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In this article current directions in solving Lovász’s problem about the existence of
Hamilton cycles and paths in connected vertex-transitive graphs are given.
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1. Historical motivation

In 1969, Lovász [59] asked whether every finite connected vertex-transitive graph has a Hamilton path, that is, a simple
path going through all vertices, thus tying together two seemingly unrelated concepts: traversability and symmetry of
graphs. Arguably, however, the general problem of finding Hamilton paths and cycles in highly symmetric graphs may
be much older, as it can be traced back to bell ringing, Gray codes and the knight’s tour of a chessboard (see [1,21,38,48]).
Lovász problem is, somewhat misleadingly, usually referred to as the Lovász conjecture, presumably in view of the fact that,
after all these years, a connected vertex-transitive graph without a Hamilton path is yet to be produced. Moreover, only
four connected vertex-transitive graphs (having at least three vertices) not having a Hamilton cycle are known to exist: the
Petersen graph, the Coxeter graph, and the two graphs obtained from them by replacing each vertex with a triangle. All of
these are cubic graphs, suggesting perhaps that no attempt to resolve the above problem can bypass a thorough analysis of
cubic vertex-transitive graphs. However, none of these four graphs is a Cayley graph, that is, a vertex-transitive graph with
a regular subgroup of automorphisms. This has led to a folklore conjecture that every connected Cayley graph possesses a
Hamilton cycle. This problem, togetherwith its Cayley graph variation, has spurred quite a bit of interest in themathematical
community producing, amongst other, conjectures and counterconjectures with regard to its truthfulness. Thomassen [18,
82] conjectured that only finitely many connected vertex-transitive graphs without a Hamilton cycle exist, and Babai [15,
16] conjectured that infinitely many such graphs exist. More precisely, he conjectured that there exists ε > 0 such that
there are infinitely many connected vertex-transitive graphs X with longest cycle of length at most (1− ε)|V (X)|.
All in all, many articles directly and indirectly related to this subject (see [2–6,8–10,12–14,24,32,37,45,47,53,60,61,63,

64,68,69,84–86] for some of the relevant references), have appeared in the literature, affirming the existence of such paths
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and, in some cases, even Hamilton cycles. For example, it is known that connected vertex-transitive graphs of order kp,
where k ≤ 4, (except for the Petersen graph and the Coxeter graph) of order pj, where j ≤ 4, and of order 2p2, where p is
prime, contain a Hamilton cycle. Moreover, it is known that connected vertex-transitive graphs of order pq, where p and q
are primes, admitting an imprimitive subgroup of automorphisms contain a Hamilton cycle. Also, a Hamilton path is known
to exist in connected vertex-transitive graphs of order 5p and 6p (see [2,24,27,56,57,62,65,61,63,64,66,83]). As for a general
vertex-transitive graph, the best known result is that of Babai, who has shown that a vertex-transitive graph on n vertices
has a cycle of length at least

√
3n [17].

Particular attention has been given to Cayley graphs. Nevertheless, most of the results proved thus far depend on
various restrictions made either on the class or order of groups dealt with, or on the generating sets of Cayley graphs
(see [10,13,14,43,44,52,78,86]). For example, one may easily see that connected Cayley graphs of abelian groups have a
Hamilton cycle. Further, it is known that connected Cayley graphs of hamiltonian groups have a Hamilton cycle (see [13]),
and that connected Cayley graphs of metacyclic groups with respect to the standard generating set have a Hamilton cycle
(see [5]). Also, following a series of articles [37,53,60] it is now known that every connected Cayley graph of a group with a
cyclic commutator subgroup of prime power order, has a Hamilton cycle. This result has later been generalized to connected
vertex-transitive graphs whose automorphism groups contain a transitive subgroup with a cyclic commutator subgroup of
prime power order, where the Petersen graph is the only counterexample [32]. But perhaps the biggest achievement on the
subject is due to Witte (nowMorris) who proved that a connected Cayley digraph of any p-group has a Hamilton cycle [86].
On the other hand, even for the class of dihedral groups the question remains open. The best result in this respect is due
to Alspach [6] who proved that every connected Cayley graph on a generalized dihedral group of order divisible by 4 has a
Hamilton cycle (see also [14]). Three other results of note are a theorem ofWitte [84, Theorem 3.1] showing that every group
G with minimal generating set of size d contains a generating set of size less than 4d2 such that the corresponding Cayley
graph has a Hamilton cycle, a theorem of Pak and Radočić [78] showing that every group G has a generating set of size at
most log2 |G| for which the corresponding Cayley graph has a Hamilton cycle, and a theorem of Krivelevich and Sudakov [55]
showing that for every c > 0 and large enough n, a Cayley graph formed by choosing a set of c log5 n generators randomly
from a given group of order n, almost surely has a Hamilton cycle. (For further results not explicitly mentioned or referred
here see the survey articles [30,87]).
Various concepts/problems related to Hamilton cycles and paths in vertex-transitive graphs and digraphs, motivated

by the original Lovász’s question, such as Hamilton connectivity, Hamilton laceability, Hamilton decomposability and edge
hamiltonicity, have been studied (see [7,13,25,26,58,88,73,74]). In this article, however, we will only consider the problem
of existence of Hamilton paths and cycles in connected vertex-transitive graphs, hereafter refereed to as the HPC problem.
Also, a graph possessing a Hamilton cycle is said to be hamiltonian.
The article is organized as follows. In Section 2 definitions, notation and some auxiliary results are introduced. In Section 3

themain strategies used thus far together with possible future directions in solving the HPC problem are given, in particular,
the ‘‘lifting Hamilton cycles approach’’ (see Section 3.1) and the ‘‘Hamilton trees on surfaces approach’’ (see Section 3.2). In
addition, the usefulness of general results on the existence of Hamilton cycles in graphs in connection to the HPC problem
are also discussed.

