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Abstract. We study the problem of existence of stationary disks for
domains in almost complex manifolds. As a consequence of our results,
we prove that any almost complex domains which is a small deforma-
tions of a strictly linearly convex domain D ⊂ Cn with standard complex
structure admits a singular foliation by stationary disks passing through
any given internal point. Similar results are given for foliation by sta-
tionary disks through a given boundary point.

Résumé. Nous étudions le problème de l’existence des disques station-
naires pour des domaines dans une variété presque complexe. Comme
conséquence de nos résultats, nous montrons que tous les domaines
presque complexes obtenu comme une petite déformation d’un domaine
strictement linéairement convexe D ⊂ Cn, avec la structure complexe
standard, admet une foliation dans disques stationnaires passant par un
point interne donné de D. Des résultats similaires sont obtenus pour fo-
liations dans disques stationnaires dont les bords passent pour un point
donné dans le bord du domaine.

Introduction

Let (M,J) be an almost complex manifold and D ⊂ M a strongly pseu-
doconvex domain with smooth boundary. Given a point xo ∈ D, let us
call foliation by stationary disks of (D,xo) any collection of stationary disks
centered at xo and smoothly parameterized by the points of a unit sphere
S = { v ∈ TxoD : ‖v‖ = 1} for some Euclidean norm ‖ · ‖ on TxoD. By
“stationary disk” we mean any J-holomorphic embedding f : ∆→ D of the
unit disk ∆ ⊂ C that satisfies the definition of Coupet, Gaussier and Sukhov
in [4], which naturally generalizes the usual notion of Lempert’s stationary
disks for bounded domains in Cn.

In case (M,J) = (Cn, Jst), natural examples of foliations by stationary
disks are given by the straight disks through the origin of the pseudoconvex,
smoothly bounded complete circular domains D in Cn. Other interesting
examples are provided by the celebrated results by Lempert on Kobayashi
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extremal disks in strictly linearly convex domains ([13, 14, 15]). In fact, an
immediate consequence of those results is that for any smoothly bounded,
strictly linearly convex domain D ⊂ Cn and any xo ∈ D, the Kobayashi ex-
tremal disks of D through xo give a foliation by stationary disks of (D,xo).
The existence of a foliation by stationary disks is also one of the main prop-
erties of the smoothly bounded domains of circular type, a class of domains
in Cn with an exhaustion of a special kind, which naturally include all com-
plete strictly pseudoconvex bounded circular domains, all bounded strictly
linearly convex domains and, more generally, all strictly pseudoconvex do-
mains with (singular) foliations given Kobayashi extremal disks satisfying
some special regularity conditions ([18, 19]).

In all these cases, the foliation by stationary disks F (xo) can be used
to construct a so-called generalized Riemann map, i.e. a homeomorphism
ϕ : Bn → D, which is smooth on Bn \ {0} and maps the straight complex
lines in Bn through 0 into corresponding disks of F (xo). This generalized
Riemann map have been often used in at least two important research ar-
eas: a) generalizations of Fefferman’s theorem on boundary regularity of
biholomorphisms between pseudoconvex domains; b) Green functions with
logarithmic pole for Monge-Ampère equations and plurisubharmonic exhaus-
tions of pseudoconvex domains (see e.g. [13, 14, 1, 24, 7]).

At the best of our knowledge, the first use of foliations by stationary disks
in the contest of almost complex manifolds can be found in [4]. There, the
authors generalize Lempert’s notion of stationary disks in the almost com-
plex setting and show the existence of a foliation by stationary disks of the
unit ball Bn ⊂ Cn, endowed with an almost complex structure J which is a
sufficiently small deformation of standard complex structure Jst. The corre-
sponding generalized Riemann map has been used to prove C∞-regularity of
biholomorphisms between two almost complex domains (Bn, J) and (Bn, J ′)
of this kind, which admit C1-extensions up to the boundary (see also [20]).
Later, Gaussier and Sukhov proved in [9] showed that the hypothesis of C1-
extendibility can be removed and that the result holds true for any pair of
smoothly bounded, strictly pseudoconvex almost complex domains, proving
Fefferman’s theorem in almost complex setting in full generality (see also
[5]).

Motivated by these results and possible applications on plurisubharmonic
exhaustions, in this paper we determine more general situations in which
the existence of foliations by stationary disks (and hence of generalized Rie-
mann maps) is granted. Basically, we follow the approach of [4]. We first
consider the differential problem that characterizes the stationary disks of
an almost complex domain (D,Jo) and we explicitly determine the associ-
ated linearized operator R at a given stationary disk fo : ∆→ D. When R
is invertible, we say that ∂D is good relatively to the pair (fo, Jo). A direct
application of the Implicit Function Theorem implies that if ∂D is good,
then there exists stationary disks in a neighborhood of fo also when Jo is
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replaced by a sufficiently close almost complex structure J . On the base of
this observation, one has that if an almost complex domain (D,Jo) has a
foliation F (xo) of stationary disks through xo, and if the boundary is good
for (fo, Jo) for any fo ∈ F (xo), then there exists a foliation for (D,J) of sta-
tionary disks passing through xo, also when Jo is replaced by a sufficiently
close almost complex structure J 6= Jo.

Secondly, by a line of arguments that goes back to Lempert and Pang
([13, 17]; see also [23, 22, 4, 20])), we are able to prove that any smoothly
bounded, strictly linearly convex domain D ⊂ Cn has a boundary which is
“good” for any of its stationary disks. This fact and previous observation
bring directly to our result, which generalizes the quoted Coupet, Gaussier
and Sukhov’s theorem on the unit ball: if a smoothly bounded, strongly pseu-
doconvex domain D in an almost complex manifold (M,J) is biholomorphic
to a strictly linearly convex domain D̂ ⊂ (Cn, J ′), endowed with small defor-
mation J ′ of Jst, then there exists a foliation by stationary disks of (D,xo)
for any xo ∈ D (Theorem 4.1).

This shows that the class of almost complex domains, admitting a foliation
by stationary disks, is indeed much larger than the class considered in [4].
In fact, via a diffeomorphism ϕ : U → V ⊂ Cn mapping D onto Bn, one
obtains the existence of foliations by stationary disks on (Bn, J ′) also when
J ′ = ϕ∗(Ĵ) is not a small deformation of Jst.

We also prove that, for any almost complex domain (D,J) as above and
with J ′ sufficiently close to Jst, there exists a generalized Riemann map
ϕ : Bn → D for any xo ∈ D and the function u = (ϕ−1)∗(uo) : D →]−∞, 0[
of uo(z)

def= log(|z|) is a plurisubharmonic exhaustion for D. When J is
integrable, u is a solution of the Monge-Ampère equation (∂∂̄u)n = 0 with
boundary data u|∂D = 0 and logarithmic singularity at xo. It would be
interesting to know if this and other related properties have counterparts in
almost complex setting.

Finally, we consider the families G(xo,a), formed by all stationary disks in
a given almost complex domain (D,J), passing through a given boundary
point xo ∈ ∂D and with tangent vector v at xo, with inner product < v, ν >
with the unit normal νxo larger than a value a ≥ 0. In case D is a strictly
convex domain in Cn, the disks in G(xo,a) give a (regular) foliation of a
certain subdomain D(xo,a) ⊂ D that coincide with D in case a = 0 ([6]). We
prove that if a > 0, this is true also when the standard complex structure
Jst is replaced by an almost complex structure J sufficiently close to Jst and
we therefore have an analogue of the previous results also for what concerns
foliations of conical subdomains D(xo,a), a > 0, of almost complex domains.
A proof for the case a = 0 seems to be at the moment out of reach, because
the family of stationary disks G(xo,0) is not parameterized by a compact set,
in contrast with all other considered situations.

As final remark, notice that when J is integrable, the regular foliations
G(xo,a) determine analogues of the Riemann map and have been used in
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[2, 3] to construct solutions to the Monge-Ampère equation (∂∂̄u)n = 0
with singularity at a given boundary point. It would be interesting to know
if a similar construction can be obtained in an almost complex setting.

