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Abstract We present a computer formalization of quaternions in the
HOL Light theorem prover. We give an introduction to our library for
potential users and we discuss some implementation choices.
As an application, we formalize some basic parts of two recently devel-
oped mathematical theories, namely, slice regular functions and Pythagorean-
Hodograph curves.

1 Introduction

Quaternions are a well-known and elegant mathematical structure which lies at
the intersection of algebra, analysis and geometry. They have a wide range of
theoretical and practical applications from mathematics and physics to CAD,
computer animations, robotics, signal processing and avionics.

Arguably, a computer formalization of quaternions can be useful, or even
essential, for further developments in pure mathematics or for a wide class of
applications in formal methods.

In this paper, we present a formalization of quaternions in the HOL Light
theorem prover. Our aim is to give a quick introduction of our library to potential
users and to discuss some implementation choices.

Our code is available from a public Git repository3 and a significant part of
it has been included in the HOL Light library.

The paper is divided into two main parts. The first one (Section 3), we
describe the core of our library, which is already available in the HOL Light
distribution.

Next, in the second part, we outline two applications to recently devel-
oped mathematical theories which should serve as further examples and as a
testbed for our work. More precisely, we give the definition and some basic the-
orems about slice regular quaternionic functions (Section 4) and Pythagorean-
Hodograph curves (Section 5).

We thank Graziano Gentili, Carlotta Giannelli and Caterina Stoppato for
many enlightening discussions.

? This work has been supported by GNSAGA-INdAM and MIUR.
3 Reachable from the url https://bitbucket.org/maggesi/quaternions/ .



2 Related work

The HOL Light theorem prover furnishes an extensive library about multivariate
analysis [7] and complex analysis [8], which has been constantly and steadily
extended over the years by Harrison, the main author of the system.

Our objective is to try to further improve this work by adding contributions
in (hyper)complex analysis. One previous work along this line was the proof of
the Cartan fixed point theorems [1] by Ciolli, Gentili and the second author of
this paper.

In a broader context, quaternions are one of the simplest examples of geo-
metric algebra (technically, real Clifford algebra). In this respect, we mention
two recent related efforts. Fuchs and Théry [4] devised an elegant inductive
data structure for formalizing geometric algebra. More recently, Ma et al. [9],
provided a formalization in HOL Light of Conformal Geometric Algebra. In prin-
ciple, these contributions can be integrated with our work, but at the present
stage, we have focused entirely on the specific case of quaternions.

3 The core library

Quaternions were “invented” by Hamilton in 1843. From their very inception,
they was meant to represent, in an unified form, both scalar and vector quanti-
ties. Informally, a quaternion q is expressed as a formal combination

q = a+ b i + c j + dk ∈ H a, b, c, d ∈ R,

where i, j,k are imaginary units. The following identities

ij = k = −ji

jk = i = −kj

ki = j = −ik

i2 = j2 = k2 = ijk = −1

together with the distributive law, induce a product that turns the set H of
quaternions into a skew field.

It is useful to consider a number of different possible decompositions for
a quaternion q, as briefly sketched in the following schema (here I = R3 can
be interpreted, depending on the context, as the imaginary part of H or the
3-dimensional space):

q = a︸︷︷︸
Re q

+ b i + c j + dk︸ ︷︷ ︸
Im q

∈ H = R⊕ I

= a︸︷︷︸
scalar

+ b i + c j + dk︸ ︷︷ ︸
3d-vector

∈ R4 = R⊕ R3

= a+ b i︸ ︷︷ ︸
z∈C

+ (c+ d i)︸ ︷︷ ︸
w∈C

j ∈ H ' C⊕ C



3.1 The definition of quaternion

For the sake of consistency, whenever possible, our development mimics the
formalization of complex numbers, due to Harrison, that is present in the HOL
Light standard library [8]. Following this path, we define the data type ‘:quat‘

of quaternions as an alias for the type of 4-dimensional vectors ‘:real^4‘. This
approach has the fundamental advantage that we inherit immediately from the
general theory of Euclidean spaces the appropriate metric, topology and real-
vector space structure.

