : D — D is holomorphic, smooth dtandr(1) = 1. Henced < |7/(1)| < oo
and the classical Julia-Wolff-Cara@bdory Theorem 2.2 implies
[1—7(r)| i [1—7(r)] 1—r7 1

=IO g =t

I - :
woroi- 1 [r(r)|  mormi- 1—7  1—[r(r)]
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Therefore the curv® > r — 7(r) converges radially ta.
Forr € (0,1),
kp (20, po 0 @(r)) = kEp (20, Po 0 ©(1))
= kp(90(0),00(7(r))) — ki (20 © O 0 051 (0), 00 0 O 0 7 (7(r)))
= w(0,7(r)) — w(0z'(0), 8" (7(r))).
Using the explicit form ofv, it follows that

; - _ 1 1—|®ohzt
(4.8) Dgcril[w(o’ ¢) = w(0R'(0), 05 ()] = %lgi 2 log W’

whered(¢) = (C—05"(0))/(1—0z"(0)¢). Nowdo6," : Ep(1,0, R) — D is holomorphic and o6, (1) = 1.
A direct calculation shows that
. -1 . -1
lim 1—[®ofby (r) —  lim 1—®ob, (r)
R3r—1-— 1—r R3r—1— 1—r
SinceR > r — 7(r) converges radially té, by Lemma 2.4 it follows that

— _1 j—
lim 1—|®oby ((r))] _ R 17
Rr—1- 1—|7(r)] R

and from (4.8) we get the assertion. O

R—-1

= (P00 (¢)|c=1 = R

5. MAPPING HOROSPHERES ONTO HOROSPHERES

Let D, D’ be two strongly convex bounded domaingdff with smooth boundary. Let € 9D andq € 90D'.
We are going to study biholomorphisms betwden(p, zo, Ro) and Ep/(q, 2}, Rj) such thap is mapped (in the
non-tangential sense) to First of all we give the following

Example 5.1. Let g : D — Ep(1,0,R) C D be defined by (2.1). LeR’ > 0. Thenfg is a biholomorphism
betweenFEp (1,0, R') andfr(Ep(1,0, R')) which is a horosphere d. Moreoverfz(1) = 1. However clearly
0r does not extend to a biholomorphism frd@hto D.

The problem with the previous example is that the corresponding horospheres have “different radii” as we
explain in the following remark.

Remark5.2 Let F : D — D’ be a biholomorphism between bounded strongly convex domains with smooth
boundary. Lejp € 9D. ThenF has non-tangential limig at p for someq € 9D’. This is pretty well known,
actually F' extends smoothly o nearp (see [11] or [15, section 10]). Ldf, be a horosphere of centgrand
radiusR > 0 with respect to some polg € Ep. ThenF(E)p) is the horospher&, of centerg and radiusRk

with respect to the polé'(z;). Indeed for any: € D we have

dim [kp (2, w) = kp(z1, w)] = lim [kp/(F(2), F(w)) = kpr (F(21), F(w))]
= lim [kp/ (F(2),w") — kp/(F(z1),w")].
w’'—q
Let Ep := Ep(p, z0, Ro) andEp: := Ep.(q, 2, R{,) be two horospheres dp, D’ respectively. Assume that
z0 € Ep andz € Ep,. Forz € Ep denote byR(z) the radius ofEp with pole z, namely:
ED(pa 20, RO) = ED(pa Z, R(Z))7

and similarly forz’ € Ep.. LetF : Ep — Eps be a biholomorphism such th#t(p) = ¢ (in the sense of
non-tangential limits) an@'(zy) = z{. As we have seen, the radius of a horosphere depends on the choice of its
pole. Itis not clear a priori that iRy = R thenR(z) = R(F(z)) for all z € Ep, unlessF is already known to

be a biholomorphism betwedn andD’. This is however true, as we are going to show.
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Lemma 5.3. Let D, D’ be two strongly convex domains with smooth boundarg 0D andq € 90D’. Let
Ep := Ep(p, 20, Ro) and Ep: := Ep/(q, #,, R},) be two horospheres dp, D’ respectively. Let' : Ep — Ep,
be a biholomorphism. IRy = R{, then for allz € Ep it follows R(z) = R(F(z)).