The structure of the paper is as follows. In §2 we recall a few basic facts
and the definition of stationary disks in almost complex domains. In §3,
we consider the so-called foliations of circular type, prove their stability
under small deformations of J in case of a “good boundary”. In §4, general
conditions for a boundary “to be good” are given and are used to show that
any strictly linearly convex domain has a “good” boundary. This and the
results of §3 give our main Theorem 4.1 as immediate consequence. Section
§5 is devoted to the quoted results on foliations of conical subdomains.

2. Preliminaries

2.1. Notations. Given a real manifold M and a system of coordinates
ξ = (xi) : U ⊂ M → Rn, we call associated coordinates on T ∗M the coor-
dinates ξ̂ = (xi, pi), where for any α ∈ T ∗xM the “pi” are the components
of α = pidx

i in the basis (dxi). If (M,J) is an almost complex manifold of
real dimension 2n, we call system of complex coordinates any local diffeo-
morphism ξ = (zi) : U ⊂M −→ Cn. We call them holomorphic whenever J
is integrable and ξ = (zi) is a chart of the corresponding complex manifold
structure of (M,J). We also call associated complex coordinates on T ∗M the
complex complex coordinates ξ̂ = (zi, wj) : π−1(U) ⊂ T ∗M → C2n, where
the wi’s are defined for any 1-form α by the expression α = widz

i + widzi.
For any Banach space X and U ⊂ RM , α ∈]0, 1[, we denote by Cα(U , X)

the Banach space of the functions f : U → X such that

‖ f ‖α
def= sup

ζ∈U
‖ f(ζ) ‖ + sup

θ,η∈U ,θ 6=η

‖ f(θ)− f(η) ‖
|θ − η|α

<∞.

If α = m + β, for some m ∈ N and β ∈]0, 1[, we denote by Cα(U , X) the
Banach space Cα(U , X) = {r ∈ Cm(U , X) : Dνr ∈ Cβ(U , X), ν : |ν| ≤ m}.
Finally, for any α, ε > 0, we set Cα,ε(∆̄,Cn) = Cε(∆,Cn) ∩ Cα(∆,Cn) and
Hε(∆̄,Cn) = Cε(∆,Cn) ∩Hol(∆,Cn)

2.2. Lifts of J-holomorphic disks. We recall that a Cα-map f : M →M ′,
1 ≤ α, between two almost complex manifolds (M,J), (M ′, J ′) is called
(J, J ′)-holomorphic if and only if ∂̄J,J ′f(v) = 0 for any v ∈ TM , where
∂̄J,J ′f is the operator

∂̄J,J ′f : TM → TM ′ , ∂̄J,J ′f(v) def= f∗ (J(v))− J ′(f∗(v)) . (2.1)

When (M,J) = (Cn, Jst), we will shortly write ∂̄J ′ for ∂̄Jst,J ′ . A J-
holomorphic disk of (M,J) is a (Jst, J)-holomorphic map f : ∆ → M
from the unit disk ∆ ⊂ C into (M,J). Recall that ∂̄Jf = 0 if and only
if ∂̄Jf

(
∂
∂x

∣∣
x+iy

)
= 0 at any x+ iy ∈ ∆ (see e.g. [11]).
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If (M,J) is a complex manifold, the cotangent bundle T ∗M is naturally
endowed with an integrable complex structure J, determined by the identi-
fications of open subsets U ⊂ M with open subsets of Cn and by the iden-
tifications of the sets T ∗M |U with open subsets of C2n = T ∗Cn. When J is
not integrable, these identifications are no longer valid, but there still exists
a natural almost complex structure J on T ∗M , which reduces to the usual
one if J is integrable ([10]). The main properties of J are summarized in the
next proposition. Here, J ij = J ij(x) are the components of J = J ij

∂
∂xi
⊗ dxj

in a system of real coordinates ξ = (xi).

Proposition 2.1. [10] For any almost complex manifold (M,J), there exists
a unique almost complex structure J on T ∗M with the following properties:

i) the projection π : T ∗M →M is (J, J)-holomorphic;
ii) for any (J, J ′)-biholomorphism f : M → N between two almost com-

plex manifolds (M,J) and (N, J ′), the induced map f̂ : T ∗N → T ∗M
is (J′, J)-holomorphic;

iii) if J is integrable, then also J is integrable and coincides with the
natural complex structure of T ∗M ;

iv) in a system of coordinates

ξ̂ = (x1, . . . , x2n, p1, . . . , p2n) : π−1(U) ⊂ T ∗M −→ R4n , (2.2)

associated with ξ = (xi), the tensor J is of the form

J = Jai
∂

∂xa
⊗ dxi + Jai

∂

∂pi
⊗ dpa +

+
1
2
pa

(
−Jai,j + Jaj,i + Ja`

(
J `i,mJ

m
j − J `j,mJmi

)) ∂

∂pj
⊗ dxi . (2.3)

The almost complex structure J is called canonical lift of J on T ∗M .

Lemma 2.2. Let J be the canonical lift on T ∗M of an almost complex
structure J . For any 0 6= t ∈ R, the map ϕt : T ∗M → T ∗M defined by
ϕt(α) = t · α is a J-biholomorphic diffeomorphisms, i.e. ϕt∗ ◦ J = J ◦ ϕt∗.

Proof. Writing ϕt in a system of coordinates (2.2), one has that ϕt(xi, pj) =
(xi, tpj). Using (2.3), the claim is then immediately checked.

Given a J-holomorphic disk f : ∆ → (M,J), we call lift of f any J-
holomorphic disk f̂ : ∆→ (T ∗M, J) so that f = π ◦ f̂ .

2.3. Stationary disks. Let Γ ⊂M be a smooth hypersurface of an almost
complex manifold (M,J). The conormal bundle of Γ is defined as

N def= { α ∈ T ∗xM , x ∈ Γ : α|TxΓ ≡ 0 } ⊂ T ∗M |Γ . (2.4)

In the following, we denote by N∗ = N \{zero section} and when we mention
“the conormal bundle” we will always mean N∗.
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The CR structure of Γ is defined as the pair (D, J) given by the distribu-
tion

D =
⋃
x∈Γ

Dx ⊂ TΓ , Dx
def= { v ∈ TxΓ : J(v) ∈ TxΓ } (2.5)

endowed with the family J = {Jx} of complex structures Jx
def= J |Dx . A

defining 1-form for D is a 1-form on Γ so that kerϑ|x = Dx for any x ∈ Γ.
The Levi form at x is the quadratic form Lx : Dx → R defined by Lx(v) def=
−dϑx(v, Jv) for any v ∈ Dx and (up a scalar factor) it is independent on
the choice of ϑ. This last property follows immediately from the fact that
for any vector field X(v) ∈ D so that X(v)

x = v one has

Lx(v) = −dϑx(X(v), JX(v)) = ϑx([X(v), JX(v)]) . (2.6)

An oriented hypersurface Γ ⊂M is called strongly pseudoconvex if Lx is pos-
itive definite at every x ∈ Γ when determined by a defining 1-form ϑ with
ϑx(Jn) > 0 for any n pointing in the “outwards” direction. If D ⊂ M is a
bounded domain with smooth boundary ∂D, we say that D is strongly pseu-
doconvex when ∂D, oriented so that the ”outwards” directions are pointing
outside D, is strongly pseudoconvex.

The following notion of “stationary disk” for domains in almost complex
manifolds was considered for the first time by Coupet, Gaussier and Sukhov
in [4]. It generalizes the notion of stationary disks of bounded domains in
Cn ([13, 24]).

Definition 2.3. Let D ⊂ M be a domain with smooth boundary and N∗
the conormal bundle of ∂D. Given α ≥ 1, ε > 0, a map f : ∆̄→M is called
Cα,ε-stationary disk of D if

i) f |∆ is a J-holomorphic embedding and f(∂∆) ⊂ ∂D;
ii) there exists a lift f̂ : ∆→ T ∗M of f so that

ζ−1 · f̂(ζ) ∈ N∗ for any ζ ∈ ∂∆ (2.7)

and ξ̂ ◦ f̂ ∈ Cα,ε(∆,C2n) for some complex coordinates ξ̂ = (zi, wj)
around f̂(∆). Here “ · ” denotes the usual C-action on T ∗M , i.e.