A set of auxiliary constants for constructing and destructing quaternions is
defined to setup a suitable abstraction barrier. They are listed in the following
table.

Table 1. Basic notations for the ‘:quat‘ datatype

Constant name Type Description

Hx :real->quat Embedding R → H
ii, jj, kk :quat Imaginary units i, j,k
quat :real#real#real#real->quat Generic constructor
Hv :real^3->quat Embedding R3 → H
Re :quat->real Real component
Im1, Im2, Im3 :quat->real Imaginary components
HIm :quat->real^3 Imaginary part
cnj :quat->quat Conjugation

This is summarized in the following theorem

QUAT_EXPAND

|- !q. q = Hx(Re q) + ii*Hx(Im1 q) + jj*Hx(Im2 q) + kk*Hx(Im3 q)

With these notations in place, the multiplicative structure can be expressed
with an explicit formula

let quat_mul = new_definition

‘p * q =

quat

(Re p * Re q - Im1 p * Im1 q - Im2 p * Im2 q - Im3 p * Im3 q,

Re p * Im1 q + Im1 p * Re q + Im2 p * Im3 q - Im3 p * Im2 q,

Re p * Im2 q - Im1 p * Im3 q + Im2 p * Re q + Im3 p * Im1 q,

Re p * Im3 q + Im1 p * Im2 q - Im2 p * Im1 q + Im3 p * Re q)‘;;

and the inverse of a quaternion is defined analogously. Moreover, we also provide
auxiliary theorems that express in the same notation the already defined additive
and metric structures, e.g.,

quat_add

|- p + q =

quat(Re p + Re q,Im1 p + Im1 q,Im2 p + Im2 q,Im3 p + Im3 q)



quat_norm

|- norm q =

sqrt(Re q pow 2 + Im1 q pow 2 + Im2 q pow 2 + Im3 q pow 2)

Notice that several notations (Re, ii, cnj, . . . ) overlap in the complex and
quaternionic case and, more generally, with the ones of other number systems (+,
*, . . . ). HOL Light features an overloading mechanism that uses type inference
to select the right constant associated to a given notation.

3.2 Computing with quaternions

After settling the basic definitions, we supply a simple automated procedure for
proving quaternionic algebraic identities. It consists of just two steps: (1) rewrit-
ing the given identity in real components, (2) using an automated procedure for
the real field (essentially one involving polynomial normalization, elimination of
fractions and Gröbner Basis):

let SIMPLE_QUAT_ARITH_TAC =

REWRITE_TAC[QUAT_EQ; QUAT_COMPONENTS; HX_DEF;

quat_add; quat_neg; quat_sub; quat_mul;

quat_inv] THEN

CONV_TAC REAL_FIELD;;

This approach, although very crude, allows us to prove directly nearly 60 basic
identities, e.g.,

let QUAT_MUL_ASSOC = prove

(‘!x y z:quat. x * (y * z) = (x * y) * z‘,

SIMPLE_QUAT_ARITH_TAC);;

and it is also occasionally useful to prove ad hoc identities in the middle of
more complex proofs. In this way, we quickly bootstrap a small library with the
essential algebraic results that are needed for building more complex procedures
and theorems.

Next, we provide a conversion RATIONAL_QUAT_CONV for evaluating literal
algebraic expressions. This is easily assembled from elementary conversions for
each basic algebraic operation (RATIONAL_ADD_CONV, RATIONAL_MUL_CONV, . . . )
using the HOL mechanism of higher-order conversionals. For instance, the com-
putation (

1 + 2i− 1

2
k

)3

= −47

4
− 5

2
i +

5

8
k

is performed with the command

# RATIONAL_QUAT_CONV

‘(Hx(&1) + Hx(&2) * ii - Hx(&1 / &2) * kk) pow 3‘;;

val it : thm =

|- (Hx(&1) + Hx(&2) * ii - Hx(&1 / &2) * kk) pow 3 =

-- Hx(&47 / &4) - Hx(&5 / &2) * ii + Hx(&5 / &8) * kk



Finally, we implement a procedure for simplifying quaternionic polynomial
expressions. HOL Light provides a general procedure for polynomial normal-
ization, which unfortunately works only for commutative rings. Hence we are
forced to code our own solution. In principle, our procedure can be general-
ized to work with arbitrary (non-commutative) rings. However, at the present
stage, it is hardwired to the specific case of quaternions. To give an example,
the computation