Proof. In (4.5) we saw thafR?y, = R(z)/r(z) for all z € D, wherer(z) is defined in (4.4). Similarlyr{, =
R(F(z))/r(F(z)). SinceRy = R, we have

R(z) _ R(F(2))
r(z)  r(F(2)
Now we compute(z). Lety : D — D be a complex geodesic such thaf0) = z and¢(1) = p. Then by
Lemma 4.6

(5.1) forall z € Ep.

5 l0gr(2) = limn [kp (a0, w) — k(2 w)] = i [kp (a0, 9(r)) — kp (2, ()] =

Sr—1
= _lim_[kp(z0,9() — kip (20, 9(r)] + lim [k, (z0,0(r) = ki (2, 0(r)]
= b (2. 9(r)) — ki (5 9(1))] = 3 log “% + Slog iy () — 5 log R(Rz)l
_L g BF2 = 1)
2 ° Ro(R(z) — 1)

SinceF is a biholomorphism, then it is an isometry betwégy, andk g, . Thus (takingw — p non-tangentially)

TEp(2).

1 .
3 logrg, (z) = lim [kg, (20, w) — kg, (2, w)]

w—p

= lim [k, (F(20). F(w)) = by, (F(), F(w))] = 5 0875, (F(2)).
Therefore, taking into account th& = R/, we have
Ro(R(z) - 1)
_REE)Ro-1)
T(F(Z)) - Ro(R(F(Z)) . 1) ED( )
Substituting these into (5.1) we hai&z) = R(F(z)) as wanted. O

TEp (Z)a

Now we are in a good shape for stating and proving the following result:

Theorem 5.4. Let D, D’ be bounded strongly convex domainsdfl with smooth boundary. Theh is biholo-
morphic toD’ if and only if there exist a horospheré, C D with centerp € 9D, a horosphereEp, C D’ with
centerg € 9D’ and a biholomorphisn¥' : Ep — Ep. such thatF'(p) = ¢ (in the sense of non-tangential limits)
and the radius o', with respect to some € E, is equal to the radius oF' . with respect taF'(z).

Proof. One direction follows from Remark 5.2. As for the other direction, thanks to Lemma 3.3, we have just to
show that there exist&8 : D — D’ smooth such that
(1) F(z) = F(z)forall z € Ep.
(2) ¢ — F(¢(¢)) is holomorphic for allp : D — D complex geodesics such thatl) = p.
We are going to definé” as follows. Lety, : D — D be a complex geodesic as in section 3 (in particular given
z € D there exist a unique € CV and a unique, € D such thatp,(¢) = 2). ThenGg, = ¢,(D) N Ep
is a complex geodesic iftp by Lemma 4.4. Thud'(Gg,) is a complex geodesic iftp. Lett > 0 be
such thatp,(t) € Ep. Letypq) : D — D’ be the unique complex geodesic such that, (1) = ¢ and
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YR (t) = F(py(t)). Again by Lemma 4.4, it is not too difficult to see that.(,, is independent of the point
t > 0 chosen to define it (with the property thaj(t) € Ep). We let

F(QDU(C)) = PF(v) (C)

Notice thatF is well-defined by the uniqueness of the's. Also, by definition, property (2) follows, and, since
the boundary Monge-Angge foliations¥,,, 7; are smooth by Proposition 3.2 aifdis holomorphic, therf” is
smooth.

We have only to show thaf(z) = F(z) for all z € Ep. To see this, let € Ep and lety, : D — D be a
complex geodesic such thate ¢, (D). We can writeEp = Ep(p, ¢,(0),r) for somer > 0. By Lemma 5.3
thenEp = Ep/(q, F(p,(0)),r). Letd, : D — Ep(1,0,r) be defined as in (2.1). By Remark 4.5 it follows that
vy, 06, : D — Ep is a complex geodesic df, containingz and thenF o ¢, 0 6, : D — E’, is a complex
geodesic offp: containingF(z). Now, again by Remark 4.5 it follows thatz(,) o 6, : D — Ep: is a complex
geodesic containing’(z). We are then left to show that for glle D

Fo Py © 9r(<) = PF()° er(C)
But this is clear for they both mapto ¢ andd,-*(0) to the same poink'(y,,(0)). Thus (1) holds. O

6. PLURISUBHARMONIC SOLUTIONS TO THE BOUNDARYM ONGE-AMPERE EQUATION

The aim of this section is to study the solution of the complex Monge-@mmpquation. : D — R such that
du # 0, (00u)N = 0 andu is harmonic on each leaf of the boundary Monge-A&mpfoliation at a given point
p € ID.