ζ · α def= Re(ζ)α− Im(ζ)J∗α for any α ∈ T ∗M, ζ ∈ C . (2.8)

In the following, the values of α and ε are considered as fixed and by “sta-
tionary” we always mean “Cα,ε-stationary”. Moreover, given a stationary
disk f , the maps f̂ satisfying (ii) are called stationary lifts of f .

Lemma 2.4. i) If D ⊂ M is a smoothly bounded, strongly pseudoconvex
domain and f : ∆→M is a non-constant stationary disk of D, then f(∆) ⊂
D and f(ζ) ∈ ∂D if and only if ζ ∈ ∂∆.
ii) For any t ∈ R∗ and any stationary lift f̂ of a stationary disk f : ∆→ D,
also the map f̂t(ζ) def= (ϕt ◦ f̂)(ζ) = t · f̂(ζ) is a stationary lift of f .
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Proof. (i) If D is strongly pseudoconvex, it is known that there exists a
defining function ρ : U ⊂ M → R for D which is J-plurisubharmonic, i.e.
so that ρ ◦ f : ∆ → R is strictly subharmonic for any J-holomorphic disk
f : ∆ → U (see e.g. [5], p.14). Since ρ ◦ f |∂∆ = 0, the claim follows from
the maximum principle.

(ii) It follows from the fact that f̂t satisfies (2.7) and that the diffeomor-
phism ϕt is a J-biholomorphism by Lemma 2.2.

We conclude recalling the following theorem that generalizes a well-known
result by Webster to the almost complex setting ([26]).

Theorem 2.5. [21] Let Γ be a strongly pseudoconvex hypersurface in an
almost complex manifold (M,J) and N∗ ⊂ T ∗M its conormal bundle with
the zero section excluded. Then N∗ is a totally real submanifold of (T ∗M, J).

3. Foliations by stationary disks
and deformations of almost complex structures

3.1. The Riemann-Hilbert problem for stationary disks. In this and
the next sections, D is a strongly pseudoconvex domain in an almost com-
plex manifold (M,J) with smooth boundary ∂D with conormal bundle
N ⊂ T ∗M |∂D. We also assume that D ⊂ M is contained in a globally
coordinatizable open subset U ⊂ M or, equivalently, that D is a domain of
M = R2n ' Cn equipped with a non-standard complex structure J . We
also assume that D has a smooth defining function ρ : U ⊂ M → R on U ,
so that

D = { x ∈M : ρ(x) < 0 } and dρx 6= 0 for any x ∈ Γ = ∂D .

We want to study the differential problem that characterizes the lifts f̂ :
∆→ T ∗M of stationary disks of D. First of all, consider the map

ρ̃ : R∗×T ∗M |U −→ R×T ∗M |U , ρ̃(t, α) def= (ρ(π(α)), α− t ·dρπ(α)) . (3.1)

Notice that the bundle N∗ = N \ {zero section}, which is a 2n-dimensional
submanifold of T ∗M , can be identified with the level set

{(t, α) : t 6= 0 , ρ̃(t, α) = (0R, 0T∗
π(α)

M
)} ⊂ R∗ × T ∗M |U ,

which is a 2n-dimensional submanifold of R∗ × T ∗M . Therefore, using a
system of coordinates ξ̂ = (xi, pj) on T ∗M |U , associated with coordinates
ξ = (xi), we may identify R∗ × T ∗M |U with an open subset V ⊂ R4n+1 and
N∗ with the level set in V defined by

N∗ ' { (t, α) ∈ V : ρ̃i(t, α) = 0 , 1 ≤ i ≤ 2n+ 1} .

By a direct check of the rank of the Jacobian, one can check that the map
ρ̃ = (ρ̃1, . . . , ρ̃2n+1) is a smooth defining function for N∗.
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We now consider the map r : C× V ⊂ C× R4n+1 −→ R2n+1, defined by

r(ζ, t, α) def=
(
ρ̃1(t, ζ−1 · α), . . . , ρ̃n(t, ζ−1 · α)

)
. (3.2)

Here, the product ζ−1·α is as in (2.8). By definition, a disk f : ∆→ D ⊂ R2n

is stationary if and only if there exists f̂ ∈ (Cα,ε(∆̄); C2n) and λ ∈ Cε(∂∆; R)
so that  ∂Jf̂(ζ) = 0, ζ ∈ ∆

r(ζ, λ(ζ), f̂(ζ)) = 0, ζ ∈ ∂∆
(3.3)

where ∂J = ∂Jst,J : (Cα(∆); C2n) −→ (Cα−1(∆; C2n)) is the operator (2.1).
The differential problem (3.3) belongs to a class often called of generalized

Riemann-Hilbert problems (see f.i. [16], Ch. VII).

3.2. Stability under small deformations of the data. Consider a fixed
almost complex structure J = Jo, a point xo ∈ D(⊂ R2n) and a vector
vo ∈ TxoD ' R2n and denote by R(Jo,xo,vo) = (R1, . . . ,R5) the operator
from Cα,ε(∆; C2n)× Cε(∂∆; R)× R∗ into Cα−1,ε(∆; C2n)× Cε(∂∆; R2n+1)×
Cn × Cn × R with components Ri defined by

R1(f̂ , λ, µ) def= ∂Jo f̂ , R2(f̂ , λ, µ) def= r(ζ, λ(ζ), f̂(ζ)) ,

R3(f̂ , λ, µ) def= π(f̂)|ζ=0 − xo , R4(f̂ , λ, µ) def= π(f̂)∗

(
∂

∂x

∣∣∣∣
ζ=0

)
− µvo ,

R5(f̂ , λ, µ) def= f̂

(
π(f̂)∗

(
∂

∂x

∣∣∣∣
1

))
− 1 . (3.4)

Notice also that, by Hopf’s Lemma and Lemma 2.4 (ii), for any stationary
disk, there exists a stationary lift satisfying f̂

(
π(f̂)∗

(
∂
∂x

∣∣
1

))
= 1. So, by

the previous section, the existence of a stationary disk f : ∆ → D with
f(0) = xo and f∗

(
∂
∂x

∣∣
0

)
∈ Rvo is equivalent to the existence of a solution to

R(Jo,xo,vo)(f̂ , λ, µ) = 0 . (3.5)

Let (f̂o, λo, µo) be solution of (3.5) and R
(Jo,xo,vo; bfo,λo,µo) def=

Ṙ(Jo,xo,vo)|( bfo,λo,µo) the linearized operator at (f̂o, λo, µo) determined
by R(Jo,xo,vo). Now, by the Implicit Function Theorem (see e.g. [12]),
when R = R

(Jo,xo,vo; bfo,λo,µo) is invertible, there exists a solution to the

problem R(Jt,xt,vt)(f̂ , λ, µ) = 0 for any smooth deformation (Jt, xt, vt) of
(Jo, xo, vo) for t sufficiently small t and dimR ker R

(Jo,xo,vo; bfo,λo,µo) is equal
to the dimension of the solutions space. This motivates the following:

Definition 3.1. Let fo : ∆ → D be a stationary disk of (D,Jo) with
xo = f(0) and vo = (f̂)∗

(
∂
∂x

∣∣
ζ=0

)
. We call ∂D a good boundary for (Jo, fo)
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if there is a lift f̂o of fo and a function λo so that (f̂o, λo, 1) is a solution to
(3.5) and the linearized operator R = R

(Jo,xo,vo; bfo,λo,1)
is invertible.