(p+ q)3 = p3 + q3 + pq2 + p2q + pqp+ qp2 + qpq + q2p

can be done with the command

# QUAT_POLY_CONV ‘(x + y) pow 3‘;;

val it : thm =

|- (p + q) pow 3 =

p pow 3 + q pow 3 + p * q pow 2 + p pow 2 * q +

p * q * p + q * p pow 2 + q * p * q + q pow 2 * p

3.3 The geometry of quaternions

One simple fact, which makes quaternions useful in several physical and geomet-
rical applications, is that the quaternionic product encodes both the scalar and
the vector product. More precisely, if p and q are purely imaginary quaternions
then we have

pq = − 〈p, q〉︸ ︷︷ ︸
scalar

product

+ p ∧ q︸ ︷︷ ︸
vector
product

∈ R⊕ I,

which can be easily verified by direct computation.
Moreover, it is possible to use quaternions to encode orthogonal transforma-

tions. We briefly recall the essential mathematical construction. For q 6= 0, the
conjugation map is defined as

cq : H −→ H
cq(x) := q−1 x q

and we have
cq1 ◦ cq2 = cq1q2 , c−1q = cq−1 .

One important special case is when q is unitary, i.e., ‖q‖ = 1 for which we
have q−1 = q̄ (the conjugate) and thus cq(x) = q̄ x q.

Now, we are ready to state some basic results, which we have formalized in
our framework (see file Quaternions/qisom.hl in the HOL Light distribution).

Proposition 1. If v is a non-zero purely imaginary quaternion, then −cv : R3 →
R3 is the reflection with respect to the subspace of R3 orthogonal to v.

Here is the corresponding statement proved in HOL Light



REFLECT_ALONG_EQ_QUAT_CONJUGATION

|- !v. ~(v = vec 0)

==> reflect_along v = \x. --HIm (inv (Hv v) * Hv x * Hv v)

The theorem of Cartan-Dieudonné asserts that any orthogonal transforma-
tion f : Rn −→ Rn is the composition of at most n reflections. Using this and
the previous proposition we get the following result.

Proposition 2. Any orthogonal transformation f : R3 −→ R3 is of the form

f = cq or f = −cq, ‖q‖ = 1.

The corresponding formalization is the following

ORTHOGONAL_TRANSFORMATION_AS_QUAT_CONJUGATION

|- !f. orthogonal_transformation f

==> (?q. norm q = &1 /\

((!x. f x = HIm (inv q * Hv x * q)) \/

(!x. f x = --HIm (inv q * Hv x * q))))

3.4 Elementary quaternionic analysis

Passing from algebra to analysis, we need to prove a series of technical results
about the analytical behaviour of the algebraic operations. Following the HOL
Light practice, we use the formalism of net topology to express limits and con-
tinuity. To give an idea, here we report the theorem that states the uniform
continuity of the quaternionic inverse q 7→ q−1

UNIFORM_LIM_QUAT_INV

|- !net P f l b.

(!e. &0 < e

==> eventually (\x. !n. P n ==> norm (f n x - l n) < e)

net) /\

&0 < b /\ eventually (\x. !n. P n ==> b <= norm (l n)) net

==> (!e. &0 < e

==> eventually

(\x. !n. P n

==> norm (inv (f n x) - inv (l n)) < e)

net)

We conducted a systematic formalization of the behaviour of algebraic op-
erations from the point of view of limits and continuity, which brought us to
prove more than fifty such theorems overall. Some of them are indeed trivial.
For instance, the uniform continuity of the product is a direct consequence of a
more general result already available on bilinear maps. Some are less immediate
and forced us to dive into a technical εδ-reasoning.

Next, we considered the differential structure. Given a function f : Rn → Rm
we denote by Dfx0(v) or d

dxf(x)|x0(v) the (Frechét) derivative of f at x0 applied



to the vector v. When the derivative exists, it is the linear function from Rn to
Rm that “best” approximates the variation of f in a neighborhood of x0, i.e.,

f(x)− f(x0) ≈ Dfx0
(x− x0).