We begin with the following proposition, maybe interesting by its own.

Proposition 6.1. Let D, D’ be bounded strongly convex domainsGff with smooth boundaryy € 9D and
g € 0D'. Let® : D — D' be a smooth diffeomorphism, such tiahas non-tangential limig at p. Suppose that
® respects the boundary Monge-Agng foliations ofD at p and D’ at ¢, namely

(1) ® maps leaves af,, onto leaves ofr, and it is a holomorphic Kobayashi-isometry on each leaf,
(2) for any complex geodesjc: D — D such thatp(1) = p, it follows that

(' (1),mp) = (2 o) (1),my),
wheren,, (respectivelyr;) denotes the outer unit normal &0 at p (respectively t@)D’ at g).
ThenF maps horospheres @ with centerp onto horospheres adb’ with centerg.

The second condition o® means thatb cannot “squeeze” the complex geodesics. Note that by the first
condition,® o ¢ extends smoothly ol and thus it makes sense to consiffero ¢)’(1).

Proof of Prop. 6.1.Let Ep = Ep(p, 20, R(%0)) be a horosphere in. We claim that
(6.1) ®(Ep(p; 20, R(20))) = Ep/(q, ®(20), R(20)) =: Epr.

Lety : D — D be a complex geodesic such thdtl) = p. Letz = ¢(0). If we write Ep = Ep(p, z, R(2)) then
©(Ep(1,0, R(2))) = ¢(D) N Ep. By hypothesis (1% o ¢ : D — D’ is a complex geodesic ify’. Thus® o
extends smoothly pa#D and sinceP has non-tangential limij atp then®(p(1)) = q.

Therefore, to show thak(Ep) = Ep is equivalent to proving thab(Ep N (D)) = Ep: N ®(¢(D)) for any
complex geodesig : D — D such thatp(1) = p.

Thus we have to show that

P(p(En(1,0, R(2)))) = Ep(q, ®(2), R(®(2))) N (P 0 (D).
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In other words it is enough to show th&tz) = R(®(z)) for all z € D. By constructionR(zy) = R(®(z¢)) and
by (4.5) we are left to show tha(z) = r(®(z)) for all z € D. Now, lety : D — D be a complex geodesic such
thaty(0) = zp andy(1) = p. Then

%logr(z) = &)ig}j[k‘p(zo,w) —kp(z,w)] = lim [w(0,r) — kp(z,¢(r))]

R3r—1
= i [k (80 9(0), ® 0 6(r) — kp(9(2), @ 0 ()] + lim_[kpe(8(2), @ 0 6(r)) — k(2. 0(r))]
= Jlogr(@(2) + lim [kp/(9(2), @ 0 0(r)) — kp (= 9(r)]

The assertion follows as soon as we prove that the limit in the last line of the previous formula is egu@bto
see this, let) : D — D be the complex geodesic such thdtl) = p andy(0) = 2. Letp : D — D be the
Lempert projection associated #toandp’ : D’ — D’ be the Lempert projection associatedde ). By the
triangle inequality and (4.6)

lim [[kpr(®(2), @ 0 (1)) = kpr ((2), p" 0 Do p(r))| + [kp (2, ¢(r)) = kp(2, p 0 @(r))]]
< 1imfkpr (@ 0 p(r), o' 0 ® 0 (1)) + kp(p(r), p o ()] = 0.
Thus, from the very definition ab, it follows that

lim [kp:(®(2), ® o p(r)) —kp(z,¢(r)] = _lim [kp(®(2),p" 0 ®o@(r)) —kp(z,po o(r))]