The Implicit Function Theorem and previous remarks brings immediately
to the next proposition. In the statement, we denote by g a fixed Riemannian
metric g = gijdx

i⊗ dxj on a neighborhood of D and by g∗ = gijdx
i⊗ dxj +

gijdpi ⊗ dpj the corresponding Riemannian metric on T ∗M . We also set

‖J − J ′‖(1)

D

def= sup
x∈D,v∈T (T ∗xM)

‖J(v)− J′(v)‖g∗
‖v‖g∗

, (3.6)

where ‖·‖g∗ is the norm function determined by g∗. The topology determined
by the norm ‖ · ‖(1)

D
is clearly independent on the choice of g.

Proposition 3.2. Let fo : ∆→ D be a stationary disk of D ⊂ (M,Jo) with
xo = fo(0) and vo = fo∗

(
∂
∂x

∣∣
ζ=0

)
. If ∂D is a good boundary for (Jo, fo),

there exists a neighborhood V ⊂ D of xo, a neighborhood W ⊂ TD of vo,
with π(W) = V ⊂ D and a real number ε > 0 so that, for any x ∈ V, v ∈ W
and ‖J−Jo‖(1)

D
< ε, there exists a unique stationary disk f of (D,J) so that

f(0) = x , f∗

(
∂

∂x

∣∣∣∣
ζ=0

)
= µv for some µ 6= 0 . (3.7)

The disk f depends differentially on x, v and J and, given mo > 0, one can
choose ε, W and V = π(W) so that supζ∈∆ distg(f(ζ), fo(ζ)) < mo.

3.3. Foliations of circular type and their stability.

3.3.1. Blow-up of an almost complex domain at one point. Let xo be a point
of the almost complex manifold (M,J) and ξ = (zi) : U → Cn a system of
complex coordinates with

ξ(xo) = 0 , ξ∗(J |xo) = Jst|0 . (3.8)

Consider the blow up π : Ũ → ξ(U) ⊂ Cn of ξ(U) at 0, i.e. the submanifold
of Cn × CPn−1 defined by Ũ = { (z, [w]) : z ∈ [w] , z ∈ U} ⊂ Cn × CPn−1.
The standard projection π(z, [w]) = z composed with ξ−1 determines a
diffeomorphism between Ũ \ π−1(0) and U \ {0} that we use to glue Ũ with
M \ {xo} and obtain a manifold M̃ that we call blow up of (M,J) at xo.

At a first glance, this construction seems to depend on the choice of the
complex coordinates ξ = (zi). But indeed the real manifold structure of M̃
depends only on the linear map Jxo : TxoM → TxoM . This fact is a direct
consequence of the following simple lemma.

Lemma 3.3. Consider two sets of complex coordinates ξ = (zi) and ξ′ =
(z′j) on U satisfying ξ(xo) = ξ′(xo) = 0 and ξ∗(Jxo) = ξ′∗(Jxo) = Jst|0. Then
the diffeomorphism ϕ̃ = π−1 ◦ (ξ′ ◦ ξ−1) ◦π of Ũ \π−1(0) into itself admits a
unique smooth extension on Ũ . It follows that the blow up M̃ , defined using
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the chart ξ = (zi), is naturally diffeomorphic to the one constructed using
the chart ξ′ = (z′i).

Proof. By construction, the map ϕ = ξ′◦ξ−1 is so that ϕ∗|0◦Jst = Jst◦ϕ∗|0
and hence it is of the form

ϕ(z) = ψ(z) + g(z) (3.9)

where ψ is the C-linear map ψ = ϕ∗|0 : Cn → Cn and g : U → U is an
infinitesimal of the second order in |z|. Since

ϕ̃(z, [z]) = (π−1 ◦ ϕ ◦ π)(z, [z]) = (ψ(z) + g(z), [ψ(z) + g(z)]) ,

an explicit computation in coordinates shows that ϕ̃ extends smoothly on
π−1(0) ⊂ Ũ by setting ϕ̃(0, [v]) def= (0, [ψ(v)]) for any [v] ∈ CPn−1.

3.3.2. Foliations of circular type. Let D be a smoothly bounded, strongly
pseudoconvex domain in (M,J) and denote also by D̃ ⊂ M̃ the blow up of
D at a point xo as defined in the previous section. For any stationary disk
f : ∆ → D with f(0) = xo and f∗

(
∂
∂x

∣∣
0

)
= v there exists a unique map

f̃ : ∆ → D̃ so that π ◦ f(ζ) = f(ζ) for any ζ 6= 0. In fact, if we identify D̃
with a domain in Ũ ⊂ Cn × CPn−1 by means of a chart like in (3.8), the
lifted map f̃ is of the form

f̃(ζ) =

 (f(ζ), [f(ζ)]) when ζ 6= 0 ,

(0, [v]) when ζ = 0 .
(3.10)

Since f is J-holomorphic (and hence f∗(Jst|0) = J |0 = Jst|0), we may write

f(ζ) = h(ζ) + g(ζ) (3.11)

for some holomorphic disk h : ∆ → U ⊂ Cn and a smooth map g : ∆ → U
which is infinitesimal of second order in |ζ|. Using this, one can check that
f̃ is smooth also at 0. We call f̃ the smooth lift of f at D̃.

Definition 3.4. Let xo ∈ D and D̃ as above and denote by F (xo) the family
of all stationary disks of D with f(0) = xo. We call F (xo) foliation of circular
type of the pointed domain (D,xo) if the following conditions are satisfied:

i) for any v ∈ TxoD, there exists a unique disk f (v) ∈ F (xo) such that
f

(v)
∗
(
∂
∂x

∣∣
0

)
= µ · v for some 0 6= µ ∈ R;

ii) previous an identification (TxoD,Jxo) ' (Cn, Jst), the map

exp : B̃n ⊂ C̃n −→ D̃ , exp(v, [v]) def= f̃ (v)(|v|) , (3.12)

between the blow up at 0 of Bn ⊂ Cn and the blow up of D at xo is
smooth with a smooth extension up to the boundary, which induces
a diffeomorphism between the boundaries exp |∂Bn : ∂Bn → ∂D.

If F (xo) is a foliation of circular type, we call xo center of the foliation and
D a domain of circular type w.r.t. to J .
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3.3.3. Stability under small deformations of foliations of circular type.

Proposition 3.5. Let D be of circular type w.r.t. to Jo and with center xo.
If ∂D is a good boundary for (Jo, fo) for any stationary disk fo ∈ F (xo), then
there exists ε > 0 and an open neighborhood U ⊂ D of xo so that for any J
with ‖J − Jo‖(1)

D
< ε and any x ∈ U , the point x is center of a foliation of

circular type of D w.r.t. the almost complex structure J .

Proof. Using a system of coordinates ξ = (xi) on a neighborhood W of
xo, let us identify W with an open subset of R2n ' Cn and its tangent
space with TW ' W × R2n ⊂ R4n. Pick also the same Euclidean inner
product <,> on all tangent spaces in TW ' W × R2n. By definitions, for
any vo ∈ S2n−1

xo = { v ∈ TxoM : < v, v >= 1 }, there is a unique stationary
disk f ∈ F (xo) with f∗

(
∂
∂x

∣∣
0

)
= µ · vo for some µ 6= 0.

By Proposition 3.2, there exists a neighborhood U (vo) of xo, a neigh-
borhood V(vo) ⊂ S2n−1 and ε(vo) > 0, so that, for any y ∈ U (vo),
v ∈ V(vo) ⊂ TyM ' TxoM ' R2n and J with ‖J − Jo‖(1)

D
< ε(vo), there

exists a unique disk f̃ , which is stationary for D w.r.t. J , passing through
y and with f̃∗

(
∂
∂x

∣∣
0

)
parallel to v. By compactness of S2n−1, there exists a

finite number of vectors v1, . . . , vN ∈ S2n−1 so that the corresponding open
sets V(vi) ⊂ S2n−1 give an open covering of S2n−1. We conclude that, for
any point y ∈ Ũ =

⋂N
i=1 U (vi), ‖J − Jo‖(1)

D
< mini ε(vi) and v ∈ TyM , there

exists a unique disk passing through y, which is stationary w.r.t. J and with
f̃∗
(
∂
∂x

∣∣
0

)
parallel to v

|v| ∈ S2n−1. In particular, the disks in F (y), y ∈ Ũ ,
satisfy Definition 3.4 (i).