2. Notation

Throughout this article graphs are finite, undirected and unless specified otherwise, connected. (In most cases the
graphs are simple graphs, however in some instances multiple edges will be allowed.) Given a graph X we let V (X), E(X),
A(X) and Aut X be the vertex set, the edge set, the arc set and the automorphism group of X , respectively. A sequence
(u0, u1, u2, . . . , us) of distinct vertices in a graph is called an s-arc if ui is adjacent to ui+1 for every i ∈ {0, 1, . . . , s− 1}. For
S ⊆ V (X) we let X[S] denote the induced subgraph of X on S. By an n-cycle we shall always mean a cycle with n vertices.
A subgroup G ≤ Aut X is said to be vertex-transitive, edge-transitive and arc-transitive provided it acts transitively on the
sets of vertices, edges and arcs of X , respectively. A subgroup G ≤ Aut X is said to be s-regular if it acts regularly on the
sets of s-arc of X . The graph X is said to be vertex-transitive, edge-transitive, and arc-transitive if its automorphism group is
vertex-transitive, edge-transitive and arc-transitive, respectively. An arc-transitive graph is also called symmetric. Given a
group G and a subset S of G \ {1} such that S = S−1, the Cayley graph Cay(G, S) has vertex set G and edges of the form {g, gs}
for all g ∈ G and s ∈ S. The symbol Zr will denote both the cyclic group of order r and the ring of integers modulo r . In the
latter case, Z∗r will denote the multiplicative group of units of Zr . By D2n we denote the dihedral group of order 2n.
Given a transitive group G acting on a set V , we say that a partition B of V is G-invariant if the elements of G permute

the parts fromB, called blocks of G, setwise. If the trivial partitions {V } and {{v} : v ∈ V } are the only G-invariant partitions
of V , then G is said to be primitive, and is said to be imprimitive otherwise.
For a graph X and a partitionW of V (X), we let XW be the associated quotient graph of X relative toW , that is, the graph

with vertex set W and edge set induced naturally by the edge set E(X). Note that XW may contain multiple edges. Given
integers k ≥ 1 and n ≥ 2 we say that an automorphism of a graph is (k, n)-semiregular if it has k orbits of length n and
no other orbit. In the case whenW corresponds to the set of orbits of a semiregular automorphism ρ ∈ Aut X , the symbol
XW will be replaced by Xρ . One of the successful strategies in the search for Hamilton cycles in connected vertex-transitive
graphs is based on an analysis singling out the structure of the quotient graphs of graphs in question relative to orbits of a
semiregular automorphism (see Section 3.1).
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We end this section with basic definitions about covering techniques. Let X be a graph, let r be a positive integer, and
let ζ : A(X) → Sr be a permutation voltage assignment, that is, a function from the set of arcs of X into the symmetric
group Sr where reverse arcs carry inverse voltages. We thus have a labeling of the arcs of X by permutations in Sr such that
ζu,vζv,u = id for all pairs of adjacent vertices u, v ∈ V (X), where ζu,v denotes the permutation assigned to the arc (u, v).
The covering graph X̃ = Cov(X, ζ ) of X with respect to ζ has vertex set V (X)× Zr , and edges of the form (u, s)(v, s′), where
uv ∈ E(X), s ∈ Zr and s′ = sζu,v . The set of vertices (u, 0), (u, 1), . . . , (u, r − 1) is called the fibre of u. The subgroup
K of all those automorphisms of X̃ which fix each of the fibres setwise is called the group of covering transformations, and
the graph X̃ is called a K -cover of X . It is a simple observation that, when the covering graph is connected, the group of
covering transformations acts semiregularly (that is, every non-trivial element of the group acts without fixed points) on
each of the fibres. In particular, if the group of covering transformations is regular on the fibres of X̃ , we say that X̃ is a
regular K -cover. In this case, the voltage group, that is, the group generated by Im(ζ ), is a regular group of degree r abstractly
isomorphic to the group of covering transformations K . Given a spanning tree T of the graph X , a voltage assignment ζ is
said to be T -reduced if the voltages on the tree arcs equal the identity element. In [49] it is shown that every regular cover
X̃ of a graph X can be derived from a T -reduced voltage assignment ζ with respect to an arbitrary fixed spanning tree
T of X .

3. Current directions in the search for Hamilton cycles and paths

3.1. Lifting Hamilton cycles approach

A frequently used approach to constructing Hamilton cycles in vertex-transitive graphs is based on a quotient-
ing/reduction with respect to an imprimitivity block system of the corresponding automorphism group or, sometimes, with
respect to a suitable semiregular automorphism, preferably one of prime order. Provided the quotient graph contains a
Hamilton cycle it is sometimes possible to lift this cycle to construct a Hamilton cycle in the original graph, consistently
spiraling through the corresponding blocks/orbits (see Example 3.2). This idea was first introduced in [60] to show the ex-
istence of Hamilton cycles in Cayley graphs of semidirect products of cyclic groups of prime order with abelian groups of
odd order, and was then used (with only slight modifications), following a series of articles, to establish the most general
result on this particular subject: existence of Hamilton cycles in connected vertex-transitive graphs with automorphism
groups containing a transitive subgroup whose commutator subgroup is cyclic of prime power order, with the Petersen
graph being the only counterexample [32,37,53]. We propose to continue this line of research by posing the following
problem, a successful solution of which will inevitably shed some new light on the HPC problem for the larger class of
solvable groups.

Problem 3.1. Is there a Hamilton cycle/path in a connected vertex-transitive graph whose automorphism group contains a
transitive subgroup whose commutator subgroup is an arbitrary cyclic group?

Lifts of Hamilton cycles from quotient graphs which themselves have a Hamilton cycle are always possible, for example,
where the quotienting is done relative to a semiregular automorphism of prime order and where in the quotient there are
at least two adjacent orbits joined by a double edge. In this case one can always lift the Hamilton cycle from the quotient
because the double edge gives us the possibility to conveniently ‘‘change direction’’ so as to get a walk in the quotient that
lifts to a full cycle above (see Example 3.2). Sometimes, however, lifts of Hamilton cycles from hamiltonian quotient graphs
are possible even if the quotienting is done relative to a semiregular automorphism of non-prime order (see Example 3.3).
This method shows the importance of the semiregularity problem, posed in [67, Problem 2.4], which asks if every vertex-

transitive digraph has a semiregular automorphism of prime order. The now commonly accepted, and slightlymore general,
version of the semiregularity problem involves thewhole class of 2-closed transitive groups [22,54]. There has recently been
an increased interest in this problem, with a number of articles making small but important steps toward a possible final
solution to the problem [23,33,34,41,42,70].
In the example below the well-known Frucht’s notation [40] for graphs admitting semiregular automorphisms is used.