R3r—1 R3r—1
. o _ .1 1— |~ topop(r)
_ 1og—1,,/ 1 _ 2
= Rgrm 1[cu(O, YT oD op oPoyp(r))—w(0,9 ™ opop(r))] = R%lgn '3 log o TodTopodop()

By the classical Julia-Wolff-Caragtodory Theorem 2.2 and [1, Lemma 2.6.44] (or see [4]) it follows that

R5r—1 2 1—|p~todlop oDoy(r) Rar—12 1—r
_ —1 —1 / / ) / 1 /
i Ligg LT o @ o0 Bopn] |1, (e (Duny) ((204) (D)
Ror—1 2 L—r 27 (@ (1),np) (®op)(1),ng)
which is0 by hypothesis (2). d

By Remark 3.4 we have the following result:

Corollary 6.2. The boundary spherical representatién: D — B~ maps horospheres db onto horospheres
of BV,

Starting from this result we can solve the Monge-Asrgequation at the boundary.
Theorem 6.3. Let D be a bounded strongly convex domaindf with smooth boundary and letc 9D. The
Monge-Ampre equation
u plurisubharmonic inD,
(0ou)N =0,
(6.2) du # 0,
u(z) =0for z € 0D\ {p}
u(z) ~ ||p — z||~* as z — p non-tangentially

has a solution: € C*°(D) such thatu(z) < 0 for all z € D and(99u)V~! # 0. Moreover the level sets afare
boundaries of the horospheres bfwith centerp.
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Proof. First assumeéd = BY andp = e;. Then we consider
I I

‘1 —z21 |2 ’
A straightforward calculation shows thag is actually a solution of the boundary Monge-Aémnp equation (6.2).
Moreover by [1, Proposition 2.2.20] (see also [2]) it follows th&tv (e, 0, R) = {uo(z) < —1/R} and thus the
level sets ofuy are exactly the boundary of the horospheres centered &hese horospheres are strongly convex.

Let P(¢) = (1 — [¢|?)/(|]1 — ¢|?) be the Poisson kernel id. Then the se{P(¢) > 1/R} is the horosphere of
centerl and radiusk > 0 of D. A simple calculation shows

g 01y (C) = —U?P(C),

wherev € L., andn, is defined in the third section. Thug is harmonic on the leaves of the boundary Monge-
Ampere foliationg,, . Now, for a strongly convex domaiR, define

ug(z) :=

u = ug o P,

where® : D — BY is the boundary spherical representation of Chang, Hu and Lee. Tke@° (D), du # 0
andu(z) = 0for z € 9D \ {p}. Sinced is holomorphic on the leaves of the boundary Monge-&negfoliation
thenw is harmonic on such leaves. Moreover, by Corollary 6.2 it follows that the level setaref the boundary
of the horospheres centeredpat

Letp : D — D be a complex geodesic such thatl) = p. In [17, Proposition 11] Lempert constructs a
biholomorphismG from D to a domainG (D) which extends smoothly throughD and such tha& o ¢(¢) =
(¢,0...,0) and the associated Lempert projectiorp{sy, ..., z,) = (21,0...,0) (note that the Lempert pro-
jectionp : D — D associated t is equal toG o p o G~1). For short we call such coordinates the “Lempert
coordinates”. The domaifi(D) is no longer convex in general, but it is still convex nédp(0D)). We claim that
if Ep = u~1(—1/R) is a horosphere with centpthenG(0Ep) is convex neat(dEp) N G(p(D)). Indeed, let
wy € G(OEp) N G(¢(D)) and letH C Ce; be the real one-dimensional tangent spac@Ep) N G (¢ (D))
atwy. Sincep(G(Ep)) € G(Ep) N G(¢(D)) andp is linear then the real hyperplane given by € C" :
p(w) —wo € Hy } separatesy, from G(Ep), which is thus convex at,. Moreover this clearly implies that the
complex tangent space

(63) T8 0 (0GB (G0 Glp(0)). 1)) = span ;- )
i/ j=2,..,N

for any¢ € D (notice thatp(¢) € OEp(p, ¢(¢), 1) always).
We are going to show thatis a plurisubharmonic solution of the Monge-Agrp equation using the Lempert
coordinates. Let = (21,0...,0) € G(D). SincedG(Ep) is (pseudo)convex, the matrix

( 0%u > . . .