In HOL Light, the ternary predicate (f has_derivative f’) (at x0) is used
to assert that f is (Frechét) differentiable at x0 and f ′ = Dfx0

We compute the derivative of the basic quaternionic operations. Notice that,
if f is a quaternionic valued function, the derivative Dfq0(x) is a quaternion (in
the modern language of Differential Geometry this is the natural identification of
the tangent space Tf(q0)H ' H). For instance, given two differentiable functions
f(q) and g(q), the derivative of their product at q0 is

d
(
f(q)g(q)

)
dq

|q0(x) = f(q0) Dgq0(x) + Dfq0(x)g(q0).

In our formalism, the previous formula becomes the following theorem:

QUAT_HAS_DERIVATIVE_MUL_AT

|- !f f’ g g’ q.

(f has_derivative f’) (at q) /\ (g has_derivative g’) (at q)

==> ((\x. f x * g x) has_derivative

(\x. f q * g’ x + f’ x * g q)) (at q)

Another consequence that will be useful later, is the following formula for
the power:

dqn

dq
|q0(x) =

n∑
i=1

qn−i0 xqi−10 ,

that is, the HOL theorem

QUAT_HAS_DERIVATIVE_POW

|- !q0 n.

((\q. q pow n) has_derivative

(\h. vsum (1..n) (\i. q0 pow (n - i) * h * q0 pow (i - 1))))

(at q0)

which is easily proven by induction using the derivative of the product.

4 Slice regular functions

Complex holomorphic functions play a central role in mathematics. Given the
deep link and the evident analogy between complex numbers and quaternions,
it is natural to seek for a theory of quaternionic holomorphic functions. A more
careful investigation shows that the situation is less simple than expected. Naive
attempts to generalize the complex theory to the quaternionic case fail because
they lead to conditions which are either too strong or too weak and do not
produce interesting classes of functions.



Fueter in the 1920s, proposed a definition of regular quaternionic function
which is now well-known to the experts and has been extensively studied and
developed. Fueter’s regular functions have significant applications to physics and
engineering, but present also some undesirable aspects. For instance, the identity
function and the polynomials P (q) = a0+a1q+ ...+anq

n, ai ∈ H are not Fueter-
regular. A more detailed discussion on this subject is far beyond the goal of the
present work. To the interested reader we recommend Sudbery’s excellent survey
[11].

In this setting, a novel promising approach has been recently proposed by
Gentili and Struppa in their seminal paper in 2006 [6], where they introduce the
definition of slice regular functions and prove that they expand into power series
near the origin. Slice regular functions are now a stimulating and active subject of
research for several mathematicians worldwide. A comprehensive introduction on
the foundation of this new theory can be found in the book of Gentili, Stoppato
and Struppa [5].

In this section, we use our quaternionic framework presented in the previous
section to formalize the basics of the theory of slice regular functions.

4.1 The definition of slice regular function

A real 2-dimensional subspace L ⊂ H containing the real line is called a slice
(or Cullen slice) of H. The key fact is that the quaternionic product becomes
commutative when it is restricted on a slice, that is if p, q are in the same slice
L, then pq = qp. In other terms, each slice L can be seen as a copy of the
complex field C. More precisely, if I is a quaternionic imaginary unit (i.e., an
unitary imaginary quaternion), then LI = Span{1, I} = R ⊕ RI is a slice and
the injection jI : C→ LI ⊂ H, defined by

jI : x+ yi 7→ x+ yI,

is a field homomorphism. Its formal counterpart is

let cullen_inc = new_definition

‘cullen_inc i z = Hx(Re z) + Hx(Im z) * i‘;;

We can now introduce the definition of Gentili and Struppa:

Definition 1 (Slice regular function). Given a domain (i.e., an open, con-
nected set) Ω ⊂ H a function f : Ω → H is slice regular if it is holomorphic (in
the complex sense) on each slice, that is, the restricted function fLI

: Ω∩LI → H
satisfies the condition

1

2

(
∂

∂x
+ I

∂

∂y

)
fLI

(x+ yI) = 0

for each q = x+yI in Ω∩LI , for every imaginary unit I. In that case, we define
the slice derivative of f in q to be the quaternion

f ′(q) =
1

2

(
∂

∂x
− I ∂

∂y

)
fLI

(x+ yI).