In particular, if X is a connected graph admitting a (k, n)-semiregular automorphism ρ = (u00u
1
0 · · · u

n−1
0 )(u01u

1
1 · · · u

n−1
1 ) · · ·

(u0k−1u
1
k−1 · · · u

n−1
k−1), with the set of orbitsW = {Wi | i ∈ Zk}, whereWi = {usi | s ∈ Zn}, then using Frucht’s notation [40] the

graph X may be represented in the following way. Each orbit of ρ is represented by a circle. Inside a circle corresponding to
the orbitWi the symbol n/T , where T = T−1 ⊆ Zn \ {0}, indicates that for each s ∈ Zn, the vertex usi is adjacent to all the
vertices us+ti where t ∈ T . When |T | ≤ 2 we use a simplified notation n/t , n/(n/2) and n, respectively, when T = {t,−t},
T = {n/2} and T = ∅. Finally, an arrow pointing from the circle representing the orbit Wi to the circle representing the
orbitWj, j 6= i, labeled by y ∈ Zn means that for each s ∈ Zn, the vertex usi ∈ Wi is adjacent to the vertex u

s+y
j . When the

label is 0, the arrow on the line may be omitted. When there are several arrows pointing from the circle representing the
orbit Wi to the circle representing the orbit Wj, j 6= i, these arrows may be represented by a single arrow with multiple
labels. The description of a graph using Frucht’s notation corresponds to the fact that such a graph is a cyclic cover of the
corresponding quotient with respect to a semiregular automorphism. The various above mentioned labels in circles and on
arrows correspond to respective voltages.
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Fig. 1. A vertex-transitive graph arising from the action of PSL(2, 13) on cosets of D12 given in Frucht’s notation with respect to the (9, 13)-semiregular
automorphism ρ where undirected lines carry label 0. Edges in bold show a Hamilton cycle.

Fig. 2. The Holt graph given in Frucht’s notation with respect to the (3, 9)-semiregular automorphism ρ.

Example 3.2. The orbital graph X arising from the action of PSL(2, 13) on cosets ofD12 with respect to a self-paired suborbit
of length 6 (see [71, page 198] for details) contains a (7, 13)-semiregular automorphism ρ, and it can be nicely represented
in Frucht’s notation as shown in Fig. 1. Since the quotient graph Xρ has a Hamilton cycle containing a double edge and since
13 is a prime number, this cycle can be lifted to a Hamilton cycle in the original graph X (see Fig. 1).

Example 3.3. The Holt graph X , the smallest half-arc-transitive graph (see [11,35,50]), has vertex set V (X) = {uji | i ∈
Z3, j ∈ Z9} and edge set E(X) = {u

j
iu
j±2i
i+1 | i ∈ Z3, j ∈ Z9}. Clearly, the permutation ρ defined by the rule u

j
iρ = u

j+1
i , where

i ∈ Z3 and j ∈ Z9, is a (3, 9)-semiregular automorphism of X and its orbits areW0 = {u
j
0 | j ∈ Z9},W1 = {u

j
1 | j ∈ Z9},

and W2 = {u
j
2 | j ∈ Z9} (see Fig. 2). The quotient graph Xρ with respect to the (3, 9)-semiregular automorphism ρ has

three vertices, corresponding to the three orbits W0, W1 and W2 of ρ, and any two vertices in Xρ are joined by a double
edge. Since 1 + 2 + 4 = 7 generates Z9 the Hamilton cycle W0W1W2 of Xρ lifts to a Hamilton cycle in the Holt graph X:
u00u

1
1u
3
2u
7
0u
8
1u
0
2 . . . u

3
1u
5
2u
0
0.

The existence of Hamilton cycles in connected vertex-transitive graphs can sometimes be shown using results from
classical graph theory. Let us stress the result, due to Jackson [51], giving a sufficient condition for the existence of Hamilton
cycles in regular graphs. In particular, Jackson’s result says that every 2-connected regular graph of order n and valency at
least n/3 is hamiltonian. Since connected vertex-transitive graphs are 2-connected and regular this result implies that in
order to solve the HPC problem it is sufficient to consider connected vertex-transitive graphs of ‘small’ valency. Also, some
of the research done on the existence of Hamilton cycles in connected vertex-transitive graphs shows the usefulness of the
lifting Hamilton cycle approach when combined with classical results on hamiltonian graphs such as the result of Nash-
Williams that k-regular graphs on 2k+ 1 vertices are hamiltonian [75] as well as the well-known Dirac’s theorem [31] and
Ore’s theorem [77] (see also Example 3.5). In particular, the following remarkable result of Chvátal on Hamilton’s ideals [28]
is useful in this respect. Hamilton’s ideals are the sets Si in the proposition below.

Proposition 3.4 ([28]). Let X be a graph and let Si = {x ∈ V (X) | deg(x) ≤ i}. Then X has a Hamilton cycle if for each i < n/2
either |Si| ≤ i− 1 or |Sn−i−1| ≤ n− i− 1.
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Fig. 3. A vertex-transitive graph arising from the action of PSL(2, 17) on cosets of D16 given in Frucht’s notation with respect to a (9, 17)-semiregular
automorphism, where T = {±3,±5,±6,±7}.

Example 3.5. The orbital graph X of valency 16 arising from the action of PSL(2, 17) on cosets of D16 with respect to a self-
paired suborbit of length 16 is of order 153 and it contains a (9, 17)-semiregular automorphism ρ. It can be given in Frucht’s
notationwith respect toρ as shown in Fig. 3. The simplified quotient graphwith respect toρ (obtained by forgettingmultiple
edges) has one vertex of valency 4 and eight vertices of valency 6. Thus Ore’s theorem implies that Xρ is hamiltonian. Also,
since all the edges in Xρ are multiple edges, the lifting method enable us to construct a Hamilton cycle in X .

For further Chvátal type results on the existence of Hamilton cycles not explicitly mentioned here we refer the reader
to [19,46,81]. The next example illustrates how Proposition 3.4 can be applied to show the existence of Hamilton cycles
in a vertex-transitive graph, an orbital graph arising from the action of PSL(2, p) on the cosets of Dp−1 with respect to a
self-paired suborbit of length p − 1. Finding Hamilton cycles in this graph is part of a wider project aimed at proving the
existence of Hamilton cycles in connected vertex-transitive graphs of order a product of two odd primes [36].