Consider now the map exp : B̃n → D̃ in (3.12). By Proposition 3.2, it
is smooth and depends smoothly on y and J . Moreover, if J = Jo and
y = xo, it is a diffeomorphism between manifolds with boundaries. Hence,
there exists U ⊂ Ũ and ε < mini ε(vi) so that exp∗ is invertible at all points
of B̃n whenever y ∈ U and ‖J − Jo‖(1)

D
< ε. In these cases, exp is a local

homeomorphism from the compact set B̃n to D̃ and hence is a covering map
of D̃. Being B̃n simply connected, it is a diffeomorphism, i.e. also (ii) of
Definition 3.4 holds true.

4. Conditions that force a boundary to be “good”

In this section we are going to prove a result (Theorem 4.6), which pro-
vides a condition for the existence of foliations by stationary disks of a
pointed domain (D,xo) endowed with a small deformation of the standard
complex structure. An immediate consequence of this and of the contents
of §3 is represented by the following theorem.
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Theorem 4.1. Let D ⊂ M be a smoothly bounded, strongly pseudoconvex
domain in an almost complex manifold (M,Jo). If there is a local diffeo-
morphism ϕ : U ⊂ M → Cn, so that D̂ = ϕ(D) is a strictly linearly convex
domain D̂ ⊂ Cn and ϕ∗Jo is sufficiently close to Jst in C1-norm, then D is
a domain of circular type w.r.t. J and any point is a center.

Roughly speaking, this shows that if one defines a suitable topology on
the set of almost complex domains admitting foliations of circular type, such
space contains a whole open neighborhood of the class of strictly linearly
convex domains of Cn.

4.1. The linearized operator R = R
(Jo,xo,vo; bfo,λo,µo). First of all, we

want to determine an explicit expression for the tangent map R =
(R1,R2,R3,R4,R5) at (f̂o, λo, µo) of the operator (3.4). For this, recall
that, being f̂o : ∆ → T ∗M a J-holomorphic disk, one can always find a
system of complex coordinates (zi) on a neighborhood W of f̂o(∆), in such
a way that, identifying W with an open subset of C2n, one has J|z = Jst|z
at any z ∈ f(∆). Moreover, by Hopf lemma and being the defining func-
tion ρ strongly plurisubharmonic, we have that dρ

(
fo∗

(
x ∂
∂x + y ∂

∂y

))
=

dρ
(
Re
(
z1 ∂

∂z1

))
6= 0 at all points of f(∂∆). In these coordinates, the tan-

gent map of R1 = ∂Jo at f̂o is

R1(ĥ) =
∂ĥ

∂ζ
+

1
2i
D(J− Jst)f̂o · ĥ , (4.1)

where D(J − Jst)f̂o is the real differential of the matrix valued function

ζ 7→ (J− Jst)f̂o(ζ). In matrix notation, D(J− Jst)f̂o · ĥ can be written as(
D(J− Jst)f̂o · ĥ

)
ζ

= A(ζ) · ĥ(ζ) +B(ζ) · ĥ(ζ) ,

for some A,B : ∆→Mn×n(C) and R1 assumes the form

R1(ĥ) =
∂ĥ

∂ζ
+A · ĥ+B · ĥ . (4.2)

Consider now the tangent map R2. By previous remarks, the defining
function ρ̃ = (ρ̃1, . . . , ρ̃2n+1) in (3.1) is locally equivalent to

%̂(t, α) =

(
%(α), t−

α
(
Re
(
z1 ∂

∂z1

))
dρ
(
Re
(
z1 ∂

∂z1

))∣∣
π(α)

)
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where % : W ⊂ T ∗M |U → R2n is the defining function for N∗ obtained by

replacing t =
α
“

Re
“
z1 ∂
∂z1

””
dρ
“

Re
“
z1 ∂
∂z1

””˛̨̨
π(α)

in all places of ρ̃. If we set

r̂(ζ, t, α) def=

(
%(ζ, α), t−

α
(
Re
(
z1 ∂

∂z1

))
dρ
(
Re
(
z1 ∂

∂z1

))∣∣
π(α)

)
, with %(ζ, α) def= %(ζ−1 · α)

(4.3)
we see that R2 is equivalent to the tangent map of the operator

R2( f̂
∣∣∣
∂∆

, λ) =

(
%(·, f̂(·)), λ−

f̂(·)
(
Re
(
z1 ∂

∂z1

))
dρ
(
Re
(
z1 ∂

∂z1

))∣∣
π( bf(·))

)
and hence of the form

R2(ĥ, τ) =
(

2 Re(G · ĥ|∂∆), τ − g(ĥ)
)

(4.4)

where g is obtained by linearization of the map f̂ 7→
bf(·)
“

Re
“
z1 ∂
∂z1

””
dρ
“

Re
“
z1 ∂
∂z1

””˛̨̨
π( bf(·))

and

G is the matrix valued map on ∂∆ defined by

G(ζ) =


∂%1

∂z1
(ζ, f̂(ζ)) · · · ∂%1

∂z2n
(ζ, f̂(ζ))

...
. . .

...
∂%2n

∂z1
(ζ, f̂(ζ)) · · · ∂%2n

∂z2n
(ζ, f̂(ζ))

 , ζ ∈ ∂∆ (4.5)

By Theorem 2.5, N∗ is totally real w.r.t. J and hence, by our choice of the
coordinates, it is totally real also w.r.t. Jst on a neighborhood of f̂(∂∆).
This implies that

det (G(ζ)) 6= 0, for any ζ ∈ ∂∆ . (4.6)

Finally, the maps R3, R4 and R5 are easily seen to be (here h def= π ◦ ĥ)

R3(ĥ) = h(0) , R4(ĥ, σ) =
∂h

∂x

∣∣∣∣
ζ=0

−σvo , R5(ĥ) = f̂o

(
∂h

∂x

∣∣∣∣
1

)
+ĥ
(
∂fo
∂x

∣∣∣∣
1

)
.

4.2. The operator RA,B,G = (R1,R2). Consider the operator

RA,B,G = (R1,R2) =

(
∂ĥ

∂ζ
+A · ĥ+B · ĥ , 2 Re(G · ĥ)

)
,

which is a well-known Fredholm operator related with the generalized
Riemann-Hilbert problems. In the next theorem, we recall some information
that will be used in the sequel (see e.g. Thm. 3.2.5, Thm. 3.3.1 in [27]).

Theorem 4.2. If G satisfies (4.6), the operator RA,B,G is Fredholm with
index ν = 2n− 1

iπ

∫
∂∆ d arg(det(G)) and hence is surjective if and only if

dim kerRA,B,G = 2n− 1
iπ

∫
∂∆

d arg(det(G)) . (4.7)
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Next, we need to recall a lemma due to Globevnik and some of its direct
consequences, which give a way to establish the surjectivity of RA,B,G in case
of integrable complex structures. But in order to state them, we first need
to recall the definition of “canonical system” (see e.g. [8]). In what follows,
for any holomorphic function g : U ⊂ C→ CN on a neighborhood of ∞ and
with at most one pole at ∞, we call order of (zero of) g the integer k such
that g = 1

zk
g0 for some g0 which is holomorphic at ∞ and with g0(∞) 6= 0.

Definition 4.3. Given A ∈ Cε(∂∆,GL(N,C)), with ε ∈]0, 1[, consider the
problem consisting of finding a continuous map Ψ+ : ∆→ CN , holomorphic
on ∆, and a continuous map Ψ− : C \∆→ CN , holomorphic on C \∆ and
with at most a pole at ∞, so that

Ψ+(ζ) = A(ζ) ·Ψ−(ζ) , ζ ∈ ∂∆ . (4.8)

A canonical system of A is any collection of solutions Φj = (Φ+
j ,Φ

−
j ), 1 ≤

j ≤ N , of the problem (4.8) so that
i) Φ+(ζ) = [Φ+

1 (ζ), . . . ,Φ+
N (ζ)] is in GL(N,C) for any ζ ∈ ∆;

ii) Φ−(ζ) = [Φ−1 (ζ), . . . ,Φ−N (ζ)] is in GL(N,C) for any ζ ∈ C \∆;
iii) the order k of det Φ− at ∞ is equal to the sum of the orders kj of

the columns Φ−j .