Our first task is to code the previous definition within our formalism. One
problem is the notation for partial derivatives, which is notorious for being oc-
casionally opaque and potentially misleading. When it has to be rendered in a
formal language, its translation might be tricky or at least cumbersome. This is
essentially due to the fact that it is a convention that induces us to use the same
name for different functions, depending on the name of the arguments.4

We decided that the best way to avoid potential problems in our development
was to systematically replace partial derivatives with (Frechét) derivatives. This
leads to an alternative, and equivalent, definition of slice regular function which
could be interesting in its own.

The basic idea is the following. A complex function f is holomorphic in z0
precisely when its derivative Dfz0 is C-linear. Hence, by analogy, a quaternionic
function should be slice regular if its derivative is H-linear on slices in a suitable
sense. This is indeed the case: consider f : Ω → H as before and a quaternion
q0 ∈ Ω. Let L be a slice containing q0 and denote by fL the restriction of f to
Ω ∩ L. Then we have

Proposition 3. The function f is slice regular in q0 if and only if the derivative
of fL is right-H-linear, that is, there exists a quaternion c such that

D(fL)q0(p) = pc.

In that case, c is the slice derivative f ′(q0).

We then take the alternative formulation given by the above Proposition
as the definition of slice regular function in our developement. The resulting
formalization in HOL is the following

let has_slice_derivative = new_definition

‘!f (f’:quat) net.

(f has_slice_derivative f’) net <=>

(!l. subspace l /\ dim l = 2 /\ Hx(&1) IN l /\

netlimit net IN l

==> (f has_derivative (\q. q * f’)) (net within l))‘;;

Notice that the predicate has_slice_derivative formalizes at the same time
the notion of slice regular function and the notion of slice derivative. The domain
Ω does not appear in the definition because functions in HOL are total and, in
any case, the notion of slice derivative is local.

Our formalization of slice derivative is slightly more general than the one
of Proposition 3 for the fact that we use HOL nets. The reader who is not

4 Spivak, in his book Calculus on manifolds [10, p. 65], notices that if f(u, v) is a
function and u = g(x, y) and v = h(x, y), then the chain rule is often written

∂f

∂x
=

∂f

∂u

∂u

∂x
+

∂f

∂v

∂v

∂x
,

where f denotes two different functions on the left- and right-hand of the equation.



accustomed to the use of nets can simply think the variable net as a denoting
the limit q → q0 and netlimit net as the limit point q0. Other than that, these
details about nets are largely irrelevant in the rest of the paper.

We formally proved Proposition 3 in HOL Light. Here is the statement for
the case when q0 = x+ yI is not real.

HAS_SLICE_DERIVATIVE

|- !f f’ i x y.

i pow 2 = -- Hx(&1) /\ ~(y = &0) /\

f differentiable at (Hx x + Hx y * i)

==> ((f has_slice_derivative f’) (at (Hx x + Hx y * i)) <=>

(?fx fy.

((\a. f(Hx(drop a) + Hx y*i)) has_vector_derivative fx)

(at(lift x)) /\

((\b. f(Hx x + Hx(drop b)*i)) has_vector_derivative fy)

(at(lift y)) /\

fx + i * fy = Hx(&0) /\ f’ = fx /\ f’ = --(i * fy)))

Since any slice L can be obtained as the image of jI for any imaginary unit
I ∈ L, then we also have the following useful reformulation

HAS_SLICE_DERIVATIVE_CULLEN_INC

|- !i f f’ z0.

i pow 2 = --Hx(&1)

==> ((f has_slice_derivative f’)

(at (cullen_inc i z) within cullen_slice i) <=>

(f o cullen_inc i has_derivative

(\z. cullen_inc i z * f’)) (at z0))

After the definition, we provided a series of lemmas that allow us to compute
the slice derivative of algebraic expressions. In particular, the powers qn are slice
regular and, if f(q) and g(q) are slice regular functions and c is a quaternion,
then f(q) + g(q) and f(q)c are slice regular. It follows that right polynomials
(i.e., polynomials with coefficients on the right)

c0 + qc1 + q2c2 + · · ·+ qncn

are all slice regular functions. Most of these results are easy consequences of
those discussed in Section 3.4.