Example 3.6. Let G = PSL(2, p), and let H ≤ G be its subgroup isomorphic to Dp−1, where p ≥ 17 is a prime such that
q = (p + 1)/2 is also a prime. Let F = GF(p) and F∗ = F \ {0}. Let S∗ denote the set of all non-zero squares in F and let
N∗ = F∗ \ S∗. For simplicity we refer to the elements of G as matrices. Then H consists of all the matrices of the form[

x 0
0 x−1

]
and

[
0 −x
x−1 0

]
(x ∈ F∗),

and the vertex-transitive graph arising from the action ofG on the setH of right cosets ofH can be described in the following
way. (For further details see [72].) Firstly, note that in order for q = (p+ 1)/2 to be a prime we must have p ≡ 1 (mod 4).
Secondly, for a typical element g =

[
a b
c d

]
of Gwe let ξ(g) = ad and η(g) = a−1b. Further we let χ(g) = (ξ(g), η(g)). Let

∼ be the equivalence relation on F×F∗ defined by (ξ , η) ∼ (1−ξ, ξη

ξ−1 ) for ξ 6= 0, 1. There is then a natural identification of
the setsH and (F×F∗) /∼ ∪{∞}where∞ corresponds toH and (ξ , η) corresponds to the cosetHg satisfyingχ(g) = (ξ , η).
For each ξ ∈ F∗ define the following subsets of H : S+ξ = {(ξ , η) : η ∈ S

∗
} and S−ξ = {(ξ , η) : η ∈ N

∗
}. From [72],

where all the suborbits of the action of G onH are determined, we can extract that Sξ = S+ξ ∪ S−ξ , where ξ(1 − ξ) ∈ N
∗,

is a self-paired suborbit of length p− 1. Let X = X(G,H, Sξ ) be the corresponding orbital graph, that is, the graph of order
pq = p(p + 1)/2 with vertex set V (X) = {Hg | g ∈ G} and edge set E(X) = {{Hg,Hsg} | g ∈ G, s ∈ Sξ }. Then the Sylow

p-subgroup of G generated by the matrix ρ =
[
1 1
0 1

]
acts on X semiregularly with q orbits of size p. Let V∞ and Vx be the

orbit of ρ containing, respectively, the coset H and the coset H
[
1 x
x−1 1

]
, where x ∈ F∗. A short computation shows that

Vx = V−x. Now consider the quotient graph Xρ . By computation, we get that for every x ∈ F∗ the orbit Vx induces a graph
of valency 2, and that there exists a double edge between V∞ and any other of the remaining (p− 1)/2 vertices in Xρ . If the
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Fig. 4. The Moebius–Kantor graph GP(8, 3), T -reduced voltage assignment in the cube giving rise to the Moebius–Kantor graph and a Hamilton cycle in
the cube.

subgraph Xρ − {V∞} of Xρ induced by V (Xρ) \ {V∞} is regular then it turns out that in the simplified graph of Xρ − {V∞}
(obtained by forgetting multiple edges) the vertices Vx, x ∈ F∗, are all of valency greater than or equal to (p− 5)/4 which is
greater than (p + 1)/6, since p ≥ 17. Hence, Jackson’s result implies that the simplified graph of Xρ − {V∞} and therefore
Xρ − {V∞} itself are hamiltonian. Moreover, the fact that V∞ is connected to every other vertex in Xρ , implies that also Xρ is
hamiltonian. On the other hand, if Xρ − {V∞} is not regular then further computations show that in the simplified graph of
Xρ there are (p− 1)/4 vertices of valency (p− 1)/4, next (p− 1)/4 vertices of valency (p+ 3)/4 and one vertex of valency
(p − 1)/2. Since Xρ is of order q = (p + 1)/2, Proposition 3.4 implies that Xρ is hamiltonian. Now using the fact that V∞
in Xρ is connected to every other vertex with a double edge and applying the lifting approach we can construct a Hamilton
cycle in X .

All of the above comments also suggest that the essential question that should be addressed in the context of lifts of
Hamilton cycles concerns the case when any two adjacent orbits in the quotient are joined by a single edge. In other words,
the question is under what circumstances is a covering graph of a hamiltonian graph also hamiltonian. The importance
of this general question lies, for example, in the fact that these sorts of problems are encountered in many special cases
when one is searching for Hamilton cycles. As an illustration, Witte’s theorem about Hamilton cycles in Cayley (di)graphs
of p-groups [86] could be successfully generalized to arbitrary vertex-transitive graphs of prime power order provided one
could prove that for a prime p, a connected regular Zp-cover of a hamiltonian vertex-transitive graph of order a power of
p, is hamiltonian. Then an inductive argument along these lines could be applied. Let X be a connected vertex-transitive
graph of order pk and assume that every connected vertex-transitive graph of order pk−1 is hamiltonian. Let P be a Sylow p-
subgroup of Aut X . Then P acts transitively on V (X). Let ρ ∈ Z(P) be a central element in P of prime order. We then consider
the quotient Xρ of X relative to the set of orbits of ρ. This, being a connected vertex-transitive graph of prime power order
smaller than pk, may be assumed to be hamiltonian. We now consider two possibilities depending on whether the orbits
of ρ are independent sets or not. If not we can find a Hamilton cycle in X as a cycle in a Cartesian product of two cycles.
If however the orbits are independent sets then we may assume that X is a cover of Xρ and we are left with the following
problem.

Problem 3.7. Is a connected regular Zp-cover, where p is a prime, of a hamiltonian vertex-transitive graph of order pk
hamiltonian?

Example 3.8. The Moebius–Kantor graph, also known as the generalized Petersen graph GP(8, 3), shown in the left-hand
side picture in Fig. 4, is the unique cubic symmetric graph of order 16. It is a regular Z2-cover of the cube, and it can be
reconstructed via the T -reduced voltage assignment in the cube given in themiddle picture in Fig. 4 (see [39]). The Hamilton
cycle in the cube, shown in the right-hand side picture in Fig. 4, has voltage 1, and therefore gives rise to a Hamilton cycle
in the Moebius–Kantor graph.

Motivated by Example 3.8 we propose the following question addressing Z2-covers of arbitrary hamiltonian vertex-
transitive graphs.

Problem 3.9. Is a connected regular Z2-cover of a hamiltonian vertex-transitive graph also hamiltonian?