If {Φj = (Φ+
j ,Φ

−
j )} is a canonical system of A, the orders kj of the Φ−j ’s are

called partial indices of A. The sum k =
∑
kj is called total index of A.

An important fact is that, up to reordering, the partial indices and the
total index depend only on A and not on the considered canonical system. We
may now recall the following lemma by Globevnik, which can be considered
as a corollary of N. P. Vekua’s factorization theorem ([25]).

Lemma 4.4. ([8], Lemma 5.1) Let L ∈ Cε(∂∆,GL(N,C)), with ε ∈]0, 1[.
Then there is a map Θ : ∆̄→ GL(N,C) in Hε(∆,CN2

), such that

L(ζ) · L(ζ)−1 = Θ(ζ) · Λ(ζ) · Θ̄−1(ζ) with Λ(ζ) =

 ζk1 0 ... 0

0 ζk2 ... 0

...
...

...
...

0 0 ... ζkN

 (4.9)

for any ζ ∈ ∂∆, where k1, . . . , kN are the partial indices of A(·) def=
L(·) · L(·)−1

∣∣∣
∂∆

.

The integers ki of the previous lemma and the sum k =
∑N

i=1 ki are the
same for all maps L′ = M |∂∆ · L with M : ∆̄ → GL(N,C) in Hε(∆,CN2

).
They are called partial indices and total index of L, respectively.

Consider now the map G(ζ) in (4.5) and let ΘG be a map that gives a
decomposition (4.9) for L(ζ) = G−1(ζ). We set

AG
def=
(
ΘG
)−1 ·A ·ΘG , BG def=

(
ΘG
)−1 ·B ·ΘG . (4.10)
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It is immediate to realize that the linear map ĥ 7−→ h̃ =
(
ΘG
)−1 · ĥ is an

isomorphism between kerRA,B,G the space of solutions of the problem
∂̄h̃+AG · h̃+BG · h̃ = 0 , ζ ∈ ∆

h̃i(ζ) = ζki h̃i(ζ) , 1 ≤ i ≤ 2n, ζ ∈ ∂∆

(4.11)

where the ki are the partial indices of L = G−1.

Lemma 4.5. The operator RA,B,G is surjective if and only if
dim kerRA,B,G = 2n + k, with k =

∑2n
i=1 ki. Moreover, when A = B = 0,

R0,0,G is surjective if and only if ki ≥ −1 for any 1 ≤ i ≤ 2n.

Proof. The first claim follows from Theorem 4.2 and from

dim kerRA,B,G = 2n− 1
iπ

∫
∂∆

d arg(det(G))

= 2n+
1

2πi

∫
∂∆

d arg
(
det(G−1 ·G)

)
= 2n+

1
πi

∫
∂∆

d arg(det(ΘG)) +
2n∑
i=1

1
2πi

∫
∂∆

d arg(ζki)

= 2n+ k

where we used the fact that det(ΘG) is holomorphic and never zero in ∆.
Assume now that A = B = 0 and recall that the elements of kerR0,0,G are

in natural correspondence with the elements h̃ = (h̃1, . . . , h̃2n) ∈ Hε(∆,C2n)
that solve (4.11) and hence of the form h̃i(ζ) =

∑
`≥0 a

i
`ζ
` with coefficients

ai` ∈ C so that the boundary conditions are satisfied, i.e.
ai` = 0 when ` ≥ max{ki + 1, 0}

ai` = ai−`+ki when ki ≥ 0 and 0 ≤ ` ≤ ki .
(4.12)

From this, a simple check shows that dim kerR0,0,G =
∑

ki≥0(ki + 1). Since

2n+ k = 2n−
∑
ki≤−1

(|ki| − 1)− (#{ki ≤ −1}) +
∑
ki≥0

ki =

= (#{ ki ≥ 0}) +
∑
ki≥0

ki −
∑
ki≤−1

(|ki| − 1) =
∑
ki≥0

(ki + 1)−
∑
ki≤−1

(|ki| − 1)

it follows that dim kerR0,0,G = 2n + k if and only if
∑

ki≤−1(|ki| − 1) = 0,
i.e. ki ≥ −1 for any 1 ≤ i ≤ 2n.



16 G. PATRIZIO AND A. SPIRO

4.3. The operator R = (R0,0,G,R3,R4,R5) for convex domains in Cn.

Theorem 4.6. Let D be a domain in (Cn, Jst), with smooth boundary and
let fo : ∆ → D a stationary disk D. If there is a neighborhood U of fo(D)
where U ∩D is strictly linearly convex, then ∂D is good for (Jst, fo).

Proof. We first need the following:

Lemma 4.7 ([17], Prop. 2.36, Thm. 2.45). Let fo : ∆→ D as above. Then
there exists a system of complex coordinates (zi) and a defining function ρ
for ∂D on a neighborhood V of f(∆), such that fo(ζ) = (ζ, 0, . . . , 0) and

ρ = −1+|z1|2+
n∑

α,β=2

δαβz
αzβ+Re

 n∑
α,β=1

Bαβz
αzβ

+r(z1, . . . , zn) (4.13)

with r smooth function so that |r(z)| ≤ c|z|3 for some c > 0 for all z ∈ V.

Secondly, we need the following lemma, from which the theorem will
follows almost immediately. There, we denote by (zi) the coordinates in
previous lemma and by (zi, wi) the associated complex coordinates for T ∗Cn

(see §2.1).

Lemma 4.8. Let R = (R0,0,G,R3,R4,R5) be the linear operator defined in
§4.1 using the coordinates (zi, wj). Then:

i) The partial indices of G−1 are k1 = 2, k2 = 0 and kj = 1 for all
j ≥ 2. In particular, R0,0,G is surjective and dim kerR0,0,G = 4n+1.

ii) The restrictions of R3, R4 on kerR0,0,G are surjective.

Proof. (i) If ρ is the defining function (4.13), the components of the function
%(ζ, α), defined in (4.3), are (up to multiplication by a nowhere vanishing
smooth function)

%1 = −1 + |z1|2 +
n∑

α,β=2

δαβz
αzβ + Re

 n∑
α,β=1

Bαβz
αzβ

+O(|z|3)

%2 = i
{

2|z1|2(ζ−1w1 − ζ−1w1)− (z1ζ−1w1 + z1ζ−1w1)(z1 − z1)
}

+O(|z|2)

%2α−1 = 2|z1|2(ζ−1wα + ζ−1wα)−

−(z1ζ−1w1 + z1ζ−1w1)
{

(δαβzβ +Bαβz
b) + (δαβzβ +Bαβzβ)

}
+O(|z|2)

%2α = i
{

2|z1|2(ζ−1wα − ζ−1wα)−

−(z1ζ−1w1 + z1ζ−1w1)
{

(δαβzβ +Bαβz
b)− (δαβzβ +Bαβzβ)

}}
+O(|z|2)

with 2 ≤ α ≤ n. Hence, the matrix (4.5) is (up to reordering of columns)

G(ζ) =
(
G1(ζ) 0

0 G2(ζ)

)
with



FOLIATIONS BY STATIONARY DISKS OF ALMOST COMPLEX DOMAINS 17

G1(ζ) =

(
∂%1

∂z1
∂%1

∂w1
∂%2

∂z1
∂%2

∂w1

)∣∣∣∣∣ bfo(∂∆)

=
(

ζ−1 0
i(ζ2 + 1)ζ−2 i(ζ2 + 1)ζ−1

)

G2(ζ) =

(
∂%2α−1

∂zβ
∂%2α−1

∂wγ
∂%2α

∂zβ
∂%2α

∂wγ

)∣∣∣∣∣ bfo(∂∆)

=
(

−2Bαβ + δαβ 2ζ−1

−2iBαβzb + iδαβz
β i2ζ−1

)
Under the assumption that the real Hessian H(ρ)ij is positive definite at all
points of fo(∂∆), the partial indices of the matrix G−1

2 (ζ) are known to be
all equal to 1. A complete proof of this can be found in [22], Lemma 3.2,
being G2(ζ) equal to the lower right block of the matrix in (3.10) of [22].