We should stress that the product f(q)g(q), including left multiplication cf(q)
and arbitrary polynomials of the form

c0 + c1,1q + c2,0qc2,1qc2,2 + c3,0qc3,1qc3,2qc3,3 + · · · ,

is not slice regular in general.
A more explicit link between slice regular functions and complex holomorphic

functions is given by the splitting lemma, which is a fundamental tool for several
subsequent results. Given two imaginary units I, J orthogonal to one other, every



quaternion can be split, in an unique way, into a sum q = z+wJ with z, w ∈ LI .
Now, given a function f : Ω → H we can split its restriction fLI

as

fLI
(z) = F (z) +G(z)J

with F,G : Ω ∩ LI → LI . Then we have

Lemma 1 (Splitting Lemma). The function f is slice regular at q0 ∈ LI if
and only if the functions F and G are holomorphic at q0.

Notice that, in the above statement, the two functions F,G are ‘complex
holomorphic’ with respect to the implicit identification C ' LI given by jI : x+
yi 7→ x+yI. This has been made explicit in the following formal statement using
our injection cullen_inc:

QUAT_SPLITTING_LEMMA

|- !f s i j.

open s /\ i pow 2 = --Hx (&1) /\ j pow 2 = --Hx (&1) /\

orthogonal i j

==> (?g h.

(!z. f (cullen_inc i z) =

cullen_inc i (g z) + cullen_inc i (h z) * j) /\

(!g’ h’ z.

z IN s

==> ((g has_complex_derivative g’) (at z) /\

(h has_complex_derivative h’) (at z) <=>

(f o cullen_inc i has_derivative

(\z. cullen_inc i z *

(cullen_inc i g’ + cullen_inc i h’ * j)))

(at z))) /\

(g holomorphic_on s /\ h holomorphic_on s <=>

(f slice_regular_on s) i))

4.2 Power expansions of slice regular functions

We now approach power series expansions of slice regular functions at the origin,
which is one of the corner stone for the development of the whole theory. While
the HOL Light library has a rather complete support for sequences and series
in general, at the beginning of our work it was still lacking the proof of various
theorems that were important prerequisites for our task.

We undertake a systematic formalization of the missing theory, including

1. the definition of limit superior and inferior and their basic properties;
2. the root test for series;
3. the Cauchy-Hadamard formula for the radius of convergence.

We avoid discussing this part of the work in detail in this paper. All these
preliminaries have been recently included in the HOL Light standard library.5

5 Commit on Apr 10, 2017, HOL Light GitHub repository.



Theorem 1 (Abel’s Theorem for slice regular functions). The quater-
nionic power series ∑

n∈N
qnan (1)

is absolutely convergent in the ball B = B
(
0, 1/ lim sup

n→+∞
n
√
|an|

)
and uniformly

convergent on any compact subset of B. Moreover, its sum defines a slice regular
function on B.

The corresponding formalization is split into several theorems. As for the con-
vergence, we have three statements, one for each kind of convergence (pointwise,
absolute, uniform). As an example, we include the statement for the uniform
convergence:

QUAT_UNIFORM_CONV_POWER_SERIES

|- !a b s k.

((\n. root n (norm (a n))) has_limsup b)

(sequentially within k) /\

compact s /\

(!q. q IN s ==> b * norm q < &1)

==> ((\i q. q pow i * a i) uniformly_summable_on s) k

The predicate ‘uniformly_summable_on‘ is a compact notation for uniform
convergence for series. Note that the hypothesis ‘b * norm q < &1‘ allows a
correct representation of the domain of convergence also in the case of infinite
radius (case b = 0).

With a little extra effort we proved the same results for the formal derivative
of the series (1).