3.2. Hamilton trees on surfaces approach

This approach for findingHamilton cycles/paths, although in theory applicable for vertex-transitive graphs of any valency,
has proved useful in particular for cubic Cayley graphs. To introduce this approach we need to define cycle-separating sets
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Fig. 5. A Hamilton tree of faces in a toroidal Cayley map of a Cayley graph of Z13 o Z6 with respect to a (2, 6, 3)-presentation giving rise to a Hamilton
cycle, and the associated hexagon graph.

and cyclic edge connectivity. Given a connected graph X , a subset F ⊆ E(X) of edges of X is said to be cycle-separating if
X − F is disconnected and at least two of its components contain cycles. We say that X is cyclically k-edge-connected if no
set of fewer than k edges is cycle-separating in X . Following [79] we say that, given a graph (or more generally a loopless
multigraph) Y , a subset S of V (Y ) is cyclically stable if the induced subgraph X[S] is acyclic, that is, a forest. The following
result of Payan and Sakarovitch [79, Théorème 5] on cyclically stable subsets in cyclically 4-edge-connected cubic graphs
was essential in proving the existence of Hamilton paths/cycles in a particular family of cubic Cayley graphs [44].

Proposition 3.10 ([79]). Let X be a cyclically 4-edge-connected cubic graph of order n, and let S be a maximum cyclically stable
subset of V (X). Then |S| = b(3n− 2)/4c and more precisely, the following hold.

(i) If n ≡ 2 (mod 4) then |S| = (3n− 2)/4, and X[S] is a tree and V (X) \ S is an independent set of vertices.
(ii) If n ≡ 0 (mod 4) then |S| = (3n− 4)/4, and either X[S] is a tree and V (X) \ S induces a graph with a single edge, or X[S]
has two components and V (X) \ S is an independent set of vertices.

As mentioned in Section 1, the four non-hamiltonian vertex-transitive graphs are all cubic, thus suggesting that cubic
vertex-transitive graphs are the natural first candidates for which the HPC problem needs to be tested. A promising first
step in this direction was made in [44] where, with an innovative approach, a Hamilton path was shown to exist in cubic
Cayley graphs arising from quotients of the modular group PSL(2,Z), that is, from finite groups G = 〈a, x | a2 = 1, xs =
1, (ax)3 = 1, . . .〉 having a (2, s, 3)-presentation. The strategy is based on an embedding of a Cayley graph X = Cay(G, S),
S = {a, x, x−1}, onto the closed orientable surface of genus g = 1 + (s − 6)|G|/12s whose faces are |G|/s disjoint s-gons
and |G|/3 hexagons. This map is given by using the same rotation of the x, a, x−1 edges at every vertex and results in one
s-gon and two hexagons adjacent at each vertex. (An embedding of a Cayley graph onto an oriented surface having the
same cyclic rotation of generators around each vertex is called a Cayley map, see [80].) In this map one then looks for a long
tree of faces—a tree of faces whose boundary is either a Hamilton cycle in X or a cycle missing two adjacent vertices of X .
Although similar methods have been used before to find Hamilton cycles in certain Cayley graphs in [27,29,45], the new and
essential ingredient in the proof of the above result ties the search for a long tree of faces, sought after in the corresponding
Cayley map, with a classical result of Payan and Sakarovitch [79] regarding decompositions of cyclically 4-edge-connected
cubic graphs into induced trees whose complements have at most one edge (see Proposition 3.10). Namely, we associate
with the Cayley graph X the so called Hexagon graph Hex(X), whose vertex set consists of the hexagons arising from the
relation (ax)3 = 1, with two hexagons being adjacent if they share an edge. Of course, G acts regularly on the arcs of Hex(X)
with a cyclic vertex stabilizer. A long tree of faces in the Cayley map of X then arises from sufficiently large induced trees
in Hex(X) which are proved to exist using a delicate argument, interweaving the above result of Payan and Sakarovitch,
a careful analysis of cubic arc-transitive graphs with small girth, and a result of Nedela and Škoviera [76] which says that
cyclic edge connectivity of a cubic connected vertex-transitive graph equals its girth (see Example 3.11).

Example 3.11. In the bottompicture in Fig. 5we show a tree of hexagonswhose boundary is a Hamilton cycle in the toroidal
Cayley map of the Cayley graph of the group G = Z13 o Z6 = 〈y, z | y6 = z13 = 1, zy = z4〉 with respect to a (2, 6, 3)-
presentation 〈a, x | a2 = x6 = (ax)3 = 1, . . .〉, where a = y3 and x = y3z−1y2z. The upper picture shows this same
tree in the associated hexagon graph, the only cubic symmetric graph of order 26 known as the graph F026A (see [20]). The
correspondence between hexagons in the Cayley map and the vertices in the hexagon graph is indicated by numbers from
1 to 26. Observe that when the group G is considered as a subgroup of the symmetric group S13, its (2, 6, 3)-presentation is
defined by a := (1 7)(2 6)(3 5)(8 13)(9 12)(10 11) and x := (1 11 7 6 9 13)(2 8 3 5 12 4).
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Fig. 6. A tree of faces in the spherical Cayley map of a Cayley graph of S4 with respect to a (2, 3, 4)-presentation giving rise to a cycle missing two pairs of
adjacent vertices, and the associated octagon graph.

This method always gives us a Hamilton cycle when the associated hexagon graph is of order congruent to 2 modulo
4 since in this case the hexagon graph possesses an induced tree whose complement is an independent set of vertices
(see Proposition 3.10). On the other hand, when the hexagon graph is of order congruent to 0 modulo 4, no such induced
tree exists, and consequently this approach only ensures the existence of Hamilton paths.
Current work on the problem suggests that this particular approach may indeed bear fruit. First, despite a number of

technical obstacles encountered along the way, themethod has already been successfully refined to produce a full Hamilton
cycle in every Cayley graph of a group with a (2, s, 3)-presentation for s divisible by 4 (see [43]), with the last details also
being worked out in the remaining cases s odd and s congruent to 2 modulo 4. Second, there may very well be ways for
possible generalizations to arbitrary cubic Cayley graphs arising fromgroupswith generating sets consisting of an involution
and a non-involution of order swhose product is of order t ≥ 4, in short, from groups with a (2, s, t)-presentation, t ≥ 4. In
this case, an arc-transitive graph of valency t with a cyclic vertex stabilizer whose vertex set consists of all the 2t-gons
in the corresponding Cayley map, an analogue of the Hexagon graph, is associated with the Cayley graph in question,
suggesting that a search for Hamilton paths/cycles will depend on a further study of decompositions of regular graphs, and
in particular arc-transitive graphs of valency t ≥ 4 with cyclic vertex stabilizers, into induced forests whose complements
are independent sets or have a small number of edges (see Example 3.14). This opens up a new area of research, interesting
in its own right, not just as a means for constructing Hamilton paths/cycles or, at least, relatively long paths/cycles in cubic
Cayley graphs. In summary, we propose the following problems.