For what concerns the block G−1
1 (ζ), notice that for any ζ ∈ ∂∆ one has

that A(ζ) = G−1
1 (ζ) ·G1(ζ) =

(
ζ2 0
−2ζ −1

)
and hence A admits the columns

of

Φ+(ζ) =
(

1 0
0 1

)
, Φ−(ζ) =

(
1
ζ2

0
2
ζ −1

)
as canonical system. Hence, by Lemma 4.5, we conclude that k1 = 2 and
k2 = 0, since these are the orders of the columns of Φ−.
(ii) Let Ixo ⊂ TxoD be the indicatrix of the Kobayashi metric of D at xo.
By Thm. 4.8 in [17], there exists a neighborhood W ⊂ D of xo and a
neighborhood W ′ ⊂ ∂Ixo of vo, so that for any x ∈ W, v ∈ W ′ there exists
exactly two stationary disks f (x,vo), f (xo,v) : ∆→ D satisfying

f (x,vo)(0) = x , f
(x,vo)
∗

(
∂

∂x

∣∣∣∣
0

)
= vo , f

(xo,v)(0) = xo , f
(xo,v)
∗

(
∂

∂x

∣∣∣∣
0

)
= v

For each of them, there is a unique stationary lift f̂ (x,vo) and f̂ (xo,v) satisfying
certain normalizing conditions (i.e. so that ζ · f̂ (x,vo)(ζ) and ζ · f̂ (x,vo)(ζ) are
the so called dual maps - see [17], Def. 2.10). These lifts depends smoothly
on the coordinates of the point x and the vector v and for any curves γt ∈ D
and γ′t ∈ TxoD with γ0 = xo and γ′0 = vo, the 1-parameter families of

stationary lifts f̂t
def= f̂ (γt,vo) and f̂ ′t

def= f̂ (xo,γ′t) are so that ĥ(ζ) = d bft(ζ)
dt

∣∣∣
t=0

and ĥ′(ζ) = d bf ′t(ζ)
dt

∣∣∣
t=0

are in kerR0,0,G. Moreover, by construction,

R3(ĥ) = π(ĥ(0)) = γ̇0 ∈ Cn , R4(ĥ, σ) =
∂(π ◦ ĥ)
∂x

∣∣∣∣∣
0

−σvo = γ̇′0−σvo ∈ Cn .

Since vo is transversal to ∂Ixo , by the arbitrariness of γt and γ′ ∈ ∂Ixo it
follows that R3|kerR0,0,G

and R4|kerR0,0,G
are both surjective.

By the previous lemma, dim kerR0,0,G ∩ ker R3 ∩ ker R4 = 1. So, in
order to conclude, we only need to check that R5|kerR0,0,G∩ker R3∩ker R4 is
surjective onto R or, equivalently, that there is 0 6= ĥ ∈ kerR0,0,G ∩ ker R3 ∩
ker R4 so that R5(ĥ) = ĥ1(1, 0, . . . , 0) 6= 0. But an element of this kind is
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given by ĥ(ζ) = d(ϕt( bfo(ζ)))
dt

∣∣∣
0

= (ζ, 1, 0, . . . 0), where we denote by ϕt the
diffeomorphism considered in Lemma 2.2, and the proof is concluded.

Remark 4.9. Lemma 4.8 (i) corrects and generalizes a computation in [4],
where, by a minor mistake, the partial indices of G−1 in case D = Bn are
claimed to be all equal to 1.

5. Other non-singular foliations by stationary disks

5.1. Foliations of horospherical type. As before, (M,J) is an almost
complex manifold of dimension 2n. Let xo ∈M and consider a Riemannian
metric <,> on a neighborhood U so that <,> |xo is J-Hermitian. For
instance, if U is identified with an open subset of Cn so that J |xo = Jst|xo ,
we may assume that <,> is the standard Hermitian metric of Cn. Denote
also by ∇ the Levi-Civita connection of <,>.

Definition 5.1. Let f : ∆→M be a J-holomorphic disk, which is C1 up to
the boundary and with vo = f∗

(
∂
∂x

∣∣
1

)
6= 0. We call parameter of tangency

at xo = f(1) the real number

p(f ;xo)
def=
〈
∇vo

(
f∗

(
∂

∂x

))
, Jvo

〉
. (5.14)

This number depends on the first order jet of <,> at xo, but if two
J-holomorphic disks f , h are so that

xo = f(1) = h(1) , vo = f∗

(
∂

∂x

∣∣∣∣
1

)
= h∗

(
∂

∂x

∣∣∣∣
1

)
,

then their parameters of tangency are the same for a choice of <,> if and
only if they are the same for any other choice of the metric. In fact, if we
consider a new metric <,>′ with Levi-Civita connection∇′, then S = ∇′−∇
is a tensor field of type (1, 2) so that(

∇vo
(
f∗

(
∂

∂x

))
−∇vo

(
h∗

(
∂

∂x

)))∣∣∣∣
1

= S(vo, vo − vo) = 0

Moreover, a simple computation shows that any disk h = f ◦ ϕ where ϕ ∈
Aut (∆) with ϕ(1) = 1, ϕ′(1) = 1, satisfies

∇vo
(
h∗

(
∂

∂x

))
= λJf∗

(
∂

∂x

∣∣∣∣
1

)
= λJvo for some λ ∈ R .

Therefore, for any given λ̃, one can choose ϕ so that p(f ◦ ϕ;xo) = λ̃.
Moreover, p(f ◦ ϕ;xo) = p(f ;xo) if and only if ϕ = Id∆ and f = h.

Consider now a bounded, strictly convex domain in (Cn, Jst) with smooth
boundary and let xo ∈ ∂D and ν the outward unit normal to ∂D in xo. By
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[6], Thm. 2, for any vo ∈ TxoM so that < ν, vo >> 0 and for any λ ∈ R,
there exists a unique stationary disk f (vo,λ) : ∆→ D so that

f (vo,λ)(1) = xo , f∗

(
∂

∂x

∣∣∣∣
1

)
= vo , p(f ;xo) = λ . (5.15)

If we denote by Hxo = { v ∈ TxoCn : < ν, v >> 0 } ⊂ TxoCn, we have
that the exponential map Φ(D,xo) : Hxo × (∆ \ {1}) → D \ {xo} defined by
Φ(D,xo)(v; ζ) = f (v,0)(ζ) is a diffeomorphism.

We now consider the following definition. As before, D is a smoothly
bounded, strictly pseudoconvex domain in the almost complex manifold
(M,J) and, for any given xo ∈ ∂D, we denote by ν the outward unit normal
to ∂D in xo w.r.t. some Riemannian metric <,>, which is J Hermitian at
xo. Finally, for any real number a > 0, we denote by C(a) the open cone

C(a) = { v ∈ TxoM : < v, ν >> a } ⊂ TxoM .