Finally, from the previous results, and the fact that derivative distributes
over uniformly convergent series, we proved that right quaternionic power series
are slice regular functions on any compact subsets of their domain of convergence

QUAT_HAS_SLICE_DERIVATIVE_POWER_SERIES_COMPACT

|- !a b k q0 s.

((\n. root n (norm (a n))) has_limsup b)

(sequentially within k) /\

compact s /\ s SUBSET {q | b * norm q < &1} /\

~(s = {}) /\ q0 IN s

==> ((\q. infsum k (\n. q pow n * a n)) has_slice_derivative

infsum k (\n. q0 pow (n - 1) * Hx (&n) * a n)) (at q0)

which completes the formalization of Theorem 1.

Next, from the Splitting Lemma 1, we can derive the existence of the power
series expansion of a slice regular function f from the analyticity of its holomor-
phic components F and G.



Theorem 2. Let f : B(0, R)→ H be a slice regular function. Then

f(q) =
∑
n∈N

qn
1

n!
f (n)(0),

where f (n) is the n-th slice derivative of f .

The resulting formalization is the following

SLICE_REGULAR_SERIES_EXPANSION

|- !r q f.

&0 < r /\ q IN ball (Hx(&0),r) /\

(!i. (f slice_regular_on ball (Cx(&0),r)) i)

==> (?z i.

i pow 2 = --Hx(&1) /\ q = cullen_inc i z /\

f q =

infsum (:num)

(\n. cullen_inc i z pow n *

cullen_inc i (inv (Cx(&(FACT n)))) *

higher_slice_derivative i n f (Hx(&0))))

5 Pythagorean-Hodograph curves

The hodograph of a parametric curve r(t) in Rn is just its derivative r′(t), re-
garded as a parametric curve in its own right. A parametric polynomial curve
r(t) is said to be a Pythagorean-Hodograph curve if it satisfies the Pythagorean
condition, i.e., there exists a polynomial σ(t) such that∥∥r′(t)∥∥2 = x21(t) + · · ·+ x2n(t) = σ2(t), (2)

that is, the parametric speed
∥∥r′(t)∥∥ is polynomial.

Pythagorean-Hodograph curves (PH curves) were introduced by Farouki and
Sakkalis in 1990. They have significant computational advantages when used
for computer-aided design (CAD) and robotics applications since, among other
things, their arc length can be computed precisely, i.e., without numerical quadra-
ture, and their offsets are rational curves. Farouki’s book [3] offers a fairly com-
plete and self-contained exposition of this theory.

5.1 Formalization of PH curves and Hermite interpolation problem

The formal definition of PH curve in HOL Light is straightforward:

let pythagorean_hodograph = new_definition

‘pythagorean_hodograph r <=>

vector_polynomial_function r /\

real_polynomial_function

(\t. norm (vector_derivative r (at t)))‘;;



In our work, we deal with spacial PH curves which can be succinctly and
profitably expressed in terms of the algebra of quaternions, and thus, are a
natural application of our formalization of quaternionic algebra.

It turns out that, regarding r(t) = x(t)i + y(t)j + z(t)k as a pure vector in
R3 ⊂ H, condition (2) holds if and only if exists a quaternionic polynomial A(t)
such that

r′(t) = A(t)uĀ(t) (3)

where u is any fixed unit vector and Ā(t) is the usual quaternionic conjugate
of A(t). We proved formally that the definition (2) follows from the previous
condition.

QUAT_PH_CURVE

|- !r A u.

u pow 2 = --Hx (&1) /\

vector_polynomial_function A /\

(!t. (r has_vector_derivative A t * u * cnj (A t)) (at t))

==> pythagorean_hodograph r

One basic question, with many practical applications, is whether there exists
a PH curve with prescribed conditions on its endpoints.

Problem 1 (Hermite Interpolation Problem). Given the initial and final point
{pi,pf} and derivatives {di,df}, find a PH interpolation for this data set.

Following the work of Farouki et al. [2], here we treat only the case of cubic
and quintic solutions of the above problem.

From condition (3) the problem can be reduced to finding a quaternionic
polynomial A(t), of degree 1 (for cubics) or 2 (for quintics), such that the curve
r(t) obtained by integrating (3) satisfies r(0) = pi, r(1) = pf and r′(0) = di,
r′(1) = df .