Problem 3.12. Let G = 〈a, x | a2 = 1, xs = 1, (ax)t = 1, . . .〉 be a group having a (2, s, t)-presentation. Is the Cayley graph
Cay(G, S), where S = {a, x, x−1}, hamiltonian?

Given a graph X a subgroup G of the automorphism group Aut X is said to be 1-regular if it acts regularly (that is,
transitively with a trivial stabilizer) on the arc set of X .

Problem 3.13. Let X be an arc-transitive graph of valency greater than or equal to 4 admitting a 1-regular subgroup of
automorphisms with cyclic vertex stabilizer. Decompose the vertex set V (X) into an induced tree whose complement
induces a graph with as few edges as possible. (By Proposition 3.10, for cubic graphs such a complement induces a graph
with at most one edge.)

Example 3.14. In the right-hand side picture in Fig. 6 we show a tree of octagons whose boundary is a cycle missing only
two pairs of adjacent vertices in the spherical Cayley map of a Cayley graph X of the group S4 with a (2, 3, 4)-presentation
〈a, x | a2 = x3 = (ax)4 = 1, . . .〉, where a = (1 2) and x = (1 3 4). The left-hand side picture shows this same tree in the
corresponding ‘‘octagon’’ graph, tetravalent arc-transitive graph. Starting at one of the four vertices that are not contained in
the tree of octagons in X , then moving to its neighbor that is also not contained in the boundary of the tree, and continuing
to the boundary of the tree, following this boundary until all vertices on the boundary have been visited, and finally going
to the other two adjacent vertices not contained on the boundary of the tree, yields a Hamilton path in X (see Fig. 6).

The following example shows that this and similar approaches may be successful in the context of more general families
of cubic Cayley graphs, and perhaps cubic vertex-transitive graphs in general.

Example 3.15. In the right-hand side picture in Fig. 7 we show a tree of hexagons whose boundary is a cycle missing only
two adjacent vertices in the toroidal Cayley map of a cubic Cayley graph X of the dihedral group D48 with respect to the
generating set S = {x, xy3, xy11}, where D48 = 〈x, y | x2 = y24 = (xy)2 = 1〉. Clearly this cycle gives rise to a Hamilton path
in X . Namely, starting at one of the two missing vertices, then going through the other missing vertex, and finally following
the boundary of the tree of hexagons yield a Hamilton path in X . In the left-hand side and the middle picture this same tree
is shown in the corresponding ‘‘hexagon’’ graph, the Moebius–Kantor graph GP(8, 3).
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Fig. 7. A tree of faces in the toroidal Cayley map of a Cayley graph of D48 with respect to a generating set consisting of three involutions missing two
adjacent vertices, and the corresponding induced tree in the Moebius–Kantor graph GP(8, 3) shown in the plane and on the torus.

Acknowledgment

The authors were supported in part by ‘‘Agencija za raziskovalno dejavnost Republike Slovenije’’, research program
P1-0285.

References

[1] W. Ahrens, Mathematische Unterhaltungen und Spiele, Teubner, Leipzig, Germany, 1910, p. 381.
[2] B. Alspach, Hamiltonian cycles in vertex-transitive graphs of order 2p, in: Congress. Numer., vol. XXIII–XX, Proceedings of the Tenth Southeastern
Conference on Combinatorics, in: Graph Theory and Computing, Florida Atlantic Univ., Boca Raton, FL., 1979, Utilitas Math., Winnipeg, Man., 1979,
pp. 131–139.

[3] B. Alspach, The classification of hamiltonian generalized Petersen graphs, J. Combin. Theory Ser. B 34 (1983) 293–312.
[4] B. Alspach, Hamilton cycles in metacirculant graphs with prime power cardinal blocks, in: Graph Theory in Memory of G.A. Dirac (Sandbjerg 1985),
in: Ann. Discrete Math., vol. 41, North-Holland, Amsterdam, 1989, pp. 7–16.

[5] B. Alspach, Lifting Hamilton cycles of quotient graphs, Discrete Math. 78 (1989) 25–36.
[6] B. Alspach, Honeycomb tori and Cayley graphs on generalized dihedral groups, in: Talk given at the 6th Slovenian International Conference on Graph
Theory Bled07, Bled, 2007.

[7] B. Alspach, Hamiltonian partitions of vertex-transitive graphs of order 2p, Congressus Num. XXVIII, Proc. Eleventh Southeastern Conf. Combin.,
in: Graph Theory and Computing, Utilitas Math., Winnipeg, 1980, pp. 217–221.

[8] B. Alspach, C.C. Chen, K. McAvaney, On a class of Hamiltonian laceable 3-regular graphs, Discrete Math. 151 (1996) 19–38.
[9] B. Alspach, E. Durnberger, T.D. Parsons, Hamilton cycles in metacirculant graphs with prime cardinality blocks, in: Cycles in Graphs (Burnaby, B.C.,
1982), in: Ann. Discrete Math., vol. 27, North-Holland, Amsterdam, 1985, pp. 27–34.

[10] B. Alspach, S. Locke, D. Witte, The Hamilton spaces of Cayley graphs on abelian groups, Discrete Math. 82 (1990) 113–126.
[11] B. Alspach, D. Marušič, L. Nowitz, Constructing graphs which are 1/2-transitive, J. Aust. Math. Soc. A 56 (1994) 391–402.
[12] B. Alspach, T.D. Parsons, On Hamiltonian cycles in metacirculant graphs, in: Algebraic and Geometric Combinatorics, in: Ann. Discrete Math., vol. 15,

North-Holland, Amsterdam, 1982, pp. 1–7, 1982.
[13] B. Alspach, Y.S. Qin, Hamilton-connected Cayley graphs on Hamiltonian groups, European J. Combin. 22 (2001) 777–787.
[14] B. Alspach, C.Q. Zhang, Hamilton cycles in cubic Cayley graphs on dihedral groups, Ars Combin. 28 (1989) 101–108.
[15] L. Babai, Problem 17, Unsolved problems, in: Summer Research Workshop in Algebraic Combinatorics, Simon Fraser University, July, 1979.
[16] L. Babai, Automorphism Groups, Isomorphism, Reconstruction, in: R.L. Graham, M. Grotschel, L. Lovász (Eds.), Handbook of Combinatorics, North-