— (2 is non-negative definite

020z, §.k=2,... N

Sincew is harmonic on{ — (¢,0,...,0) then %(z) = 0. We are left to show thataiz%zl(z) = 0 for

k =2,...,N.Butthis is obvious since, by (6.3), we have(;%-) = 0on(¢,0,...,0),{ €D,k =2,..., N.
Thereforeu is plurisubharmonic inD, or, in other termsddu = 2i0du > 0. To show that9ou)V =1 # 0

it is enough to see thaki°u > 0 in D on the complex tangent spaces to the boundary of horospheres To

this aim, we introduce the following functions:: D — R* andr, : BY — R* defined byr(z) = exp(u(z))

andy(z) = exp(uo(z)). A direct computation shows thdti°ry > 0 in BY anddd®r > 0in D. The formdd®u

is then positive definite on the complex tangent spaces to the boundary of horospheres if and anbtrifctly

plurisubharmonic, namelyidr > 0in D. Now, we claim thatd is a “contact map”, that is, it maps the complex

tangent space of a (boundary of) horospher@%fto the complex tangent space of the corresponding (boundary
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of) horosphere. Indeed, up to composition with automorphisniofve can assume that the complex geodesic
n(¢) = (¢,0,...,0) of BY is mapped to the complex geodegic= ®~! o n which, in Lempert's coordinates,
is given by¢ — (¢,0,...,0). With this choice of coordinates—and since biholomorphisms preserve complex
tangent spaces—equation (6.3) implies tat a contact map. In other wordép—1)*(97) = g, for some
smooth functiory. To computeg, we consider an arbitrary complex geodesic D — B containinge;. By
definition, 79 o n = 7 0 @1 o . Thereforen*(d7y) = n*((271)*d7) = gn*(d1) and thugy = 1. Now, taking
into account thabd = do, it follows that
dd°ty = —2i001y = —2i d((®~1)*(97)) = —2i(®~1)*(dOT) = (@ )*(dd°T).

Hencedd‘r is non-degenerate. Since we already know th&t- > 0, the only possibility is thatld“r > 0, as
wanted.

Finally we show thati(z) ~ ||p — z||~! asz — p non-tangentially. Le{z;.} C D be a sequence converging to
p non-tangentially. We use the notatiops, 7, for v € L, as introduced in Section 3. Le} € D andv, € L,
be such that,, ((x) = 2. Since the leaves af, are transversal t0D atp andz; — p non-tangentially, up
to subsequences, we may assume that- vy € L,. Also, (;, — 1 non-tangentially (since complex geodesics
maps non-tangential regions onto non-tangential regionseged1, Proposition 2.7.8.(ii)]). Thusg,, — n,, as
vp — vp and®(z) — ey non-tangentially. Write
P — 2|
u(z) - [lp = zkll = uo(®(zk))ller — @ (2| Te1 =0z

Then

AN 1~ B

and both these factors are bounded away from zero and infinity $i(ige — e; non-tangentially (seesg., [1,
Section 2.2.3]).

Now we examine the ter |e!11:1>;z(ké|;l)\|' First of all, sincezy — p, ®(z;) — e; non-tangentially thelip — 2 || ~

d(zx,0D) and||e; — ®(z)| ~ d(®(zx),9BY), whered(-,dD) is the (euclidean) distance. By the boundary
localization estimates for the Kobayashi distance (sge,[1]) we know that— log d(z, 0D) =~ kp(zo, z) for
anyzy € D fixed. Therefore, passing to the logarithm, we are left to show that therecegist- 0 such that for
allkeN

(6.4) —c < kp(zo0,2x) — kg~ (0, ®(21)) < C.
Now, z, = @y, (Ck). Sincep,, (0) — ¢, (0) then the triangle inequality implies

kD (@0, (Ck), 20) = w(0, Ci)| = kD (o, (Ck)s 20) — kD (P, (Ck)s u,. (0))] < const< oo.
Similarly, since®(z,) = n,, (¢x) we have thakg~ (0, ®(21)) =~ w(0, ;) and thus (6.4) follows. O

Remark6.4. ¢From the proof of Theorem 6.3 it follows that the boundaries of horospheres are smooth strongly
pseudoconvex, actually strongly convex for big radii.