Definition 5.2. For any xo ∈ ∂D and a > 0, let G(xo) be the family of
stationary disks f : ∆ → D with f(1) = xo and by G(xo,a) ⊂ G(xo) the
subfamily of disks with f∗

(
∂
∂x

∣∣
1

)
∈ C(a). Denote also by D(xo,a) ⊂ D the

union of all images of the disks in G(xo,a).
We say that G(xo) is a foliation of horospherical type for D (resp. G(xo,a)

is a good foliation for D(xo,a)) if the following conditions are satisfied:
i) for any v ∈ TxoM so that < v, ν >> 0 (resp. for any v ∈ C(a)) and

for any λ ∈ R there exists a unique f (v,λ) ∈ G(xo) so that

f
(v,λ)
∗

(
∂

∂x

∣∣∣∣
1

)
= v , p(f ;xo) = λ (5.16)

ii) the map exp : Bn \ {yo} → D \ {xo}, yo
def= (1, 0, . . . , 0), defined by

exp(Φ(Bn,yo)(v, ζ)) def= f (v,0)(ζ) (5.17)

is a diffeomorphism on Bn (resp. on Bn(yo,a)), extends smoothly at
all points of the closure, different from yo, and induces an homeo-
morphism between the closures of the two domains.

If G(xo,a) with a > 0 is a good foliation for D(xo,a) , we say that D(xo,a) ⊂ D
is a good conical subdomain with vertex in xo. If G(xo) is a foliation of
horospherical type, we say that xo is a center at infinity for D and D is of
horospherical type.

By the results in [6], any strictly convex domain D in (Cn, Jst) is a domain
of horospherical type with center at infinity at any point of the boundary.

5.1.1. Stability of foliations of horospherical type. In analogy with §3.2,
let us consider the nonlinear operator R′(Jo,xo,vo,ν) = (R′1, . . . ,R′6) from
Cα,ε(∆; C2n)×Cε(∂∆; R) into Cα−1,ε(∆; C2n)×Cε(∂∆; R2n+1)× ∂D×Cn ×
R× R, where

R′1(f̂ , λ) = ∂Jo f̂ , R′2(f̂ , λ) = r(ζ, λ(ζ), f̂(ζ)) ,
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R′3(f̂ , λ) = π(f̂)|ζ=1 − xo , R′4(f̂ , λ) = π(f̂)∗

(
∂

∂x

∣∣∣∣
ζ=1

)
− vo ,

R′5(f̂ , λ) = p(π(f̂);xo)− ν ,

R′6(f̂ , λ) = f̂

(
π(f̂)∗

(
∂

∂x

∣∣∣∣
1

))
− 1 .

Given a stationary disk fo : ∆→ D with xo = f(1), vo = fo∗

(
∂
∂x

∣∣
ζ=0

)
and

p(fo;xo) = νo, we say that ∂D is a horospherically good boundary for (Jo, fo)
if fo admits a lift f̂o so that (f̂o, λo) is a solution of R′(Jo,xo,vo,νo)(f̂ , λ) = 0

and the tangent operator R′ of R′(Jo,xo,vo,νo) at (f̂o, λ) is invertible.
Again, by the Implicit Function Theorem, if ∂D is a horospherically good

boundary for (Jo, fo), there is a neighborhood V ⊂ ∂D of xo, a neighborhood
W ⊂ TD of vo, with π(W) = V and a real number ε > 0 so that, for any
x ∈ V, v ∈ W, |ν − νo| < ε and ‖J − Jo‖(1)

D
< ε, there exists a unique disk

f in D with

f(1) = x , f∗

(
∂

∂x

∣∣∣∣
ζ=1

)
= v and p(f ;x) = ν , (5.18)

which is stationary for D w.r.t. the almost complex structure J . The depen-
dence of f on x, v, ν and J is differentiable and, given mo > 0 and a metric g,
one can choose ε,W and V = π(W), so that supζ∈∆ distg(f(ζ), fo(ζ)) < mo.
So, in analogy with Proposition 3.2, we have:

Proposition 5.3. Let D(xo,a) ⊂ D, a > 0, be a good conical subdomain
w.r.t. to Jo with vertex in xo ∈ ∂D. If ∂D is a good boundary for (Jo, fo) for
any stationary disk fo ∈ G(xo,a), there exists ε > 0 and an open neighborhood
U ⊂ ∂D of xo so that for any J with ‖J − Jo‖(1)

D
< ε and any x ∈ U and

|a′− a| < ε, the point x is vertex for a good foliation for D(x,a′) relatively to
the almost complex structure J .

Proof. The proof can be obtained following the same steps of the proof of
Prop. 6 in [4] and we give here only a sketch of it. First of all, using the
Implicit Function Theorem and the compactness of C(a) ∩ S2n−1 ⊂ TxoM ,
one can determine U and ε so that G(x,a′) satisfies (i) for Definition 5.2
for any almost complex structure such that ‖J − Jo‖(1)

D
< ε and for any

x ∈ U , |a′ − a| < ε. Using the Implicit Function Theorem once again, one
can also assume that for all these J , x and a, the map “exp”, defined in
(ii) of that definition, is a local diffeomorphism at all points. It remains
to be checked that U and ε can be chosen so that “exp” is also injective.
From this and a possible further restriction of U and ε, we obtain that
“exp” is a diffeomorphism and satisfies all other requirements of (ii). To
prove injectivity, one may argue by contradiction as in Step 2 of the proof
of Prop. 6 in [4]. In fact, if one assumes that “exp” is never injective for
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any choice of U and ε, one can construct sequences of complex structures
Jj , of vertices xj and of pairs yj 6= y′j ∈ Bn, so that Jj → Jo, xj → xo and
corresponding exponential maps exp(j) are so that exp(j)(yj) = exp(j)(y′j)
for all j. Using compactness and Implicit Function Theorem, one can select
a subsequence zjm = exp(j)(yjm), with yjm → yo, y′jm → y′o with yo 6= y′o

and zjm → zo = exp(yo) = exp(y′o) ∈ D(xo,a), contradicting the hypothesis
of bijectivity of “exp” on D(xo,a).

We remark that the tangent operator R′ = (R′1, . . . ,R
′
6) of R′(Jo,xo,vo,νo)

at (f̂o, λ) is so that (R′1,R
′
2) = RA,B,G (see §4.2 for definition) and hence

it coincides with operator R0,0,G when D ⊂ Cn. If D is a strictly linearly
convex domain in Cn, by Lemma 4.8 (1), the dimension of ker(R′1,R

′
2) =

4n+1. From this, the results in [6] and a line of argument which is essentially
the same of the proofs of Lemma 4.8 (1) and Theorem 4.6, one gets that
R′ = (R′1, . . . ,R

′
6) is invertible also in this case. By Proposition 5.3, the

following result is obtained.

Theorem 5.4. Let D ⊂ M be a smoothly bounded, strongly pseudoconvex
domain in an almost complex manifold (M,Jo) and a > 0 be any fixed
positive real number. If there is a local diffeomorphism ϕ : U ⊂ M → Cn,
so that D̂ = ϕ(D) is a strictly linearly convex domain D̂ ⊂ Cn and ϕ∗(Jo)
is sufficiently close to Jst in a C1-norm, then, for any xo ∈ ∂D, the subset
D(xo,a) ⊂ D is a good conical subdomain.
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C. R. Acad. Sci. Paris, Série I, 305 (1987), 721–724.
[20] A. Spiro and A. Sukhov, An existence theorem for stationary disks in almost complex

manifolds, J. Math. Anal. Appl. 327 (2007), 269–286.
[21] A. Spiro, Total reality of conormal bundles of hypersurfaces in almost complex man-

ifolds, Int. J. Geom. Methods Mod. Phys. 3 (2006), no. 5-6, 1255–1262.
[22] A. Spiro, S. Trapani, Eversive maps of bounded convex domains in Cn+1, J. Geom.

Anal. 12 (2002), 695–715.
[23] S. Trapani, Defect and Evaluations, J. Geom. Anal. 10, n. 4 (2000), 739–758.
[24] A. Tumanov, Extremal disks and the regularity of CR mappings in higher codimension,

Amer. J. Math. 123 (2001), 445–473.
[25] N. P. Vekua, Systems of singular integral equations, Nordholf, Groningen, 1967.
[26] S. M. Webster, On the reflection principle in several complex variable, Proc. Amer.

Math. Soc. 71 (1978), 26–28.
[27] W. Wendland, Elliptic systems in the plane, Pitman Publ., 1979.

Dipartimento di Matematica “U. Dini”, Università di Firenze, Firenze,
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