Holland, 1995, pp. 1447–1540 (Chapter 27).
[17] L. Babai, Long cycles in vertex-transitive graphs, J. Graph Theory 3 (1979) 301–304.
[18] J.-C. Bermond, Hamiltonian graphs, in: L.W. Beinke, R.J. Wilson (Eds.), Selected Topics in Graph Theory, Academic Press, London, 1978, pp. 127–167.
[19] J.A. Bondy, V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111–135.
[20] I.Z. Bouwer (Ed.) The Foster Census, Winnipeg, 1988.
[21] J. Breckman, Encoding circuit, US Patent 2 733 432, Jan 31, 1956.
[22] P.J. Cameron (Ed.), Problems from the fifteenth British combinatorial conference, Discrete Math. 167–168 (1997), 605–615.
[23] P.J. Cameron, M. Giudici, W.M. Kantor, G.A. Jones, M.H. Klin, D. Marušič, L.A. Nowitz, Transitive permutation groups without semiregular subgroups,

J. London Math. Soc. 66 (2002) 325–333.
[24] Y.Q. Chen, On Hamiltonicity of vertex-transitive graphs and digraphs of order p4 , J. Combin. Theory Ser. B 72 (1998) 110–121.
[25] C.C. Chen, On edge-Hamiltonian property of Cayley graphs, Discrete Math. 72 (1988) 29–33.
[26] C.C. Chen, N.F. Quimpo, On strongly hamiltonian abelian group graphs, in: K.L. McAvaney (Ed.), Combinatorial Mathematics VIII, in: Lecture Notes in

Mathematics, vol. 884, Springer-Verlag, Berlin, 1981, pp. 23–34.
[27] M. Cherkassof, D. Sjerve, On groups generated by three involutions two of which commute, in: The Hilton Symposium, Montreal, 1993, in: CRM Proc

Lecture Notes, vol. 6, Amer. Math. Soc., Providence, 1994, pp. 169–185.
[28] V. Chvátal, On Hamilton’s ideals, J. Combin. Theory Ser. B 12 (1972) 163–168.
[29] J. Conway, N. Sloane, A. Wilks, Gray codes for reflection groups, Graphs Combin. 5 (1989) 315–325.
[30] S. Curran, J.A. Gallian, Hamiltonian cycles and paths in Cayley graphs and digraphs — a survey, Discrete Math. 156 (1996) 1–18.
[31] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. (3) 2 (1952) 69–81.
[32] E. Dobson, H. Gavlas, J. Morris, D. Witte, Automorphism groups with cyclic commutator subgroup and Hamilton cycles, Discrete Math. 189 (1998)

69–78.
[33] E. Dobson, A. Malnič, D. Marušič, L.A. Nowitz, Minimal normal subgroups of transitive permutation groups of square-free degree, Discrete Math. 307

(2007) 373–385.
[34] E. Dobson, A. Malnič, D. Marušič, L.A. Nowitz, Semiregular automorphisms of vertex-transitive graphs of certain valencies, J. Combin. Theory Ser. B 97

(2007) 371–380.
[35] P.G. Doyle, On transitive graphs, Senior Thesis, Harvard College, 1976.
[36] S.F. Du, K. Kutnar, D. Marušič, Hamiltonian cycles in vertex-transitive graphs of order a product of two primes (in preparation).
[37] E. Durnberger, Connected Cayley graphs of semidirect products of cyclic groups of prime order by abelian groups are Hamiltonian, Discrete Math. 46

(1983) 55–68.
[38] L. Euler, Solution d’une question curieuse qui ne paroit soumise a aucune analyse, Mémoires de l’Académie Royale des Sciences et Belles Lettres de

Berlin, Année 1759 15 (1766) 310–337.



5500 K. Kutnar, D. Marušič / Discrete Mathematics 309 (2009) 5491–5500

[39] Y.Q. Feng, K. Wang, s-Regular cyclic coverings of the three-dimensional hypercube Q3 , European J. Combin. 24 (2003) 719–731.
[40] R. Frucht, How to describe a graph, Ann. New York Acad. Sci. 175 (1970) 159–167.
[41] M. Giudici, Quasiprimitive groups with no fixed point free elements of prime order, J. London Math. Soc. 67 (2003) 73–84.
[42] M. Giudici, New constructions of groups without semiregular subgroups, Comm. Algebra 35 (2007) 2719–2730.
[43] H.H. Glover, K. Kutnar, D. Marušič, Hamiltonicity of cubic Cayley graphs: the (2, 4k, 3) case, J. Algebraic Combin., in press (doi:10.1007/

s10801-009-0172-5).
[44] H.H. Glover, D. Marušič, Hamiltonicity of cubic Cayley graph, J. Eur. Math. Soc. 9 (2007) 775–787.
[45] H.H. Glover, T.Y. Yang, A Hamilton cycle in the Cayley graph of the (2, p, 3)-presentation of PSl2(p), Discrete Math. 160 (1996) 149–163.
[46] R.J. Gould, Advances on the Hamiltonian problem — a survey, Graphs Combin. 19 (2003) 7–52.
[47] R.J. Gould, R.L. Roth, A recursive algorithm for Hamiltonian cycles in the (1, j, n)-Cayley graph of the alternating group, in: Graph Theory with