7. SOME APPLICATIONS

The first application is somehow a rephrasing of Theorem 6.3 in terms of the Busemann function¥\Vef
thank Stefano Trapani for explaining this point to us.

Proposition 7.1. Let D ¢ C" be a bounded strongly convex domain with smooth boundary: betthe solution
of (6.2)in D given by Theorem 6.3. Let: D — D be a complex geodesic such thetl) = p € 9D. Let B, be
the Busemann function gfat p. Then for allz € D it follows that

(1) B,(2) =~ (log fu(z)| ~ log u((0)]).
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Proof. By the very definition, the level sets @&, andu are the same. Therefore there exj$ts R — R such
thatlog |u(z)| = B(B,(z)) for all z € D. We are going to computg. By the very definition ofB,,, we have
B,(¢(—t)) = w(0,t) forall t € (0,1). Therefore3(w(0,t)) = log |u(¢(—t))|. Lety, be the complex geodesic
defined in Section 3 such that= ¢, o 6 for some automorphisr of D with #(1) = 1. As shown in the proof
of Theorem 6.3 it follows thafu(y,(6(¢)))| = %P(&(g)) for all ¢ € D, whereP is the Poisson kernel ib.

By Lemma 2.1 it followsP(6(¢)) = aP(¢) for somea > 0. In particular|u(p(0))] = P(0)a/v = a/vi.
Therefore, taking into account thaf0, t) = 1 log 1%, a direct computation shows thats) = —2s + log(a/v?)
and formula (7.1) is proved. O

Remark7.2 Formula (7.1) can be used to relate the work of Trapani (see [21]) with our sotutibthe boundary
Monge-Ampere equation. The story goes as follows. Ear D let ¢, : D — D be the uniqgue complex geodesic

such thatp, (1) = pandp.(0) = z. Letv, = %jle)bzo. Thenv, € T,0D. All the vectorsv, belong to the
same half-spac®,, of 7;,0D with respect to the decomposition of this one induced’hy)D. Let © be a real
linear form vanishing orTfaD and positive orD,,. Any other such a form is multiple & by a positive constant.
Define¥ : D — R as

U(z) := —0O(vy)
In [21, Theorem 4.1] it is proved thaB,(z) = 1(log|¥(z)| — log|¥(0)|). Formula (7.1) implies then that
u(z) = C/¥(z) for someC € RT \ {0}.

As a second application we show that our solution of (6.2) can be used to characterize biholomorphisms, exactly
as the Poisson kernel characterizes automorphism of the uniDdidndeed, Lemma 2.1 can be rephrased as:
f + D — D holomorphic,f(1) = 1 (in the sense of non-tangential limits) is an automorphisi dfand only if
there exists\ € R \ {0} such thatf*(P(¢)) = AP(¢) for all ¢ € D (hereP is the Poisson kernel df).

Theorem 7.3. Let D, D’ ¢ CV be bounded strongly convex domains with smooth boundaryp ke D and

q € 0D'. Letup (respectivelyup.) be the solution 0f(6.2) in D (respectively inD’) given by Theorem 6.3.
Let F : D — D’ be holomorphic and assume th&tis continuous ap. ThenF is a biholomorphism such that
F(p) = ¢if and only if there exista € R™ \ {0} such thatF"™* (up/) = Aup.

Proof. If F'is a biholomorphism such th&t(p) = ¢ then it maps horospheresimwith centerp onto horospheres
in D’ with centerq. Lety : D — D be a complex geodesic and s€t:= ¢ o F', a complex geodesic fab’.
The biholomorphic invariance of the Kobayashi distance immediately yi8lds) = B,/ (F(z)), whereB,, is
the Busemann function @f (and similarlyB,). Proposition 7.1 then gives
. lup (F(£(0)))
1P (up)| = Lo O], )

|u((0))]
and the assertion follows because boih up/ are strictly negative.
Conversely, first we show that the hypotheBis(up, ) = Aup implies thatF'(p) = ¢. Indeed, le{z,} C D
be a sequence converging non-tangentially.t&Jp to extracting subsequences, we may assume{figt;)} is
converging tar € D’. Now

(72) )\UD(Zk) :’U,D/(F'(Zk))7

therefore ifz # ¢ it follows that the right-hand side of (7.2) stays bounded:as: co while the left-hand side
diverges, which is impossible. Thus has non-tangential limig at p. The hypothesis thak' is continuous ap
implies then that'(p) = q.