5.2 PH cubic and quintic interpolant

As is well-known, for a given initial data set {pi,pf ,di,df}, there is a unique
”ordinary” cubic interpolant [3]. It turns out that such a curve is PH if and only
if the data set satisfies specific conditions [2, Section 5], namely:

w · (δi − δf ) = 0(
w · δi + δf
|δi + δf |

)2

+
(w · z)2

|z|4
= |di||df |

where w = 3(pf − pi)− (di + df ), δi = di

|di| , δf =
df

|df | and z =
δi∧δf
|δi∧δf | .

We formalized only one implication of this result, i.e., the sufficient condition
for the ”ordinary” cubic interpolant to be PH. The HOL theorem is



PH_CUBIC_INTERPOLANT_EXISTS

|- !Pf Pi di df:quat.

let w = Hx(&3) * (Pf - Pi) - (di + df) in

let n = \v. Hx(inv(norm v)) * v in

let z = Hx(inv (norm (n di + n df))) *

Hv(HIm(n di) cross HIm(n df)) in

let r = \t. bernstein 3 0 (drop t) % Pi +

bernstein 3 1 (drop t) % (Pi + Hx(&1 / &3) * di) +

bernstein 3 2 (drop t) % (Pf - Hx(&1 / &3) * df) +

bernstein 3 3 (drop t) % Pf in

Re Pf = &0 /\ Re Pi = &0 /\ Re di = &0 /\ Re df = &0 /\

~(Hx(&0) = di) /\ ~(Hx(&0) = df) /\ (!a. ~(n di = Hx a * df))

==>

pathstart r = Pi /\ pathfinish r = Pf /\

pathstart (\t. vector_derivative r (at t)) = di /\

pathfinish (\t. vector_derivative r (at t)) = df /\

(w dot (n di - n df) = &0 /\

(w dot (n (n di + n df))) pow 2 +

inv(norm z) pow 4 * (w dot z) pow 2 =

norm di * norm df

==> pythagorean_hodograph r)‘

where the curve r(t) is expressed in the Bernstein form.
We also formalized the analogous result for quintics. In this case the theory

shows several differences, since, for instance, an Hermite PH quintic interpolant
can be found for every initial data set. Actually, there is a two-parameter family
of such interpolants [2, Section 6] and the algebraic expression of r(t) is substan-
tially more complex with respect to the case of cubics. The formal statement
of the theorem is about 40 lines of code and thus cannot be included here for
lack of space (see theorem PH_QUINTIC_INTERPOLANT in file ph_curve.hl in our
online repository).

Both of the aforementioned proofs consist essentially in algebraic manipula-
tion on quaternions, so our formal framework has been very useful to automate
many calculations that were implicit in the original paper [2, Section 6].

6 Conclusions

We laid the foundations for quaternionic calculus in the HOL Light theorem
prover, which might be of general interest for developing further formalization
in pure mathematics, physics, and for several possible applications in formal
methods.

We also presented two applications. First, a formalization of quaternionic
analysis with a focus on the theory of slice regular functions, as proposed by
Gentili and Struppa. Secondly, the computer verified solutions to the Hermite
interpolation problem for cubic and quintic PH curves.



Along the way, we provided a few extensions of the HOL Light library about
multivariate and complex analysis, comprising limit superior and inferior, root
test for series, Cauchy-Hadamard formula for the radius of convergence and some
basic theorems about derivatives.

Overall, our contribution takes about 10,000 lines of code and consists in
about 600 theorems, of which more than 350 have been included in the HOL
Light library.

This work is open to a wide range of possible improvements and extensions.
The most obvious line of developement would be to formalize further mathe-
matical results about quaternions; there is an endless list of potential interesting
candidates within reach from the present state of art.

For the core formalization of quaternions, we only provided basic procedures
for algebraic simplification. They were somehow sufficient for automating several
computations occurring in our development, but it surely would be interesting
to implement more powerful decision procedures. Some of them would probably
involve advanced techniques from non-commutative algebra.
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