Applications to Algorithms and Computer Science (Kalamazoo, MI., 1984), in: Wiley-Intersci Publ., Wiley, New York, 1985, pp. 351–369.
[48] F. Gray, Pulse code communication, United States Patent 2632058, March 17, 1953.
[49] J.L. Gross, T.W. Tucker, Generating all graph coverings by permutation voltage assignment, Discrete Math. 18 (1977) 273–283.
[50] D.F. Holt, A graph which is edge transitive but not arc transitive, J. Graph Theory 5 (1981) 201–204.
[51] B. Jackson, Hamiltonian cycles in regular graphs, J. Graph Theory 2 (1978) 363–365.
[52] D. Jungreis, E. Friedman, Cayley graphs on groups of low order are hamiltonian (unpublished).
[53] K. Keating, D. Witte, On Hamilton cycles in Cayley graphs in groups with cyclic commutator subgroup, in: Cycles in Graphs (Burnaby BC, 1982),

in: North-Holland Math. Stud., vol. 115, North-Holland, Amsterdam, 1985, pp. 89–102.
[54] M. Klin, Personal communication.
[55] M. Krivelevich, B. Sudakov, Sparse pseudo-random graphs are Hamiltonian, J. Graph Theory 42 (2003) 17–33.
[56] K. Kutnar, D. Marušič, Hamiltonicity of vertex-transitive graphs of order 4p, European J. Combin. 29 (2008) 423–438.
[57] K. Kutnar, P. Šparl, Hamilton paths and cycles in vertex-transitive graphs of order 6p, Discrete Math. 309 (2009) 5444–5460.
[58] C. Lin, J.J.M. Tan, H.M. Huang, L.H. Hsu, Mutually independent Hamiltonian cycles for the Pancake graphs and the star graphs, Discrete Math. 309

(2009) 5474–5483.
[59] L. Lovász, Combinatorial structures and their applications, in: Proc. Calgary Internat. Conf. Calgary, Alberta, 1969, Gordon and Breach, New York, 1970,

pp. 243–246, Problem 11.
[60] D. Marušič, Hamilonian circuits in Cayley graphs, Discrete Math. 46 (1983) 49–54.
[61] D.Marušič, Vertex transitive graphs and digraphs of order pk , in: Cycles in Graphs (Burnaby, B.C., 1982), in: Ann. DiscreteMath., vol. 27, North-Holland,

Amsterdam, 1985, pp. 115–128.
[62] D.Marušič, Vertex transitive graphs and digraphs of order pk , in: Cycles in Graphs (Burnaby, BC, 1982), North-Holland, Amsterdam, 1985, pp. 115–128.
[63] D. Marušič, Hamiltonian cycles in vertex symmetric graphs of order 2p2 , Discrete Math. 66 (1987) 169–174.
[64] D. Marušič, On vertex-transitive graphs of order qp, J. Combin. Math. Combin. Comput. 4 (1988) 97–114.
[65] D. Marušič, Some problems in vertex-symmetric graphs, Colloq. Math. Soc. Janos Bolyai 37 (1983) 1–11. Finite and Infinite Sets, Eger, Hungary, 1981.
[66] D. Marušič, Hamiltonicity of vertex-transitive pq-graphs, in: Proceeding of Fourth Czechoslovakian Symposium on Combinatorics, Graphs and

Complexity, 1992, pp. 209–212.
[67] D. Marušič, On vertex symmetric digraphs, Discrete Math. 36 (1981) 69–81.
[68] D. Marušič, T.D. Parsons, Hamiltonian paths in vertex-symmetric graphs of order 5p, Discrete Math. 42 (1982) 227–242.
[69] D. Marušič, T.D. Parsons, Hamiltonian paths in vertex-symmetric graphs of order 4p, Discrete Math. 43 (1983) 91–96.
[70] D. Marušič, R. Scapellato, Permutation groups, vertex-transitive digraphs and semiregular automorphisms, European J. Combin. 19 (1998) 707–712.
[71] D. Marušič, R. Scapellato, Classifying vertex-transitive graphs whose order is a product of two primes, Combinatorica 14 (1994) 187–201.
[72] D. Marušič, R. Scapellato, A class of non-Cayley vertex-transitive graphs associated with PSL(2, p), Discrete Math. 109 (1992) 161–170.
[73] Š. Miklavič, P. Šparl, On hamiltonicity of circulant digraphs of outdegree three, Discrete Math. 309 (2009) 5437–5443.
[74] Š. Miklavič, W. Xiao, Connected graphs as subgraphs of Cayley graphs: Conditions on hamiltonicity, Discrete Math. 309 (2009) 5426–5431.
[75] C.St.J.A. Nash-Williams, The theorem is stated and proved, in: L. Lovsz (Ed.), Combinatorial Problems and Exercises, North-Holland Publishing Co.,

Amsterdam, 1979, p. 1993.
[76] R. Nedela, M. Škoviera, Atoms of cyclic connectivity in cubic graphs, Math. Slovaca 45 (1995) 481–499.
[77] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55.
[78] I. Pak, R. Radoičić, Hamiltonian paths in Cayley graphs, Discrete Math. 309 (2009) 5501–5508.
[79] C. Payan, M. Sakarovitch, Ensembles cycliquement stables et graphes cubiques, Cahiers du Centre D’etudes de Recherche Operationelle 17 (1975)

319–343.
[80] R.B. Richter, J. Širáň, R. Jajcay, T.W. Tucker, M.E. Watkins, Cayley maps, J. Combin. Theory Ser. B 95 (2005) 189–245.
[81] L. Stacho, D. Szeszlér, On a generalization of Chvátals condition giving new hamiltonian degree sequences, Discrete Math. 292 (2005) 159–165.
[82] C. Thomassen, Tilings of the torus and the Klein bottle and vertex-transitive graphs on a fixed surface, Trans. Amer. Math. Soc. 323 (1991) 605–635.
[83] J. Turner, Point-symmetric graphs with a prime number of points, J. Combin. Theory 3 (1967) 136–145.
[84] D. Witte, On Hamiltonian circuits in Cayley diagrams, Discrete Math. 38 (1982) 99–108.
[85] D. Witte, On Hamilton cycles in Cayley graphs in groups with cyclic commutator subgroup, Discrete Math. 27 (1985) 89–102.
[86] D. Witte, Cayley digraphs of prime-power order are Hamiltonian, J. Combin. Theory Ser. B 40 (1986) 107–112.
[87] D. Witte, J.A. Gallian, A survey: Hamiltonian cycles in Cayley graphs, Discrete Math. 51 (1984) 293–304.
[88] D. Witte Morris, J. Morris, K. Webb, Hamiltonian cycles in (2, 3, c)-circulant digraphs, Discrete Math. 309 (2009) 5484–5490.

doi:10.1007/s10801-009-0172-5
doi:10.1007/s10801-009-0172-5
doi:10.1007/s10801-009-0172-5
doi:10.1007/s10801-009-0172-5

	Hamilton cycles and paths in vertex-transitive graphs---Current directions
	Historical motivation
	Notation
	Current directions in the search for Hamilton cycles and paths
	Lifting Hamilton cycles approach
	Hamilton trees on surfaces approach

	Acknowledgment
	References