Secondly, the hypothesi8*(up,) = Aup implies that forz € D, R > 0 there exista = a(z) > 0 such that

(73) F(aED(p7Z7R)) c 8ED'(Q7F(Z)1G/R)'
Notice that, once is fixed,a is independent oR > 0. Indeed, for alk < 0 it follows F~!(upr (t)) = up' (t/)).
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Now, lety : D — D be a complex geodesic such thatl) = 1 and letzy = ¢(0). Lety : D — D’ be
a complex geodesic such thatl) = g and(0) = F(z) and letp : D’ — (D) be the associated Lempert
projection. Consider the holomorphic functign: D — D defined asf({) = ¥t o po F o ¢(¢). Thenf is
continuous at and clearlyf (1) = 1. We claim thatf is an automorphism d. To see this, thanks to Lemma 2.1,
it is enough to show that there exists> 0 such that for allR > 0,

(7.4) f(Ep(1,0,R)) € Ep(1,0,aR),
and that there exists a poifif € 0Ep(1,0, R) such thatf({y) € 0Ep(1,0,aR) for someR > 0.

Let R > 0. By Remark 4.5, it followsp(9FEp (1,0, R)) = OEp(p, 20, R) N ¢(D). Thus by (7.3), setting
a = alzp),
Fop(0Ep(1,0,R)\ {1}) C 0Ep:(q, F(20), aR) N F(p(D\ {p})).
By (4.2) we have that(OEp: (¢, F(z0), aR)) C Ep(1,0,aR) and thus (7.4) holds. Itis then clear by construction
that0 € 0FEp(1,0,1) andf(0) € 9EpR(1,0, «) and thusf is an automorphism db.
Next aim is to show thaf" o ¢ : D — D’ is a complex geodesic. For what we have just shown, it follows that
poFop=1of:D— D'isacomplex geodesic. Thus for &ll,(; € D

w(C1,G2) = kp (p(F(0(C1))); p(F(0(C2)))) < kpr (F(0(C1)), Fp(C2))) < w(Ci,C2),

which implieskp: (F(¢(¢1)), F(¢(¢2))) = w(¢1,¢2) and thusF o ¢ : D — D’ is a complex geodesic. Therefore
F maps complex geodesics onto complex geodesics.

To show thatF' is injective we have only to show that ¢f,n : D — D are complex geodesics such that
©(1) = n(1) = pandp(D) Nn(D) = @ then F(x(D)) N F(n(D)) = . Suppose this is not the case. Since
Foyp,Fon:D— D'are complex geodesics, thé{o(D)) N F(n(D)) # 0 implies F(¢(D)) = F(n(D)). Let
pa : D' — D’ be the Lempert projection associatedhto= F o ¢. Consider the holomorphic map: D — D
defined as

p(z) :=h"top, o F(z).
Itis clear thatp o p(¢) = ¢ for all ¢ € D. Theng is the left-inverse ofr and, sinces(n(ID)) = D by construction,
by Remark 3.1 it followsp(D) = n(DD), which is a contradiction.

It remains to show thak’ is surjective. First, sinc® and D’ have the same dimension, it follows th&af{D)
is open. Assume thaf is not surjective and lety ¢ F(D) be such thatv € dF(D) N D'. Then there exists
a sequencéz,} C D such thatF'(z;) — w. Up to subsequences assume that— z, € D. Itis clear that
2o € 0D for otherwiseF(zp) = w. Also, sinceF(p) = q thenzy # p. By hypothesis\up (zx) = up: (F(z1)).
Butup(zi) — up(z9) = 0 while up: (F(zx)) — up (w) < 0 ask — oo, giving a contradiction. O
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